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a b s t r a c t 

Efficiently discovering the hidden community structure in a network is an important research concept 

for graph clustering. Although many detection algorithms have been proposed, few of them provide a 

visual understanding of the community structure in a network. In this paper, we define two measure- 

ments about the leading and following degrees of a node. Based on the measurements, we provide a 

new representation method for a network, which transforms it into a simplified network, i.e., weighted 

tree (or forest). Compared to the original network, the simplified network can easily observe the com- 

munity structure. Furthermore, we present a detection algorithm which finds out the communities by 

min-cutting the simplified network. Finally, we test the performance of the proposed algorithm on sev- 

eral network data sets. The experimental results illustrate that the proposed algorithm can visually and 

effectively uncover the community structure. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the data are modeled as networks in many complex sys-

ems [30] , e.g., social networks and biological networks, recently

ncreasing attention has been paid to complex networks analysis.

ommunity structure [9,22] is a very important property of net-

orks. Intuitively, a community (cluster) in a network consists of

 cohesive group of nodes that are relatively densely connected to

ach other but sparsely connected to other dense groups. Commu-

ity detection aims to identify the communities by only using the

nformation encoded in the network topology. It can be seen as a

rocedure of graph clustering . 

Community detection becomes one of the most important

asks to explore and understand how the networks work [10] . To

olve the community detection problem, various types of algo-

ithms have been proposed and developed, including latent space

odel, non-negative matrix factorization, block model approxima-

ion, spectral clustering, label propagation, and modularity maxi-

ization. These algorithms have different definitions of commu-

ities or clustering criteria, according to applications for different
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cientific needs [32] . Many of them have been successfully applied

o different areas. The detailed review of these algorithm can be

ound in Section 2 . 

However, few of the existing community detection algorithms

onsider its visual understanding while detecting the community

tructure in a network. A good visual understanding can help us to

asily recognize inherent communities and their intrinsic charac-

eristics. For example, a community generally includes two impor-

ant zones, i.e., the core and border, which can determine its shape

nd organization. However, due to the presence of lots of edges in

he network, it is difficult for us to directly observe these zones.

o overcome the deficiency, we will define leading and following

egrees of a node to evaluate its representability and its follow-

ng relations with other nodes. A node with high leading degree

ends to be seen as a representative of some community. Several

ighly-connected representatives can constitute the core of a com-

unity. The border of a community tends to be made up of several

odes with low leading and high following degrees. Based on the

eading and following degrees, we will provide a new representa-

ion method and community detection algorithm for network data

ets. Compared to the original network, we will easily observe the

ommunity structure in the re-expressed network. The major con-

ributions of this paper are as follows. 

• Transform a complex network into a simplified network, i.e.,

weighted tree (or forest), which can reflect the core of each
orithm based on simplification of complex networks, Knowledge- 
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community and the membership of each node to the commu-

nities. This step simplifies the network and makes users easily

observe the community structure. 

• The community detection problem is seen as a min-cut prob-

lem of the obtained tree. Compared to cutting the original net-

work, cutting the tree can be easily solved. 

The following is the outline of this paper. Section 2 presents the

new community detection algorithm. Section 3 review the related

works. Section 4 demonstrates the performance of the proposed

algorithm. Finally, we draw conclusions and suggest future work in

Section 5 . 

2. Related works 

Currently, many approaches have been proposed to detect the

non-overlapping community structures [8] . We introduce the five

well-known types of algorithms as follows: 

(1) The feature mapping model mainly maps nodes of a network

into a low-dimensional Euclidean space. The proximity be-

tween the network connectivity nodes is kept in the new

space; then, the nodes are clustered in the low-dimensional

space by using traditional clustering algorithms such as k -

means [17] and linkage [34] . The representative includes

Latent space model [27] non-negative matrix factorization

[16,33,35] and spectral clustering algorithms [11,28] . 

(2) The block approximation model sees a community detection

problem as a matrix blocking problem, which reorder the

index of each node according to their community member-

ship and approximate a given network by a block structure

[5] . Each block represents a community. 

(3) The label propagation model mainly uses the neighbor infor-

mation of each node to determine its label and do not need

any prior knowledge of community structure. The represen-

tative algorithm of LPA was proposed by Raghavan et al.

