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Abstract—As a leading partitional clustering technique, k-modes is one of the most computationally efficient clustering methods for

categorical data. In the k-modes, a cluster is represented by a “mode,” which is composed of the attribute value that occurs most

frequently in each attribute domain of the cluster, whereas, in real applications, using only one attribute value in each attribute to

represent a cluster may not be adequate as it could in turn affect the accuracy of data analysis. To get rid of this deficiency, several

modified clustering algorithms were developed by assigning appropriate weights to several attribute values in each attribute. Although

these modified algorithms are quite effective, their convergence proofs are lacking. In this paper, we analyze their convergence

property and prove that they cannot guarantee to converge under their optimization frameworks unless they degrade to the original

k-modes type algorithms. Furthermore, we propose two different modified algorithms with weighted cluster prototypes to overcome the

shortcomings of these existing algorithms. We rigorously derive updating formulas for the proposed algorithms and prove the

convergence of the proposed algorithms. The experimental studies show that the proposed algorithms are effective and efficient for

large categorical datasets.

Index Terms—Clustering, K-modes type clustering algorithms, categorical data, weighted cluster prototype, convergence
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1 INTRODUCTION

CLUSTERING is an unsupervised classification technique
that aims at grouping a set of unlabeled objects into

meaningful clusters so that the objects in the same cluster
have high similarity but are very dissimilar to objects in
other clusters. Many types of clustering techniques have
been studied in the literature (e.g., [1] and references
therein), which has extensive applications in various
domains. Recently, increasing attention has been paid to
clustering categorical data, where records are made up of
nonnumerical data, since this task is of great practical
relevance in several fields ranging from statistics to
psychology [2], [3], [4], [5], [6].

Several algorithms for categorical data have been
reported [7], [8], [9], [10], [11], 12], [13], [14], [15], [16],
[17]. Among them, the k-modes type (nonfuzzy or fuzzy)
clustering algorithms [16], [17], [19] are very popular
techniques for solving categorical data clustering problems
in different application domains, which have removed the
numeric-only limitation of the k-means type algorithms
[18] and enable the k-means clustering process to

effectively cluster large categorical datasets from real-
world databases.

In the k-modes, the prototype of a cluster is composed of
the attribute value that occurs most frequently in each
attribute domain of the cluster. Although this cluster
representative is simple, using only one attribute value in
each attribute domain to represent a cluster is questionable,
as it often ignores the representability of other attribute
values whose frequencies in the cluster may be close to the
largest one. To get rid of this deficiency, several modified
algorithms were developed in [20], [21], [22], [23], [24], [25],
[26], where a prototype in a cluster is a list of several
categorical values in the attribute with their frequencies in
the cluster as the weights. The higher the weight of a
categorical value in the cluster is, the more representability
the categorical value has in the cluster. Although these
modified algorithms are quite effective in enhancing the
performance of the original k-modes type algorithms, the
convergence proofs of these algorithms are lacking. How-
ever, in real applications, the main concerns for an iterative
algorithm are whether it “stops” (successive iterations
stabilize at an apparent fixed point of the process up to
some margin of error) and, even more importantly, when it
does stop, is the terminal iterate an (at least local) optimal
solution of its objective function? Therefore, we need to
address the following two problems:

1. Can these modified algorithms converge to the local
optimal solutions of their objective functions in a
finite number of iterations?

2. When the convergence of these modified algorithms
cannot be guaranteed, how do we design the
k-modes type algorithms with frequency-based
prototypes which can guarantee the convergence?

On the basis of the above motivations, the major
contributions in this paper are as follows: We first analyze
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the convergence of the existing modified k-modes type
algorithms [20], [21], [22], [23], [24], [25] and prove that the
iterative sequences generated by these algorithms can
converge to the local minimal solutions under their
optimization frameworks only if they degrade to the
original k-modes type algorithms. Furthermore, we propose
two new k-modes type algorithms with frequency-based
cluster prototypes, called MKM_NOF and MKM_NDM,
respectively, which overcome, in different ways, the short-
comings of the existing modified algorithms as follows:

1. In the MKM_NOF algorithm, while keeping the
formats of the dissimilarity measures in these
algorithms, we modify their objective functions by
adding the weight entropy term.

2. In the MKM_NDM algorithm, while keeping the
formats of the objective functions in these algo-
rithms, we modify the dissimilarity measures by
adding an uncertainty measure.

These approaches can simultaneously minimize the
within cluster dispersions and use the frequency of each
categorical value in a cluster to reflect the representability of
the categorical value in the cluster. We rigorously derive
updating formulas of the MKM_NOF and MKM_NDM
algorithms, respectively. It is proven that the clustering
process with these updating formulas converges under the
optimization framework. Finally, the experimental studies
on several real datasets from UCI show that the proposed
algorithms are effective and suitable for large categorical
datasets thanks to its linear time complexity with respect to
the number of data objects, attributes, or clusters.

The outline of this paper is as follows: In Section 2, we
review the k-modes type algorithms. In Section 3, we
introduce several modified k-modes type algorithms with
frequency-based prototypes and analyze the reasons of the
non convergence of these algorithms. In Section 4, we
present a new objective function and the MKM_NOF
algorithm. In Section 5, we propose a new dissimilarity
measure and the MKM_NDM algorithm. In Section 6, we
analyze the convergence of the two proposed algorithms.
In Section 7, the experimental analysis is given to illustrate
the convergence, effectiveness, and efficiency of the
proposed algorithms. Finally, a concluding remark is given
in Section 8.

