
Observation noise modeling based particle filter: An efficient algorithm
for target tracking in glint noise environment$

Hangyuan Du a,n, Wenjian Wang a,b, Liang Bai a,b

a School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, PR China
b Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006,
PR China

a r t i c l e i n f o

Article history:
Received 8 May 2014
Received in revised form
9 January 2015
Accepted 27 January 2015
Communicated by M. Bianchini
Available online 7 February 2015

Keywords:
Target tracking
Particle filter
Observation likelihood
Glint noise
Gaussian mixture model

a b s t r a c t

In this paper, a novel particle filtering algorithm for target tracking in the presence of glint noise based
on observation noise modeling is proposed. The algorithm samples particles using the observation
likelihood function, the construction of which is converted to a modeling problem of observation noise.
Additionally, the Gaussian mixture model is incorporated to approximate the distribution of observation
noise at each time instant. In order to derive a recursive form update for the parameters of the Gaussian
components, the maximum likelihood estimation method is employed, enabling noise to be effectively
tracked by fusing the latest observations. The algorithm is then used in simulations of bearings-only
tracking problems in a glint noise environment with two types of targets: non-maneuvering and
maneuvering. The results of the proposed algorithm are evaluated and compared to several existing
filtering algorithms through a series of Monte Carlo simulations. The simulation results demonstrate that
the proposed algorithm is more precise, robust, and even has a faster convergence rate than the
comparative filters. Lastly, the performance of the proposed filter in situations with different numbers of
particles and Gaussian components is explored using the simulation results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Target tracking is the process of maintaining a state estimation
for a moving target based on a set of sensor measurements [1]. In
the decades since its establishment as a unique scientific field, the
study of target tracking has continued to evolve with the devel-
opment of sensor system. The Bayes filter provides a recursive
state estimation framework for target tracking by using probability
theory. In practice, there are a lot of realizations for Bayes filter of
which the Kalman filter (KF) is the most common one. The KF is
capable of achieving optimal solutions to estimation problems of
the linear systems with Gaussian noise [2], though unfortunately,
very few actual target tracking problems fall into this category in
practice. Recently, the particle filter (PF), a non-parametric random
sampling algorithm that can address more complicated target
tracking problems, has begun to attract an increasing amount of
attention with the improvement of computing capacity, since
recursive Bayes filter can be designed for non-linear non-Gaussian
state estimation problem through the use of the Monte Carlo

method [3]. However, in the glint noise disturbed tracking system,
the particle filter does not work very well. The present work
proposes an improvement for this issue.

Unlike the KF and its variants (e.g., the Extended Kalman filter
(EKF), the Unscented Kalman filter (UKF), the Divided Difference
Filter (DDF) and the Gauss–Hermite filter (GHF) [4,5]), the PF is a
Sequential Monte Carlo (SMC) algorithm. The PF is also referred to
as the sequential importance sample (SIR) algorithm that pos-
sesses a strong processing capacity for non-linear and non-
Gaussian problems. It uses a group of randomly sampled particles
to describe the posterior probability distribution of state. The
posterior estimation is obtained by propagating the weighted
particles through a dynamic state space (DSS) in the recursive
process, and estimation results are reliable only when a suffi-
ciently large number of particles are sampled [3]. In theory, the
computational complexity of the PF is dependent only on the
number of particles used and the design of the algorithm itself,
and not influenced by the dimension of the state. Additionally, the
structure of the PF is highly suited to parallel computing.

Since its conception, a number of comprehensive studies have
been conducted on how to improve PF accuracy and expand its
application possibilities. A commonly employed strategy is to
improve the design of the importance density function fromwhich
particles are sampled [6]. In some studies, a suboptimal estimator
such as the EKF, UKF or central difference filter (CDF) is used to
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fuse the latest observation and generate importance density,
which significantly improves the estimation accuracy of the filter
[7–9]. In the literature [5], accuracy of the filter is improved by
sampling particles from an annealing form of a priori transition
density. MacCormick [10] proposed a partitioned sampling
method for optimizing the design of the importance density
function when the likelihood reveals the feature of sharp shape
and has little overlap with the prior transition density. In another
study [11], the authors provide an optimization-based algorithm
(using the steepest descent method) that was used to generate the
importance density and then sample particles from the density.

Another problem constraining the performance of the PF is the
particle degeneracy phenomenon, where after several iterations,
all but one particle will have negligible weight. However, this issue
can be avoided by using resampling, prompting many researchers
to investigate in resampling strategies. Aside from the most
common resampling methods, such as multinomial resampling,
systematic resampling, residual resampling and stratified resam-
pling [12], there are many innovative PFs based on the exploitation
of the resampling operation. The auxiliary particle filter (APF)
introduces an auxiliary variable that identifies the component
index of each particle, and exchanges sampling and resampling
sequences [13]. The adaptive PF incorporates the Kullback–Leibler
distance (KLD) method into either sampling or resampling to
ensure that the measure of error between the estimation and real
posterior densities does not exceed a pre-specified error bound.
Within this algorithm, the number of particles changes, adapting
according to the signal environment [14,15]. Other studies focus
on particle impoverishment which occurs when very few particles
have significant weights while most other particles with small
weights are discarded in resampling. For example, Markov Chain
Monte Carlo (MCMC) is used to diversify particles [16,17], which
weakens particle correlation and makes the distribution of particle
set more stationary. The regularized particle filter (RPF) extracts
samples from the continuous approximate probability distribu-
tion, and alleviates the impoverishment problem to a degree by
using a kernel function [16,18]. In [19], an exquisite resampling
(ER) algorithm was introduced into the PF, which enabled the
impoverishment phenomenon to be avoided and for the estima-
tion accuracy to be obtained using a smaller number of particles.

Additional tactics for enhancing the PF include the Rao-
Blackwellized PF (RB-PF) [20,21], the Gaussian Sum PF (GSPF)
[22,8,23], the intelligent optimization based PF [24,25], and the
distributed PF [26,27]. All of these algorithms improve the estima-
tion accuracy of PF and expand its scope of application through
different means.