[24] . It has greatly received attention for its nearly linear

time complexity in finding communities. However, since the

label of each node depends on those of other nodes, the al-

gorithm can only linearly propagate the labels. In addition,

the convergence speed and clustering effectiveness of the al-

gorithm are very sensitive to the update order of label infor-

mation. Therefore, several improved LPA algorithms are de-

veloped in [1,12,31] . 

(4) The modularity maximization model [6,7,10,19,21] transforms

a community detection problem into a modularity maxi-

mization problem. Modularity is a commonly used crite-

rion for community detection, which measures the strength

of a community partition for real-world networks by tak-

ing into account the degree distribution of nodes. The type

of the algorithms mainly apply different hierarchical clus-

tering strategies to partition networks, which is very time-

consuming. The fast unfolding algorithm proposed by Blon-

del et al. [2] is a fast heuristic method for the modularity op-

timization. The algorithm uses the idea of the label propa-

gation models to reduce the computing cost. Compared to

other algorithms for modularity maximization, the fast un-

folding algorithm has good scalability for large networks. 

(5) The information-theoretical model is developed by Rosvall

et al. for community structure [26] . They transfer the prob-

lem of community detection into an information coding

problem. Furthermore, an information map algorithm of ran-

dom walks [25] is proposed to solve the optimization prob-

lem. 

Except for the above types, some new techniques are applied

to community detection. For example, the parallel and distributed
Please cite this article as: L. Bai et al., A novel community detection alg
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lgorithms [13,29] are proposed to fast deal with large-scale net-

orks. The unified methods [3,4,18] are developed to detect non-

verlapping and overlapping communities. These new methods can

ore effectively tackle complex networks. 

. The community detection algorithm 

Given an original network, we can observe link relation be-

ween nodes but do not easily see its community structure. There-

ore, we provide a new representation method of the network to

etter reflect its community structure. In the proposed method,

e employ two measurements , i.e., leading and following degrees,

o measure the representability of a node and its following rela-

ions with other nodes. We assume that a community is made up

f leading nodes and following nodes. The leading nodes in the

ommunity are seen as its representatives and have high leading

egrees. The higher the leading degree of a node is, the more rep-

esentability it has in the community it belongs to. For the follow-

ng nodes in the community, they have lower representability but

igher following degrees to the leading nodes. If the following de-

ree of a node to other node is high, they possibly belong to the

ame community. Therefore, we can easily observe the community

tructure in the re-expressed network. 

First, we provide some related notations and definitions on the

roposed method. Suppose that G = 〈 V, E, A 〉 is an undirected net-

ork with V which is a set of n vertices and E which is a set of

 edges. A = { A i j } 1 ≤i, j≤n is an adjacency matrix, where A ij is the

eight of edge < v i , v j > . For an unweighted graph, if there is an

dge between nodes v i and v j , A i j = 1 , otherwise, A i j = 0 . We

ssume A ii = 1 for 1 ≤ i ≤ n . N i = { v j | < v i , v j > ∈ E} is a vertex set

ncluding all the neighbors of v i ∈ V . d(v i ) = 

∑ 

v j ∈ N i A i j is degree

f node v i . For any two nodes, we use the number of common

eighbors between two nodes to simply reflect their similarity. The

imilarity measure is formalized as 

(v i , v j ) = 

∑ 

v z ∈ N i ∪ N j 
A iz A jz . (1)

he more the number of their common neighbors is, the more sim-

lar they are. 

Next, we introduce how to evaluate the leading degree of a

ode. In this, we mainly consider the leadership of a node to its

eighbors. We assume that a node only can lead such its neigh-

ors that have lower influences than it and high similarity with it.

f some of its neighbors have higher influences than it, it cannot

ead them. In addition, its leadership to its neighbors with lower

nfluences depends on its similarity with them. If the similarity is

igh, its leadership to them should be large. Here, we use the de-

ree of a node to reflect its influence. The more its degree is, the

ore the number of its neighbors is, the more it has high influ-

nce. Therefore, the leading degree of a node is defined as 

 (v i ) = 

∑ 

d (v j ) <d (v i ) , v j ∈ N i 
δ(v i , v j ) . (2)

et us use an example the network from Zachary’s karate club

hich is shown in Fig. 1 to explain the leading degree. We consider

ode 32 in this network. According to Fig. 2 , we see that node 32

inks other six nodes. We think that it only may lead nodes 25,

6 and 29 whose degrees are less than it. Thus, we use the sum

f the similarity between it and nodes 25, 26 and 29 to reflect

ts leading degree. Furthermore, we introduce how to evaluate the

ollowing degrees of a node with other nodes. We assume that

 node only follows such nodes that have higher leadership than

t. Its following degree to some node depends on the proportion

f their common neighbors within its neighbors. For a node, the

ore its neighbors have edges with its following node, the higher
orithm based on simplification of complex networks, Knowledge- 
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Fig. 1. Original network of Zachary’s karate club. 

