白亮,民盟盟员,山西大学智能信息处理研究所所长,教授,博士生导师,国家优秀青年基金获得者。主要研究方向为机器学习与数据挖掘,其中包括图学习与聚类分析、机器学习基础理论与智慧医疗应用等,相关研究成果发表在AIJ、IEEE TPAMI、IEEE TKDE、DMKD、ICML、KDD、AAAI等国际权威学术期刊和会议等,博士论文获得了中国人工智能学会优秀博士论文奖。承担了国家自然科学基金“重点”/“优青”项目、科技部新一代人工智能重大项目课题等。2次作为主要完成人获得了山西省科学技术奖(自然科学类)一等奖奖励。
1、 带参照物的聚类集成方法研究, 国家自然科学基金面上项目, 2018-01至2021-12, 主持
2、 符号数据的聚类有效性分析与优化算法研究, 国家自然科学基金青年项目, 2014-01至2016-12, 主持
3、 面向大规模数据集的聚类模型与算法研究, 高等学校博士学科点专项科研基金, 2014-01至2016-12, 主持
4、 面向大数据的高效聚类算法研究, 山西省基础研究计划项目, 2015-01至2017-12, 主持
5、 大数据下的快速粒化与聚类分析, 山西省高校科技创新项目, 2015-01至2017-12, 主持
6、 面向关联关系数据的概念学习方法研究, 国家自然科学基金面上项目, 2016.01-2019.12, 第一参与人
[1] Liang Bai,Jiye Liang,Hangyuan Du,YikeGuo. A novel community detection algorithm based on simplification of complex networks, Knowledge-Based Systems, 2018, doi.org/10.1016/j.knosys.2017.12.007.点击阅览
[2] Liang Bai,Jiye Liang,Yike Guo. An ensemble clusterer of multiple fuzzy k-means clusterings to recognize arbitrarily shaped clusters, IEEE Transactions on Fuzzy Systems, 2018, DOI 10.1109/TFUZZ.2018.2835774..点击阅览
[3] Liang Bai,Xueqi Chen,Jiye Liang,Huawei Shen,Yike Guo. Fast density clustering strategies based on the k-means algorithm, Pattern Recognition, 2017, 71:375–386.点击阅览
[4] Liang Bai,Xueqi Cheng,Jiye Liang,Yike Guo. Fast graph clustering with a new description model for community detection, Information Sciences, 2017, 388-389:37–47.点击阅览
[5] 杜航远,王文剑,白亮. 一种基于优化模型的演化数据流聚类方法, 中国科学(E辑:信息科学), 2017, 10.1360/N112017-00107.点击阅览
[6] Liang Bai,Xueqi Cheng,Jiye Liang,Huawei Shen. An optimization model for clustering categorical data streams with drifting concepts, IEEE Transactions on Knowledge and Data Engineering, 2016, 28(11):2871-2883.点击阅览
[7] Liang Bai,Jiye Liang. Cluster validity functions for categorical data:a solution-space perspective, Data Mining and Knowledge Discovery, 2015, 29(6):1560-1597.点击阅览
[8] Hangyuan Du,Wenjian Wang,Liang Bai. Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment, Neurocomputing, 2015, 158:155–166.点击阅览
[9] Liang Bai,Jiye Liang. The k-modes type clustering plus between-cluster information for categorical data, Neurocomputing, 2014, 133:111–121.点击阅览
[10] Liang Bai,Jiye Liang,Chuangyin Dang,Fuyuan Cao. A novel fuzzy clustering algorithm with between-cluster information for categorical data, Fuzzy Sets and Systems, 2013, 215:55–73.点击阅览
[11] Liang Bai,Jiye Liang,Chuangyin Dang,Fuyuan Cao. The impact of cluster representatives on the convergence of the K-Modes type clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1509-1522.点击阅览
[12] Liang Bai,Jiye Liang,Chao Sui,Chuangyin Dang. Fast global k-means clustering based on local geometrical information, Information Sciences, 2013, 245:168–180.点击阅览
[13] Liang Bai,Jiye Liang,Chuangyin Dang,Fuyuan Cao. A cluster centers initialization method for clustering categorical data., Expert Systems with Applications, 2012, 39(9):8022-8029.点击阅览
[14] Jiye Liang,Liang Bai,Chuangyin Dang,Fuyuan Cao. The k-means-type algorithms versus imbalanced data distributions, IEEE Transactions on Fuzzy Systems, 2012, 20(4):728-745.点击阅览
[15] Fuyuan Cao,Jiye Liang,Deyu Li,Liang Bai,Chuangyin Dang. A dissimilarity measure for the k-Modes clustering algorithm, Knowledge-Based Systems, 2012, 26:120-127.点击阅览
[16] Liang Bai,Jiye Liang,Chuangyin Dang,Fuyuan Cao. A novel attribute weighting algorithm for clustering high-dimensional categorical data, Pattern Recognition, 2011, 44(12):2843-2861.点击阅览
[17] Liang Bai,Jiye Liang,Chuangyin Dang. An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data, Knowledge-Based Systems, 2011, 24(6):785-795.点击阅览
[18] 梁吉业,白亮,曹付元. 基于新的距离度量的K-Modes聚类算法, 计算机研究与发展, 2010, 47(10):1749-1755.点击阅览
[19] Fuyuan Cao,Jiye Liang,Liang Bai,Xingwang Zhao,Chuangyin Dang. A framework for clustering categorical time-evolving data, IEEE Transactions on Fuzzy Systems, 2010, 18(5):872-882.点击阅览
[20] Fuyuan Cao,Jiye Liang,Liang Bai. A new initialization method for categorical data clustering, Expert Systems with Applications, 2009, 36(7):10223-10228. 点击阅览