None of the aforementioned PFs, however, can adequately
execute state estimation in a non-linear system with the assump-
tion of non-Gaussian non-stationary observation noise, such as
glint noise in radar tracking. Therefore, in this paper, a novel
particle filter is developed to address this issue. The filter selects
the observation likelihood function as the importance density
function, and transforms the construction of likelihood function
into an observation noise modeling problem. Then, the probability
density function (PDF) of the observation noise is modeled as a
bank of weighted Gaussian densities where the distribution
parameters of individual Gaussian components are calculated in
each iteration using the maximum likelihood estimation (MLE) in
each iteration. This noise model and the calculated distribution
parameters are subsequently used to build the observation like-
lihood function for extracting particles. In simulations, the pro-
posed algorithm performs very well in radar target tracking
problems with glint noise.

The rest of paper is organized as follows. Section 2 gives a brief
review of the preliminary. In Section 3, the novel likelihood PF
based on the Gaussian mixture noise model is proposed. The

construction of observation likelihood function is transformed into
an estimation problem of the PDF of the observation noise, which
is approximated as a bank of Gaussian components. Calculation
formulas for the distribution parameters of these noise compo-
nents are also deduced. Section 4 describes the implementation of
the proposed algorithm as well as computational complexity
analysis. In Section 5, the proposed algorithm is applied using
two object tracking simulations. Finally, conclusions are drawn in
Section 6.

2. Preliminary

2.1. Glint noise with non-Gaussian non-stationary distribution

Glint noise, or angle glint, which is a major disturbance in radar
tracking systems refers to fluctuations in the measured angles of
arrival of backscattered electromagnetic waves transmitted from a
radar device. It arises due to interference between two or more
reflections from the target surface which induces a distortion in
the shape of the propagating wave front and angular errors [28].
These angular errors corrupt the sensors line-of-sight measure-
ments, especially in bearings-only object tracking systems. Fig. 1
presents a typical record of disturbed angular observations col-
lected by a BQM-34A [29] from which we can easily see that the
distribution of glint noise is decidedly different from that of
Gaussian noise. First, there are a number of random spikes
distributed throughout the record, indicating that the sophisti-
cated uncertainty distribution would be heavy tailed. Second, the
statistical process is non-stationary, that is, the probability dis-
tribution changes over time throughout the entire observation
history. In order to obtain an accurate and effective state estima-
tion for tracking, a credible statistical model for glint noise must
be established. However, due to its non-stationary statistic proper-
ties, building an accurate prior probability model for glint noise
using a direct parametric description is difficult. In some studies,
glint noise has been approximated as one type of common
distribution or as combination of types. For example, Ref. [30]
modeled the glint noise as a Student's t distribution with two
degrees of freedom; Ref. [31] used prior Gamma distribution to
estimate parameters of the Student's t distribution model for the
glint noise; Refs. [28] and [29] approximated glint noise as a
combination of two Gaussian distributions; and in [32], glint noise
was described as a combination of Gaussian and Laplacian
distributions.

The aforementioned noise models have one thing in common:
they can describe the non-Gaussian and heavy tailed properties of
glint noise very well, however, they all belong to a class of noise
models that use a priori knowledge. That is to say, the parameters
of the noise model must be set (via experience or experiment)
before the filtering process, and they lack online adjustability. As a

Fig. 1. A typical angular observation record disturbed by glint noise.
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result, these models ignore the non-stationary property of glint
noise, making them incapable of accurately describing the noise
statistic as it changes over time. To achieve a better tracking perfo-
rmance with non-Gaussian non-stationary noise, the dynamics of
the noise statistic must be monitored in real-time during the
filtering process.

2.2. Target tracking in the context of Bayes filtering

Target tracking problems are typically described using the DSS
method [33] in which the motion model and the observation
model are given by the following equations:

xk ¼ f kðxk�1Þþuk;

zk ¼ hkðxkÞþvk;

(
ð1Þ

where xkARdx is an unobserved system state vector at time
instant k, zkARdz is an observation obtained by the sensor, and
ukARdu and vkARdv are random noises with given or unknown
probability distributions, accompanying the system update and
sensor observation, respectively. f kð�Þ and hkð�Þ are, respectively,
the state transition function and the observation function. The task
of target tracking is to estimate the state of xk at each time instant
through the continued acquisition and processing of observation
zk with the given initial state x0. Usually, the history sequence of
states and observations is denoted as x0:k � fx0;…;xkg and
z0:k � fz0;…; zkg, respectively. Within a Bayes filter framework,
the estimation of the tracking task is divided into two stages—–

time update and state update.
In time update stage, the prior density of the state at time

instant k is calculated as [5]

pðxk jz1:k�1Þ ¼
Z

pðxk jxk�1Þpðxk�1 jz1:k�1Þ dxk�1; ð2Þ

where pðxk jxk�1Þ is referred to as the prior transition density. The
prior density is then updated to the posterior density during the
state update stage by fusing latest observations accordingly:

pðxk jz1:kÞ ¼ Ckpðzk jxkÞpðxk jz1:k�1Þ; ð3Þ
where pðzk jxkÞ is the likelihood probability and the normalization
coefficient Ck can be described as

Ck ¼
Z

pðzk jxkÞpðxk jz1:k�1Þ dxk

� ��1

: ð4Þ

2.3. Sampling importance resampling particle filter

The PF propagates a set of particles that have been randomly
sampled from the posterior density in space. But in most cases,
sampling directly from the posterior distribution is very difficult or
impossible because the data are usually sparse in high-
dimensional space and the region of interest is relatively small
in the whole data space. Therefore, the posterior is typically
replaced by an importance density function, known as the
sequential importance sampling (SIS) algorithm, which has a
known distribution that is easy to sample from [16]. On this basis,
the resampling procedure is carried out, the particle degeneracy
problem is overcome, and the effectiveness of particle set is
ensured by removing particles with smaller weights and duplicat-
ing particles with larger weights. Once resampling is introduced,
the algorithm as a whole is referred to as the sampling importance
resampling particle filter, or SIR PF [6]. The pseudocode of SIR PF
can be represented as follows:

Step 1: Sample N particles from the importance density func-
tion qðxk jxj

k�1; zkÞ:
xj
k � qðxk jxj

k�1; zkÞ; j¼ 1;…;N: ð5Þ

Step 2: Calculate the importance weight of each particle:

ωj
kpωj

k�1

pðzk jxj
kÞpðx

j
k jx

j
k�1Þ

qðxj
k jx

j
k�1; zkÞ

; ð6Þ

where ωk
j is the weight of particle xj

k, pðzk jx
j
kÞ and pðxj

k jx
j
k�1Þ

denote observation likelihood and state prior transition functions,
respectively.