Fig. 2. Explanation for the leading degree L . 

Fig. 3. Explanation for the following degree F . 
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Fig. 4. Simplified network of Zachary’s karate club. 
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ts following degree is. Therefore, the following degree of a node is

efined as 

 (v i , v j ) = 

⎧ ⎨ 

⎩ 

δ(v i , v j ) 
d(v i ) 

, i f L (v j ) ≥ L (v i ) 

0 , otherwise. 

(3)

et us continue taking the karate network for an example. In Fig. 3 ,

e can see that node 32 only may follow nodes 1, 2, 3, 4, 24,

2, 33 and 34 whose leading degrees are no less than it. Accord-

ng to Eq. (3) , we compute its following degrees to these nodes.
Please cite this article as: L. Bai et al., A novel community detection alg

Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.12.007 
ased on L (.) and F (., .), we propose a new representation of a net-

ork which maps it to a weighted and directed network. The re-

xpressed network G 

′ = < V ′ , E ′ , A 

′ > is defined as follows. 

 

 

 

 

 

V 

′ = V, 

E ′ = { < v i , v q > | F (v i , v q ) = max 
v j ∈ V 

F (v i , v j ) and F (v i , v q ) > 0 , v i ∈ V } ,

A 

′ = { A 

′ 
i j } 1 ≤i, j≤n , where A 

′ 
i j = 

{
F (v i , v j ) , i f < v i , v j > ∈ E ′ , 
0 , otherwise. 

(4) 

ccording to the above definition, we can see that the re-expressed

etwork is a tree structure. G 

′ has the following properties. 

roperty 1. The number of edges in G 

′ is no more than n − 1 , where

 is the number of nodes. 

roperty 2. Let T be a subtree of G 

′ , since L (v j ) ≥ L (v i ) for any <

 i , v j > in T , its root has the maximum L value in T. 

roperty 3. For any two nodes v i and v j , if there is a path between

hem in G 

′ , a path between them exists in the original network G. 

roperty 4. Let T be a subtree of G 

′ , V T be the set of all the nodes

nd E T be the set of all the edges in T. If we partition the nodes of T

nto two clusters, T has the following property 

in 

C∈ V T 

∑ 

v i ∈ C, v j ∈ V T −C 

A 

′ 
i j = min 

< v p , v q > ∈ E T 
A 

′ 
pq . (5) 

In the following, we discuss whether G 

′ can easily reflect the

ommunity structure, according to these properties. Since we only

eep the maximum following degree of each node, seen in Fig. 3 ,

 

′ has no more than n − 1 edges. G 

′ realizes the simplification

f G , which is convenient for observing the community structure.

ig. 4 shows the simplified network of karate. Compared to the

riginal network, we can clearly see that there are two obvious

ommunities. According to Property 2, we can see that the root has

he maximum leadership in a subtree. Therefore, if each subtree

s seen as a community in G 

′ , its root and leaves can be viewed

s the center and borders of the community, respectively. On the

ommunity, the weight of an edge reflects the membership of a

ode to the community. Fig. 4 shows nodes 1 and 34 are the cen-

ers of the two communities, respectively. For any two nodes in
orithm based on simplification of complex networks, Knowledge- 
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Algorithm 1: The STCD algorithm. 

Input : G , λ
Output : �

for 1 ≤ i ≤ n do 

Compute L (v i ) ; 

for 1 ≤ i, j ≤ n do 

Compute F (v i , v j ) ; 

Obtain G 

′ = < V ′ , E ′ , A 

′ > by Eq. (4) 

for < v i , v j > ∈ E ′ do 

if A 

′ 
i j 

< λ then 

Delete edge < v i , v j > from E ′ and set A 

′ 
i j 

= 0 ; 

Find out all the subgraphs who are non-connected each 

other; 

All the nodes in the lth subgraph belong to V l ; 
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the original network, there may be several paths. Property 3 illus-

trates that the simplified network G 

′ retains a path between any

two nodes, which mainly reflects their following relations. There-

fore, compared to the original network, we can easily observe the

community structure in the re-expressed network. 

Based on the simplified network G 

′ , we describe the community

detection problem as follows. 

min 

[ 

�(�) = 

∑ 

v i ∈ V l , v j ∈ V h , 1 ≤l 
 = h ≤k 

A 

′ 
i j 

] 

, (6)

where � = { V 1 , V 2 , . . . , V k } is a partition of V , where V l is the l th

community and k is the number of communities. Compared to

min-cutting the original network, it is not difficult to solve the

problem. According to Property 4, we can conclude 

min �(�) = min 

Q ⊂E ′ , | Q | = k −1 

∑ 

< v i , v j > ∈ Q 
A i j . (7)

Therefore, we can minimize �( �) by deleting the edges with the

first k − 1 lowest weights from G 

′ to find out k communities. How-

ever, since the number of communities k is often unknown for a

network, we replace k with a parameter λ which should be in the

interval [0, 1]. We delete all the edges whose weights are no more

than λ from G 

′ to automatically determine k . The k value depends

on the λ value. The higher the λ value is, The more the k value

may be. 

The Simplified Tree-based Community Detection algorithm is

described in Algorithm 1 , called STCD. The basic operation of

the proposed algorithm is δ(., .). We know that the computing

cost of the similarity between two nodes is linearly relevant to
Table 1 

Description of networks. 

Source Data sets Description 

Benchmark S1 n = 10 0 0 , d̄ = 15 , d

S2 n = 10 0 0 , d̄ = 15 , d

S3 n = 10 0 0 , d̄ = 15 , d

S4 n = 10 0 0 , d̄ = 15 , d

S5 n = 10 0 0 , d̄ = 15 , d

S6 n = 10 0 0 , d̄ = 15 , d

Real networks Dolphins n = 62 , m = 159 , k

Jazz n = 198 , m = 2742

Email n = 1133 , m = 545

Grassweb n = 75 , m = 113 , k

Football n = 115 , m = 613 , 

Polbooks n = 105 , m = 441 ,

Polblogs n = 1490 , m = 167

Please cite this article as: L. Bai et al., A novel community detection alg

Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.12.007 
heir degrees. Thus, in order to compute L and F , the algorithm

eeds to get the similarity between all the nodes whose comput-

ng cost is O (2 nm ). Besides, cutting the simplified network needs

 ( n ) operations. Therefore, the time complexity of the algorithm is

 (2 nm + n ) . 

. Experiment analysis 

In this section, we test the performance of the STCD algorithm

n several synthetic and real networks. The synthetic networks

re produced by LFR benchmark [15] which provides a rich set

f parameters to control the network topology. The real networks

re downloaded from Newman and co-workers [14,20] . The de-

ail description of these networks is shown in Table 1 . The hard-

are environment of the experiment is a PC with an Intel 2.5Hz

7-4710MQ CPU and 16G RAM. The software platform is Matlab

2016b in Windows 10 ×64. 

In order to show the effectiveness of the STCD algorithm, we

rst test it on Dolphins, Jazz and Email networks. Figs. 5–7 show

heir topological structures of the original, simplified and cut net-

orks. According to Fig. 5 (a), we see that there are three obvious

enters of communities, i.e., nodes 32, 5 and 18 in Dolphins net-

ork. By using the STCD algorithm, we transform the original net-

ork into a tree. We can easily observe the centers and shapes of

ommunities from Fig. 5 (b). While setting λ = 1 / 3 , we can detect

he three communities, shown in Fig. 5 (c). Next, we analyze Jazz

etwork according to Fig. 6 . From Fig. 6 (a), we see that there are

wo obvious communities. However, we do not see the centers of

ommunities from the original network. Fig. 6 (b) shows the simpli-

ed network where we easily observe two centers, i.e., node 7 and

7. If we set λ = 0 . 56 , we can obtain the two communities, seen

n Fig. 6 (c). Finally, we show the visual understanding of Email

etwork. According to Fig. 7 (a), we do not observe the commu-

ity structure, due to the fact that there are many edges in this

etwork. We use the STCD algorithm to map the original network

nto a tree, seen in Fig. 7 (b). Here, we set λ = 1 / 3 to cut the tree

nto several subtrees. Fig. 7 (c) illustrates there are many communi-

ies with different shapes. According to the above analysis, we see

hat the STCD algorithm can provide a good visual understanding

f complex networks, compared to the original networks. 