Step 3: Normalize all the weights:

ωj
k ¼

ωj
kPN

j ¼ 1ω
j
k

: ð7Þ

Step 4: Calculate effective sample size:

N̂eff ¼
1PN

j ¼ 1 ωj
k

� �2: ð8Þ

Compare N̂eff with the predefined threshold value Nth. If N̂eff oNth,
this indicates that there are some invalid particles in the set, and
that resampling should be performed.

Step 5: Export the sum of the weighted particles, and estimate
the posterior probability density of the system state as follows:

pðxk jzjkÞ �
XN
j ¼ 1

ωj
k � δðxk�xj

kÞ; ð9Þ

where the Kronecker Delta function δð�Þ is described as

δðt�τÞ ¼
0; taτ;
1; t ¼ τ

:

(
ð10Þ

2.4. Likelihood particle filter

The estimation performance of the PF is significantly depen-
dent on the selection of the importance density function, so the
optimal importance density function should have the least possi-
ble weight variances. Theorem 1, given below, provides a possible
optimal importance density function [34]:

Theorem 1. qoptðxk jxj
k�1; zkÞ ¼ pðxk jxj

k�1; zkÞ is an optimal impor-
tance density function based on minimized importance weight
variances Varqðxk j xj

k
;zkÞðω

j
kÞ of x

j
k�1 and zk, and the importance weight

is updated as

ωj
k ¼ωj

k�1pðzk jx
j
k�1Þ: ð11Þ

However, the optimal importance density function presented in
Theorem 1 has two problems. Firstly, at times, it may be result in a
non-standard distribution sometimes that is difficult to sample
from. And second, in order to update importance weight according
to (11), the integral operation described in (12) which is always
non-analytic is necessary:

pðzk jxj
k�1Þ ¼

Z
pðzk jxkÞpðxk jxj

k�1Þ dx: ð12Þ

In practice, a widely used importance density function is the
prior state transition density:

qðxk jxj
k�1; zkÞ ¼ pðxj

k jx
j
k�1Þ: ð13Þ

At this point, the sampling process is easy to implement, and the
importance weight is updated as follows:

ωj
k ¼ωj

k�1pðzk jx
j
kÞ: ð14Þ

However, the prior density does not fuse the latest observation
information, so, the sampled particles may drift off the real
posterior distribution, resulting in a degradation of performance.
Several experimental results have shown that the observation
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likelihood usually makes a greater contribution to posterior dis-
tribution and is more similar to posterior density than it is to prior
density [3]. Thus, by extracting particles from the observation
likelihood rather than the prior state transition density, in a
method known as likelihood particle filter, the PF can be expected
to concentrate on particles in the peak region of the likelihood
function, which will improve estimation performance [35].

Unfortunately, there is still a problem that the observation
likelihood may be non-analytic in many cases. Considering this
problem, Ref. [36] introduced a piecewise approximation method,
in which the observation likelihood was divided into several
uniform intervals according to sampling number, and the center
of each interval was selected as representative point. Then, the
likelihood value of each interval was approximated using the value
of the representative point, and the whole observation likelihood
is obtained by combining these piecewise approximations. The
method works well with a single-dimensional likelihood, but in
multi-dimensional problems, interval partitioning may be difficult.
In this paper, we exploit the relationship between the observation
likelihood and the probability distribution of observation noise
and seek to construct a common model for observation likelihood,
the details of which are presented in Section 3.

3. Constructing observation likelihood for the particle filter

In this paper, the observation likelihood function, from which
the particles are extracted in the likelihood PF, depends on the
observation noise. In this way, we are able to generate the
observation likelihood by modeling non-Gaussian non-stationary
observation noise recursively within the particle filter framework.

3.1. The relationship between observation likelihood and observation
noise

The observation likelihood function can be approximated as
Gaussian distribution density as (15), under the assumption that
observation noise represented by vk, is zero mean Gaussian white
noise, with a variance of Rk:

pðzk jxj
kÞ ¼Nðzk;hkðxj

kÞ;RkÞ: ð15Þ
Unfortunately, with regard to glint noise with non-Gaussian non-
stationary properties, the observation likelihood cannot be
approximated using Gaussian distribution without introducing
excess error into the estimation process. To overcome this issue,
we will design an alternative approximation method by exploring
the important relationship between the observation noise and the
observation likelihood.

Assume that a, b, and c are three independent random variables
that can be described as follows:

aþb¼ c: ð16Þ
Based on the conclusion in [37], we have

pcj aðcjaÞ ¼ pbðc�aÞ: ð17Þ
If we consider (1), we get

pðzk jxkÞ ¼ pðzk�hkðxkÞÞ ¼ pðvkÞ: ð18Þ
For each particle, we define the noise sample as follows:

vjk ¼ zk�hðxj
kÞ; ð19Þ

and the observation likelihood of the j-th particle can be described
as

pðzk jxj
kÞ ¼ pðvj

kÞ: ð20Þ
By exploiting this result, the construction of the observation

likelihood is transformed into an observation noise modeling
problem.

3.2. Glint noise model based on a Gaussian mixture

If vk is considered to be non-Gaussian non-stationary glint
noise with a non-zero mean, the PDF of vk at the instant k in time
can be described as a Gaussian mixture composed of a bank of
weighted Gaussian components with size K:

pðvkÞ ¼
XK
i ¼ 1

αi;kpiðvkÞ ¼
XK
i ¼ 1

αi;kNðvk;μi;k; δ
2
i;kÞ; ð21Þ

where piðvkÞ denotes the PDF of the i-th Gaussian component at
instant k, and αi;k40, μi;k and δi;k are the weight, mean and
standard deviation, respectively, of the individual components.
Also,

XK
i ¼ 1

αi;k ¼ 1: ð22Þ

For each noise sample, we have

pfvjk jpiðv
j
kÞg ¼ pifvjk jμi;k;σ

2
i;kg: ð23Þ

Let the event Oi;k denote that the j-th noise sample vjk is identically
distributed with the i-th Gaussian component:

Oi;k ¼ ½vj
k �Nfμi;k;σ

2
i;kg�: ð24Þ

Additionally, the probability of the event Oi;k is

PfOi;kg ¼ αi;k: ð25Þ
The probability of the i-th Gaussian component conditioned on the
j-th noise sample can be calculated by using the Bayes rule such
that

P piðvj
kÞjv

j
k

n o
¼ PfpiðvjkÞ; v

j
kg

P vjk
� �n o ¼ pfvjk jpiðv

j
kÞgPfpiðv

j
kÞgPK

i ¼ 1 p vjk jpiðv
j
kÞ

n o
P pi vj

k

� �n o; ð26Þ

where pfvjk jpiðv
j
kÞg is PDF of vjk with a given piðvjkÞ, and because of

(25), we have

Pfpiðvj
kÞg ¼ PfOi;kg ¼ αi;k: ð27Þ

Therefore substituting (23) and (27) into (26), we obtain

P piðvj
kÞjv

j
k

n o
¼

αi;kpi vjk jμi;k;σ
2
i;k

n o
PK

i ¼ 1 αi;kpi vj
k jμi;k;σ2

i;k

n o: ð28Þ

3.3. Calculation of distribution parameters for Gaussian components

The key issue of observation noise modeling is acquiring the
distribution parameters of each Gaussian component, μi;k, σ

2
i;k, and

αi;k. In this paper, these parameters are divided into two classes at
each time instant: prior distribution parameters ðαi;k� ;μi;k� ;σ2

i;k� Þ
and posterior distribution parameters ðαi;kþ ;μi;kþ ;σ2

i;kþ Þ, and they
are alternately calculated in the iterative filtering process. First, the
prior parameters are obtained using the time update from the
posterior parameters at the previous time instant. Then, they are
transformed to posterior parameters through the state update by
fusing with the acquired observations. Through this process, a
posteriori PDF approximation of the observation noise is obtained.

3.3.1. Selection of prior distribution parameters
The prior distribution parameters of each component in the

mixture model at time instant k are selected as according to the
following:
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For each component, prior weight is initialized as

αi;k� ¼ 1
K
: ð29Þ

When K is odd, the prior mean is set as

μi;k� ¼ μk�1 1þ i�K�1
2

� �
1
K

� �
; ð30Þ

and if K is even, the prior mean is set as

μi;k� ¼ μk�1 1þ i�K
2

� �
1
K

� �
; ð31Þ

where

μk�1 ¼
XK
i ¼ 1

αi;k�1μi;k�1: ð32Þ

The prior variance is

σ2
i;k� ¼ σ2

i;k�1: ð33Þ

3.3.2. Calculation of posteriori distribution parameters
By fusing the latest observations, we can update the prior

distribution parameters to the posteriori stage. This process can be
realized by maximizing the likelihood function of all the noise
samples conditioned on the Gaussian mixture model. For the
convenience of computing, the logarithm of the likelihood func-
tion is used as a substitute. The logarithmic likelihood function is
given by [38]

Lk ¼
XN
j ¼ 1

ln
XK
i ¼ 1

αi;kpi vjk jμi;k;σ
2
i;k

n o
: ð34Þ

Letting λ be a Lagrange multiplier, the Lagrange function can be
established as follows by obeying the constraint in (22):

Lk ¼
XN
j ¼ 1

ln
XK
i ¼ 1

αi;kpifvjk jμi;k;σ
2
i;kg�λ

XK
i ¼ 1

αi;k�1

 !
: ð35Þ

The posterior parameters of each Gaussian component can then be
calculated by letting the partial derivatives of the Lagrange
function be zero:

(1) Mean: The mean μi;k of the i-th Gaussian component can be
obtained by letting ∂Lk=∂μi;k ¼ 0:

∂Lk
∂μi;k

¼
XN
j ¼ 1

αi;k
∂

∂μi;k
pi vjk jμi;k;σ2

i;k

n o
PK

i ¼ 1 αi;kpi vjk jμi;k;σ2
i;k

n o: ð36Þ

Considering (23), Eqs. (36) leads to

∂Lk
∂μi;k

¼
XN
j ¼ 1

αi;k
∂

∂μi;k

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

i;k

p exp � vj
k
�μi;k

� �2
2σ2

i;k

" #( )
PK

i ¼ 1 αi;kpi vj
k jμi;k;σ2

i;k

n o

¼
XN
j ¼ 1

αi;kpi vjk jμi;k;σ
2
i;k

n o
PK

i ¼ 1 αi;kpi vj
k jμi;k;σ2

i;k

n ovj
k�μi;k

σi;k
: ð37Þ

Using (28) and (37), we acquire

∂Lk
∂μi;k

¼
XN
j ¼ 1

P pi vjk
� �

jvjk
n ovjk�μi;k

σi;k
¼ 0: ð38Þ

Therefore,

μi;k ¼
PN

j ¼ 1 P pi vj
k

� �
jvjk

n o
vjkPN

j ¼ 1 P pi vjk
� �

jvj
k

n o : ð39Þ

(2) Variance: The variance σi;k of the i-th Gaussian component
can be obtained by letting ∂Lk=∂σi;k ¼ 0:

∂Lk
∂σi;k

¼
XN
j ¼ 1

αi;k
∂

∂σi;k

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

i;k

p exp � vj
k
�μi;k

� �2
2σ2

i;k

" #( )
PK

i ¼ 1 αi;kpi vj
k jμi;k;σ2

i;k

n o

¼
XN
j ¼ 1

αi;kpi vjk jμi;k;σ2
i;k

n o
PK

i ¼ 1 αi;kpi vjk jμi;k;σ2
i;k

n o vjk�μi;k

� �2
σ3
i;k

� 1
σi;k

2
64

3
75: ð40Þ

Using (28), we obtain

∂Lk
∂σi;k

¼
XN
j ¼ 1

P pi vjk
� �

jvj
k

n o vj
k�μi;k

� �2
�σ2

i;k

	 

σ3
i;k

¼ 0: ð41Þ

Therefore,

σ2
i;k ¼

PN
j ¼ 1 P pi vjk

� �
jvj

k

n o
vj
k�μi;k

� �2
PN

j ¼ 1 P pi vj
k

� �
jvjk

n o : ð42Þ

(3) Weight and Lagrange multiplier: Similarly, weight of each
component can be obtained by solving ∂Lk=∂αi;k ¼ 0:

∂Lk
∂αi;k

¼
XN
j ¼ 1

pi vj
k jμi;k;σ

2
i;k

n o
PK

i ¼ 1 αi;kpi vjk jμi;k;σ2
i;k

n o�λ: ð43Þ

Substituting (28) into (43), we acquire

∂Lk
∂αi;k

¼
XN
j ¼ 1

P pi vj
k

� �
jvjk

n o
αi;k

�λ¼ 0: ð44Þ

Then, solving (44), we obtain

αi;k ¼
1
λ

XN
j ¼ 1

P pi vjk
� �

jvj
k

n o
: ð45Þ

Also,

XK
i ¼ 1

αi;k ¼
XK
i ¼ 1

1
λ

XN
j ¼ 1

P pi vjk
� �

jvj
k

n o

¼ 1
λ

XK
i ¼ 1

XN
j ¼ 1

P pi vjk
� �

jvjk
n o

¼ K
λ
¼ 1; ð46Þ

such that

λ¼ K : ð47Þ
Substituting the above equation into (45), we get

αi;k ¼
1
K

XN
j ¼ 1

P pi vjk
� �

jvj
k

n o
: ð48Þ

For each Gaussian component in the noise mixture model, the
posterior means, variances and weights can be calculated using
Eqs. (39), (42) and (48), respectively, where

P pi vjk
� �

jvjk
n o

¼
αi;k� pi vj

k jμi;k� ;σ2
i;k�

n o
PK

i ¼ 1 αi;k� pi vjk jμi;k� ;σ2
i;k�

n o:

4. Improved likelihood particle filter

In this study, we extract particles from the observation like-
lihood which is transformed into the PDF of observation noise. In

H. Du et al. / Neurocomputing 158 (2015) 155–166 159



this way, the corresponding importance weight is updated as

ωj
k ¼ωj

k�1

p zk jxj
k

� �
p xj

k jx
j
k�1

� �
q xj

k jx
j
k�1; zk

� �

¼ωj
k�1

p zk jxj
k

� �
p xj

k jx
j
k�1

� �
p zk jxj

k

� �
¼ωj

k�1p xj
k jx

j
k�1

� �
: ð49Þ

4.1. Implementation of the new filter

The detailed algorithm flow of the proposed PF is summarized
as follows:

1. Initialization: k¼0
Step 0: For j¼1,…,N, draw particles xj

0 from the initial impor-
tance density function, for example the prior transition density or
any initial observation likelihood functions. Then, initialize the
Gaussian components for the observation noise model.

2. For k¼ 1;2;…
Step 1: For the K Gaussian components in the observation noise

model at each time instant, the prior distribution parameters are
estimated firstly. The prior weight is

αi;k� ¼ 1
K
;

and if K is odd, the prior mean is

μi;k� ¼ μk�1 1þ i�K�1
2

� �
1
K

� �
:

Otherwise, if K is even

μi;k� ¼ μk�1 1þ i�K
2

� �
1
K

� �
;

where

μk�1 ¼
XK
i ¼ 1

αi;k�1μi;k�1:

Additionally, the variance is

σ2
i;k� ¼ σ2

i;k�1:

Step 2: Calculate the observation noise samples as follows:

vjk ¼ zk�hðxj
k� Þ;

where

xj
k� ¼ f ðxj

k�1Þ:
The conditional probability of each noise Gaussian component can
be evaluated by the prior distribution parameters:

P pi vjk
� �

jvj
k

n o
¼

αi;k� pi vj
k jμi;k� ;σ2

i;k�

n o
PK

i ¼ 1 αi;k� pi vjk jμi;k� ;σ2
i;k�

n o:
Step 3: Update the distribution parameters of the Gaussian

components from the prior stage to the posterior stage:
The posterior weight of each Gaussian component is

αi;kþ ¼ 1
K

XN
j ¼ 1

P pi vj
k

� �
jvjk

n o
:

The posterior mean is

μi;kþ ¼
PN

j ¼ 1 P pi vj
k

� �
jvjk

n o
vjkPN

j ¼ 1 P pi vjk
� �

jvj
k

n o :

And the posterior variance is

σ2
i;kþ ¼

PN
j ¼ 1 P piðvjkÞjv

j
k

n o
vj
k�μi;kþ

� �2
PN

j ¼ 1 P pi vjk
� �

jvjk
n o :

Step 4: The observation likelihood is built as

pðzk jxj
kÞ ¼ pðvj

kÞ ¼
XK
i ¼ 1

αi;kþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i;kþ

q exp �
vj
k�μi;kþ

� �2
2σ2

i;kþ

2
64

3
75:

Step 5: Sampling N particles from the observation likelihood:

xj
k � p zk jxj

k

� �
; j¼ 1;…;N:

Step 6: The importance weight of each particle is calculated as

ωj
k ¼ωj

k�1p xj
k jx

j
k�1

� �
:

Step 7: Normalize the importance weight:

ωj
k ¼

ωj
kPN

j ¼ 1ω
j
k

:

Step 8: Perform resampling procedure
Step 9: Results outputting

4.2. Computational complexity

In this section, the computational complexity of the proposed
algorithm is discussed from a theoretical point of view, by
clarifying the amount of time required by the algorithm. In any
PF, the computational complexities of sampling, weight updating
and resampling are proportional to the number of particles. As a
result, a generic PF algorithm requires O(N) as a basic computa-
tional load [39]. The primary difference between the proposed
algorithm and a generic PF is that the construction of the
observation likelihood function, i.e. Step 1–Step 4, increases the
computational load. In Step 1, the prior distribution parameters of
each Gaussian component are initialized, which costs O(K) time. In
Step 2, we calculate the noise samples and the conditional
probability, operations that needs OðNþNK2Þ. In Step 3, updating
the prior parameters of the Gaussian components to the posterior
stage takes O(NK) time. In Step 4, computational load of O(NK) is
needed to construct the observation likelihood for sampling.
Therefore, the total time complexity required by the proposed
algorithm is OðKþNð1þKþK2ÞÞ. This is linearly related to the
number of particles, and has a quadratic relationship to the
number of Gaussian components. However, because the amount
of Gaussian components in the noise model is much less than the
sampled particles, we may conclude that the proposed algorithm
improves the filter's performance as the computational load added
by it is reasonable. Furthermore, several solutions exist for saving
computational cost, including dividing the algorithm into several
stages and introducing time-sharing processing or parallel
computing.