Furthermore, we compare the STCD algorithm with six algo-

ithms including the fast modularity maximization (FMM) [19] , the

ormalized spectral clustering (NSC) [28] , the label propagation al-

orithm (LPA) [24] , the fast unfolding communities (FUC) [2] , the

ntegrated community algorithm (IEDC) [18] , and the MaxPerm al-

orithm (MP) [3] . While running the NSC algorithm, we set k to

he true number of classes. Other algorithms can automatically de-

ermine the k value. For the STCD algorithm, we set λ = 1 / 3 in

he comparison. These algorithms are carried out on six synthet-
 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 3 , γ = 2 , β = 1 

 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 4 , γ = 2 , β = 1 

 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 5 , γ = 2 , β = 1 

 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 3 , γ = 3 , β = 2 

 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 4 , γ = 3 , β = 2 

 i ≤ 50 , 10 ≤ n l ≤ 50 , μ = 0 . 5 , γ = 3 , β = 2 

 = NA 

 , k = NA 

1 , k = NA 

 = 5 

k = 12 

 k = 3 

18 , k = 2 

orithm based on simplification of complex networks, Knowledge- 
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Fig. 5. Dolphins: (a) original network; (b) simplified network; (c) cut result. 
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Fig. 6. Jazz musicians: (a) original network; (b) simplified network; (c) cut result. 
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Q

cal and four real networks. To compare the effectiveness of dif-

erent algorithms, we employ an external measure, i.e., the nor-

alized mutual information (NMI) [23] and an internal measure,

.e., the modularity (Q) [19] . The normalized mutual information

NMI) is used to evaluate the similarity between a detection re-

ult and the “true” partition on each of the given networks. Given

 set V of n nodes and two partitions, namely C = { c 1 , c 2 , · · · , c k }
(the detection result) and P = { p 1 , p 2 , · · · , p 

k 
′ } (the “true” parti-

ion), n ij denotes the number of common nodes of groups c i and

 j : n i j = | c i ∩ p j | . The normalized mutual information (NMI) is de-
Please cite this article as: L. Bai et al., A novel community detection alg

Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.12.007 
cribed as [23] 

MI = 

2 

∑ 

i 

∑ 

j n i j log 
n i j n 

b i d j 

−∑ 

i b i log b i 
n 

− ∑ 

j d j log 
d j 
n 

. 

f the detection result is close to the “true” partition, then the NMI

alue is high. The modularity is used to evaluate the compactness

ithin the obtained communities, which is described as [19] 

 = 

1 

2 | E| 
∑ 

i, j 

[
A i j −

d (v i ) d (v j ) 
2 | E| 

]
I(s i , s j ) , 
orithm based on simplification of complex networks, Knowledge- 
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Fig. 7. Email communication: (a) original network; (b) simplified network; (c) cut 

result. 

 

 

 

 

 

 

 

 

Table 2 

NMI values of different algorithms on synthetical networks. 

Data set FMM NSC PLA FUC IEDC MP STCD 

S1 0.73 0.79 0.79 0.95 0.58 0.86 1.00 

S2 0.63 0.70 0.63 0.95 0.76 0.80 1.00 

S3 0.55 0.33 0.43 0.92 0.80 0.73 0.97 

S4 0.77 0.89 0.72 0.95 0.71 0.84 1.00 

S5 0.65 0.95 0.71 0.93 0.78 0.79 0.99 

S6 0.52 0.90 0.71 0.67 0.77 0.75 0.98 

Table 3 

NMI values of different algorithms on real networks. 

Data set FMM NSC PLA FUC IEDC MP STCD 

Grassweb 0.07 0.06 0.11 0.05 0.05 0.13 0.23 

Football 0.74 0.92 0.71 0.88 0.78 0.69 0.91 

Polbooks 0.53 0.35 0.46 0.53 0.22 0.43 0.56 

Polblogs 0.37 0.20 0.33 0.37 0.01 0.21 0.37 

Table 4 

Modularity values of different algorithms on synthetical networks. 