5. Simulation results

In order to examine its tracking capability in the presence of
glint noise, the proposed filter has been tested using a series of
Monte Carlo simulations of bearings-only target tracking problems
[40]. Two scenarios are used for the simulations. First, the
performance of the proposed filter is investigated in a non-
maneuvering target tracking problem. Then, the simulation is
extended to a more complex maneuvering target tracking pro-
blem. In addition to the proposed PF, various filtering algorithms,
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such as EKF [4], SIR PF [20], likelihood PF [41] and their improved
forms [42–46], are used for comparison.

5.1. Simulation model

The system model of the moving target is

Xk ¼ FXk�1þGwk; ð50Þ
where Xk ¼ xk; _xk ; yk; _yk

� �T is the state variable, xk and yk denote
the location of target in the Cartesian system, _xk and _yk are the
velocity components in two directions. F denotes the state transi-
tion matrix. Under the assumption of uniform rectilinear motion,
it is defined as follows:

F ¼

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2
6664

3
7775; ð51Þ

where T represents the observation cycle of sensor. While in anti-
clockwise or clockwise coordinated turn motion, it is defined as

F ¼

1 sin ðφkTÞ=φk 0 �ð1� cos ðφkTÞÞ=φk

0 cos ðφkTÞ 0 � sin ðφkTÞ
0 ð1� cos ðφkTÞÞ=φk 1 sin ðφkTÞ=φk

0 sin ðφkTÞ 0 cos ðφkTÞ

2
66664

3
77775; ð52Þ

where φk denotes the turn angular speed (φk40 corresponds to
anti-clockwise motion, while φko0 corresponds to clockwise
motion). G is the noise gain matrix, which is given by

G¼

T2=2 0
T 0
0 T2=2
0 0

2
66664

3
77775: ð53Þ

Process noise wk is zero-mean Gaussian distributed with the
covariance Q, where Q ¼ qI2, and I2 denotes a 2	2 identity matrix.
With the uniform rectilinear motion, q¼3 and, with the turn
maneuvering motion, q¼5.

A sensor located at ð0;0Þ is used to measure the angle between
the target and the X-axis with an observation cycle of T¼1 s, The
observation model is described as

Zk ¼ arctan
yk
xk

þvk; ð54Þ

where vk denotes the glint noise present at each angular observa-
tion. By the nature of the experimental design, the observation
noise sequence used in the simulation is a purely deterministic
process. As a consequence, it is not appropriate to treat the noise
sequence as the realization of a stochastic process. Instead, we use
the noise sequence as the basis for a simulation of a real glint noise
stochastic process. We generate a sampled stochastic process of
150 observations of glint noise from an original data set, which is
plotted in Fig. 2. As the figure shows, the mean of this sampled
series is 0.0191 rad, and the standard deviation is 0.0489 rad.
The maximum and minimum glint errors are 0.2745 rad and
�0.1491 rad, respectively.

As mentioned above, there are two different simulation
scenarios:

Non-maneuvering motion: The target performs a uniform recti-
linear motion traveling at a constant velocity (25 m/s, 5 m/s) from
a specific position (�50 m, 200 m). The whole simulation con-
tinues for 150 time samples, and the initial error covariance ma-
trix is P0 ¼ diagð10;1;10;1Þ. Comparisons between the tracking
performances of six filters are performed: (1) the EKF; (2) the
conventional SIR PF, where particles are sampled from the prior
transition probability; (3) the conventional likelihood PF; (4) the

differential evolution particle filter (DE-PF) [42], which introduces
the differential evolution based resampling scheme; (5) the
enhanced likelihood particle filter (EL-PF) [43], where a normal-
ized likelihood function is constructed, which is further exponen-
tially weighted to enhance the weight of the particles in high
likelihood areas; and (6) the proposed PF.

Maneuvering motion: The target is initially located at the
position (100 m, 500 m), and it moves rectilinearly at a constant
velocity (20 m/s, �10 m/s) for the first 50 samples. Then for the
following 50 samples, the target successively performs an anti-
clockwise and then a clockwise turn with the angular speeds of
�0.1225 rad/s and �0.1225 rad/s, respectively. Finally, the target
moves in uniform rectilinear fashion for 50 samples. In the
maneuvering target tracking problem, it is impossible for a single
motion to model describe all of the changes of various motion
states. For this reason, the interacting multiple model (IMM) is
introduced. In the IMM, the shift of motion pattern is expressed in
terms of homogeneous Markov chains, and the weighted filtering
results of all the single motion models are combined into an end
product of the entire process [44]. In this paper, the IMM model
set contains one uniform motion model and one turning motion
model. The filters used for comparison in simulations consist of
(1) the IMM-EKF; (2) the IMM-PF [45]; (3) the IMM-likelihood PF;
(4) the Improved IMM-PF for glint noise [46] in which the weight
updates for the particles are calculated by a non-linear glint noise
PDF which is modeled by a combination of Gaussian and Student's
t distributions; (5) the IMM-EL-PF, where the EL-PF is integrated
with IMM; and (6) the IMM version of the proposed PF.

For narrative convenience, all of the PF algorithms used in the
simulations are listed as Table 1 under the categories of non-
maneuvering and maneuvering tracking problems and their sim-
plified representations are given. To guarantee the validity of the
following experiment, all the PFs except for the EL-PF employ the
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Fig. 2. A series of sampled observation glint noises used in simulations.

Table 1
Simplified representations of particle filters used in simulations.

Simulation scenario Particle filtering Simplified
representation

Non-maneuvering
motion

Conventional SIR PF PF 1

Conventional likelihood PF PF 2
DE-PF PF 3
Enhanced likelihood PF PF 4
The proposed PF PF 5

Maneuvering motion IMM-PF PF 1
IMM-likelihood PF PF 2
Improved IMM-PF for glint
noise

PF 3

IMM-EL-PF PF 4
IMM version of the proposed
PF

PF 5
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threshold method and the systematic resampling algorithm. The
threshold value of the effective sample size is set as Nth ¼N=2.

5.2. Performance comparison and results analysis

To reduce errors caused by randomness, all the filters are tested
in 100 Monte Carlo simulations with same initial conditions. The
configurations of the PC used to run the simulation are Inter Core2
E7500 2.93 GHz, 2 GB RAM, and all programs coded by Matlab
R2012b. Root mean square error (RMSE) and root time averaged
mean square (RTAMS) are used to evaluate estimation accuracy.
The RMSE of xk is defined as

RMSExk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
	
XL
i ¼ 1

xk;i� x̂k;i
� �2

vuut ; ð55Þ

where L denotes the number of Monte Carlo simulations, and xk;i

and x̂k;i are the true value and the estimation of state variable,
respectively. The RTAMS of the state variable throughout the
entire simulation sequence for each filter is defined as

RTAMSx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

	
XM
k ¼ 1

MSExk

vuut ; ð56Þ

where M denotes the time duration of the simulation sequence,
and MSExk is the mean square error ðMSExk ¼ RMSE2

xk Þ of xk.

5.2.1. Example I: non-maneuvering target tracking
First, the numbers of particles in PF 1 �PF 5 are set as N¼100,

and the number of components in Gaussian mixture noise model
of the proposed filter is set as K¼5. For each algorithm, the RMSE
of the position and velocity estimation of the moving target at
each time instant along the X and Y directions are presented in
Fig. 3. From the figure, we can see that the performance of EKF
suffers strongly in the presence of glint noise, and has the largest
estimation error. Compared to EKF, PF 1 and PF 2 improve the
estimation accuracy remarkably, however, the errors are still large.
Additionally, none of the estimation errors of these three filters are
stable, as the statistic of observation noise changes frequently.
Further improvements in both estimation accuracy and stability
are obtained with PF 3 and PF 4 due to the countermeasures
against glint noise developed within the filters. Compared to the
other filters, PF 5 has the highest excellent estimation accuracy
throughout the simulation sequence. In particular, the proposed
filter has a higher convergence rate than any of the other filters.
These strong results can be attributed to the fact that the noise
model of the proposed filter can describe the true situation of
noise probability distribution exactly in real time exactly and that
the acquired importance density function is close to the real
posterior distribution.

For easier comparison, the estimation errors of all the PFs with
different numbers of particles are given in Fig. 4. The figure
presents the algorithms’ position estimation RTAMS along both
the X and Y directions in the form of bar graph. With the same
number of particles, the proposed algorithm significantly outper-
forms other particle filters in terms of estimation RTAMS. As the
number of particles in the simulations increases, the errors of all
filters trend down, and the proposed filter always keeps the
highest estimation accuracy. Lastly, it is worth noting that the
estimation errors of all filters change little when the number of
particles increasing from 10,000 to 500,000, indicating that the
estimation accuracy does not improve endlessly as the number of
particles increases, but plateaus once a certain number of particles
have reached.

For a more explicit quantitative comparison, the estimation
errors and execution times of the different PF algorithms in

simulations with 100 particles are listed in Table 2 in which “PF
5(K)” denotes the proposed algorithm with K Gaussian compo-
nents in the noise model. From the table, we can see that the
proposed filter estimates system states with the highest accuracy
and has the longest running time. An additional improvement in
accuracy can be obtained by increasing the number of Gaussian
components, but unfortunately, this incurs a sharp rise in compu-
tational cost, the superabundant Gaussian components are very
complicated to initialize, and the improvement is only minor.

The estimation errors of the new filter with different numbers
of Gaussian components and particles are presented in Table 3.
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Fig. 3. Estimation errors of different filtering algorithms in non-maneuvering
target tracking: (a) X position RMSE, (b) Y position RMSE, (c) X velocity RMSE,
and (d) Y velocity RMSE.
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The table shows that the number of particles has a greater impact
on the performance of the new filter within a specific range. When
there are fewer particles, the estimation performance can be
improved significantly by increasing the sampling number,
whereas increasing the number of Gaussian components causes
only a marginal improvement, indicating that the developed filter
can effectively cope with noise using a small number of Gaussian
components.

5.2.2. Example II: maneuvering target tracking
First, we compare estimation performances of the proposed

filter to several other filters under the simulation conditions
N¼100 and K¼5. The estimation RMSEs of different filters at each

time instant are presented in Fig. 5. From the figure, it can be seen
that, with their IMM versions, all filters are capable of obtaining
convergence results for maneuvering tracking in IMM version.
However, IMM-EKF, PF 1, and PF 2 track position and velocity with
relatively larger errors and lower convergence rates in the pre-
sence of glint noise. PF 3 and PF 4 make limited improvements in
overcoming the adverse impacts of glint noise. In contrast, with
the same initializations, PF 5 performs very well throughout the
simulation sequence, with high accuracy, fast convergence rate,
and robustness. These results are consistent with what is indicated
in the non-maneuvering target tracking simulation.

Fig. 6 illustrates the performances of the five PFs in position
tracking with different particle numbers. The figure shows that the
estimation errors of these filters demonstrate a downward trend
as particle number increases within a specific range and that the
proposed filter achieves the lowest estimation errors in all
simulations.

Accuracy and execution time comparisons for the five PF
algorithms with 100 particles are presented in Table 4. The results
demonstrate that the proposed filter achieves the optimal estima-
tion accuracy for both position and velocity, even though it has the
largest computational load. Table 5 lists the estimation results of
the new filter with different numbers of particles and Gaussian
components. Similar to the results for non-maneuvering tracking,
the accuracy of the filter is primarily dependent on the number of
particles within a certain range, whereas increasing the Gaussian
components has little effect on estimation accuracy. The estima-
tion errors also descend as particle number increases and plateau
when particle set reaches a certain size.

6. Conclusions and outlook

In this paper, a novel particle filter is developed for target
tracking in the presence of glint noise. The filter transforms the
construction of observation likelihood into an observation noise
modeling problem. In the algorithm, non-Gaussian non-stationary
noise is approximated by a Gaussian mixture model which is
composed of a bank of weighted Gaussian components. The
distribution parameters of each component are iteratively evalu-
ated in the particle filter framework using MLE. The developed
filter is capable of effectively describing the real noise density and
obtaining a reliable state estimation in the presence of glint noise.
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Fig. 4. Position estimation RTAMS of different PF algorithms with different particle
numbers in non-maneuvering target tracking: (a) X position RTAMS and (b) Y
position RTAMS.