Data set FMM NSC PLA FUC IEDC MP STCD 

S1 0.32 0.24 0.28 0.34 0.28 0.20 0.34 

S2 0.27 0.15 0.21 0.29 0.26 0.12 0.29 

S3 0.23 0.09 0.16 0.23 0.16 0.10 0.23 

S4 0.32 0.25 0.28 0.34 0.32 0.17 0.34 

S5 0.28 0.20 0.21 0.29 0.26 0.13 0.29 

S6 0.23 0.21 0.16 0.24 0.22 0.12 0.23 

Table 5 

Modularity values of different algorithms on real networks. 

Data set FMM NSC PLA FUC IEDC MP STCD 

Grassweb 0.37 0.18 0.32 0.35 0.29 0.32 0.35 

Football 0.32 0.30 0.28 0.32 0.32 0.24 0.31 

Polbooks 0.35 0.33 0.29 0.34 0.35 0.30 0.35 

Polblogs 0.34 0.27 0.26 0.34 0.22 0.04 0.34 
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where s i is the label of the community which v i belongs to,

I(s i , s j ) = 1 , if s i = s j , otherwise, I(s i , s j ) = 0 . 

First, we analyze the performance of different algorithms on the

synthetic networks which have different degree distributions. Their

detection accuracies on these data sets are shown in Table 2 . Ac-

cording to the NMI values, we can see that the performances of

the STCD algorithm are more robust and better than other algo-

rithms on the synthetic networks. The experimental results illus-

trate that the proposed algorithm is suitable for dealing with this
Please cite this article as: L. Bai et al., A novel community detection alg

Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.12.007 
ype of benchmark networks. We also test these algorithms on four

eal networks. The comparison results are shown in Table 3 . We

an see that the detection accuracy of the proposed algorithm on

he network football is very close to the best result of the other

lgorithms. On other real networks, the STCD algorithm can obtain

he highest NMI values, compared to other algorithms. According

o the above analysis, we can see that the STCD algorithm is supe-

ior to other algorithms, in terms of detection accuracy. 

Furthermore, we compare the modularity values of different

lgorithms on these given networks. The comparative results are

hown in Tables 4 and 5 . We can see that the FMM and FUC al-

orithms can obtain very high modularity values on these data

ets. The main reason is that they directly use the modularity mea-

ure as their objective function to find out a partition result with

he maximum modularity value. Since other algorithms use an-

ther objective functions, they have lower modularity values than

he FMM and FUC algorithms. However, the experimental analy-

is in these tables also tells us that a community partition with

 high modularity value does not necessarily have high similarity

ith the truth partition on a network. The main reason is that the

odularity is an internal validity measure which mainly evaluates

he connectivity within communities. According to Tables 4 and 5 ,

e can see that the modularity values of the proposed algorithm

re equal or very close to the highest values of the tested algo-

ithms on these data sets. Therefore, the experimental results il-

ustrate that the communities obtained by the proposed algorithm

lso have very good internal compactness. 

For the STCD algorithm, we need to set the parameter λ. We

now that the more the λ value is, the more the number of com-
orithm based on simplification of complex networks, Knowledge- 
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Fig. 8. The parameter λ versus the number of communities k . 
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unities k is. Fig. 8 shows the relation between the λ values and

he k values in Football network. For a network, setting λ should

e related to its fill that is the proportion of edges to the total

umber of possible edges, i.e., m / n 2 . A high fill value indicates that

ach node is closely connected to each other. In this case, we need

 big λ value to cut the network. In this paper, we found by the

xperimental analysis that the STCD algorithm with the parameter

in the interval [0.3, 0.6] can obtain the number of communities

 which is very close to the real k on these tested networks. 

. Conclusions 

In the paper, we present a new community detection algorithm,

alled STCD. In the new algorithm, we map an original network

o a simplified network, i.e., weighted tree or forest, by using the

eading and following degrees of nodes. The simplified network

rovides a very good visual understanding of the community struc-

ure. Furthermore, we propose a cutting-tree method to obtain the

ommunities. In the experimental analysis, we show the STCD al-

orithm is very effective for the visualization of the networks. We

lso compare the STCD algorithm with other six detection algo-

ithms. The comparison results illustrate that the proposed algo-

ithm can better partition networks, compared to other algorithms.
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