Table 2
Performances of different PF algorithms in non-maneuvering tracking simulations
with 100 particles.

Filtering
algorithm

X position
RTAMS (m)

Y position
RTAMS (m)

X velocity
RTAMS (m/s)

Y velocity
RTAMS (m/s)

Execution
time (s)

PF 1 17.8309 20.4471 2.5717 6.9235 0.2752
PF 2 16.9856 21.1419 2.4636 5.0679 0.2796
PF 3 13.6352 16.5426 1.9654 4.6143 0.3716
PF 4 12.2546 14.8324 1.7648 3.9179 0.6266
PF 5(5) 6.1080 7.1396 1.2535 2.2783 0.7735
PF 5(10) 5.8263 6.8684 1.2447 2.2435 2.2418
PF 5(20) 5.7741 6.8542 1.2436 2.2452 5.2247
PF 5(100) 5.7826 6.8471 1.2442 2.2433 61.8237

Table 3
Estimation RTAMS of the new PF algorithm with different numbers of particles and
Gaussian components in non-maneuvering target tracking simulations.

Number
of
particles

Number of
Gaussian
components

X position
RTAMS
(m)

Y position
RTAMS
(m)

X velocity
RTAMS
(m/s)

Y velocity
RTAMS
(m/s)

100 5 6.1080 7.1396 1.2535 2.2783
100 10 5.8263 6.8684 1.2447 2.2435
100 20 5.7741 6.8542 1.2436 2.2452
100 100 5.7826 6.8471 1.2442 2.2433
200 5 5.4635 6.3524 0.8726 1.4436
200 10 5.3364 6.3361 0.8672 1.4388
200 20 5.3342 6.3142 0.8647 1.4356
200 100 5.3315 6.0257 0.8641 1.4352
500 5 4.2524 4.6741 0.6156 0.9125
500 10 4.2471 4.6752 0.6068 0.9104
500 20 4.2458 4.6734 0.6024 0.9075
500 100 4.2462 4.6726 0.6053 0.9071

1000 5 3.8596 4.1354 0.5452 0.7806
1000 10 3.8485 4.0587 0.5437 0.7784
1000 20 3.8466 4.0742 0.5433 0.7765
1000 100 3.8474 4.0718 0.5441 0.7762
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To examine the performance of the new filter, bearings-only
tracking simulations for both non-maneuvering and maneuvering
targets were carried out using a simulation noise sequence
sampled from a real glint noise record. For the purposes of
comparison, several filtering algorithms were used in the simula-
tions. The simulation results show that the proposed filter per-
forms much better than comparable filters in both non-
maneuvering and maneuvering target tracking problems, demon-
strating high accuracy, fast convergence rate, and robustness.

The proposed filter is designed to cope with a glint noise in
target tracking system. In fact, it is a generic estimator for any kind
of noise with Gaussian or non-Gaussian, stationary or non-sta-
tionary, zero mean or non-zero mean distribution. In other words,
it can be used as a general means for effectively estimating the
states of non-linear systems with noise. In regard to follow-up
research, we plan to focus on establishing a general parameter
initialization principle for Gaussian components in the noise
mixture model that can be applied to various observation noises.
Additionally, although increasing particle number improves the
filter's accuracy, it simultaneously introduces a large computa-
tional load. As a result, it is worth discussing how to balance the
estimation accuracy with the computational complexity of our
filter in depth.
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Fig. 5. Estimation errors of different filtering algorithms in maneuvering target
tracking: (a) X position RMSE, (b) Y position RMSE, (c) X velocity RMSE, and (d) Y
velocity RMSE.
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Fig. 6. Position estimation RTAMS of different PF algorithms with different particle
numbers in maneuvering target tracking: (a) X position RTAMS and (b) Y
position RTAMS.

Table 4
Performances of different PF algorithms in maneuvering tracking simulations with
100 particles.

Filtering
algorithm

X position
RTAMS (m)

Y position
RTAMS (m)

X velocity
RTAMS (m/s)

Y velocity
RTAMS (m/s)

Execution
time (s)

PF 1 53.1243 25.2163 3.8575 4.0590 0.4635
PF 2 54.2135 24.6729 3.9701 3.9376 0.4674
PF 3 45.3654 20.2368 3.6354 3.5427 0.7453
PF 4 41.6325 18.5536 3.3425 2.8461 0.9724
PF 5(5) 17.2456 12.7452 1.7694 1.2147 1.1533
PF 5(10) 16.7824 12.2846 1.7382 1.2024 3.4265
PF 5(20) 16.5376 12.1436 1.7256 1.1963 8.7316
PF 5(100) 16.5218 12.1455 1.7254 1.1965 75.4128
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Table 5
Estimation RTAMS of the new PF algorithm with different numbers of particles and
Gaussian components in maneuvering target tracking simulations.

Number
of
particles

Number of
Gaussian
components

X position
RTAMS
(m)

Y position
RTAMS
(m)

X velocity
RTAMS
(m/s)

Y velocity
RTAMS
(m/s)

100 5 17.2456 12.7452 1.7694 1.2147
100 10 16.7824 12.2846 1.7382 1.2024
100 20 16.5376 12.1436 1.7256 1.1963
100 100 16.5218 12.1455 1.7254 1.1965
200 5 13.8657 10.7524 1.4273 0.8633
200 10 13.7862 10.7154 1.4236 0.8628
200 20 13.7846 10.6749 1.4233 0.8622
200 100 13.7837 10.6735 1.4241 0.8614
500 5 9.1354 6.8835 0.8169 0.7241
500 10 9.1233 6.8457 0.8087 0.7223
500 20 9.1215 6.8246 0.8058 0.7215
500 100 9.1221 6.8243 0.8052 0.7217

1000 5 7.9462 5.4216 0.6962 0.6748
1000 10 7.9424 5.4162 0.6637 0.6741
1000 20 7.9368 5.4148 0.6631 0.6732
1000 100 7.9364 5.4151 0.6628 0.6728
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