2 THE K-MODES TYPE ALGORITHMS

Let U ¼ fx1;x2; . . . ;xng be a set of n objects, A ¼ fa1; a2;
. . . ; amg be a set of m attributes, and Daj be the domain of
attribute aj for 1 � j � m. Here, we only consider two
general data types, numeric and categorical, and assume
other types used in database systems can be mapped to
one of these two types. A numeric domain consists of real
numbers. A domain Daj is defined as categorical if it is finite
and unordered, i.e., Daj ¼ fa

ð1Þ
j ; a

ð2Þ
j ; . . . ; a

ðnjÞ
j g, where nj is

the number of categories of attribute aj for 1 � j � m. For
any 1 � p � q � nj, either a

ðpÞ
j ¼ a

ðqÞ
j or a

ðpÞ
j 6¼ a

ðqÞ
j . For

1 � i � n, object xi 2 U is represented as ½xi1; xi2; . . . ; xim�,
where xij 2 Daj , for 1 � j � m. If each attribute in A is
categorical, U is called a categorical dataset.

The k-modes type algorithms use the k-means type
paradigm to cluster categorical datasets. The objective of

clustering a set of n categorical objects into k clusters is to

find W and Z that minimize [17]

F ðW;ZÞ ¼
Xk
l¼1

Xn
i¼1

w�lidðzl;xiÞ; ð1Þ

subject to

wli 2 ½0; 1�; 1 � l � k; 1 � i � n;Xk
l¼1

wli ¼ 1; 1 � i � n;

0 <
Xn
i¼1

wli < n; 1 � l � k;

8>>>>><
>>>>>:

ð2Þ

where

. n is the number of objects in U , kð� nÞ is a known
number of clusters;

. � 2 ½1;þ1Þ is the fuzzy index; � ¼ 1 gives the
k-modes algorithm;

. W ¼ ½wli� is a k-by-n real matrix, wli indicates
whether xi belongs to the lth cluster for the k-modes
algorithm, wli ¼ 1 if xi belongs to the lth cluster and
0 otherwise, and for the fuzzy k-modes algorithm,
wli is the membership degree of xi to the lth cluster;

. Z ¼ fz1; z2; . . . ; zkg � R, where R ¼ Da1
�Da2

�
� � � �Dam and zl ¼ ½zl1; zl2; . . . ; zlm� is the lth cluster
prototype with categorical attributes a1, a2; . . . ; am;

. dðzl;xiÞ is the simple matching dissimilarity mea-
sure between object xi and the prototype zl of the
lth cluster which is defined as

dðzl;xiÞ ¼
Xm
j¼1

�ðzlj; xijÞ; ð3Þ

where

�ðzlj; xijÞ ¼
1; zlj 6¼ xij;
0; zlj ¼ xij:

�
ð4Þ

Minimization of F in (1) with the constraints in (2) forms

a class of constrained nonlinear optimization problems

whose solutions are unknown. The usual method toward

optimization of F in (1) is to use partial optimization for Z

and W . In this method, we first fix Z and find necessary

conditions on W to minimize F . Then, we fix W and

minimize F with respect to Z. The above optimization

problem can be solved by iteratively solving the following

two minimization problems:

1. Problem P1. Fix Z ¼ Ẑ, solve the reduced problem
F ðW; ẐÞ.

2. Problem P2. Fix W ¼ Ŵ , solve the reduced problem
F ðŴ ; ZÞ.

For thek-modes algorithm (� ¼ 1), ProblemP1 is solved by

ŵli ¼
1; if dðẑl;xiÞ � dðẑh;xiÞ; 1 � h � k;
0; otherwise;

�
ð5Þ

for 1 � i � n, 1 � l � k. For the fuzzy k-modes algorithm

(� > 1), Problem P1 is solved by
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wli¼

1; if dðẑl;xiÞ ¼ 0;
0; if dðẑh;xiÞ ¼ 0; h 6¼ l;

1

�Xk
h¼1

dðẑl;xiÞ
dðẑh;xiÞ

� �1=ð��1Þ
; if dðẑh;xiÞ 6¼ 0; 1 � h � k;

8>>><
>>>:

ð6Þ

for 1 � i � n, 1 � l � k.
Problem P2 is solved by

zlj ¼ aðrÞj 2 Daj ; ð7Þ

where X
xij¼aðrÞj ;xi2U

w�li ¼ max
nj

q¼1

X
xij¼aðqÞj ;xi2U

w�li; ð8Þ

for 1 � j � m. Here, Daj ¼ fa
ð1Þ
j ; a

ð2Þ
j ; . . . ; a

ðnjÞ
j g, nj is the

number of categories of attribute aj for 1 � j � m.
This process is formalized in the k-modes type algo-

rithms as follows [17]:
Step 1. Choose an initial point set Zð1Þ � R. Determine

W ð1Þ such that F ðW;Zð1ÞÞ is minimized. Set t ¼ 1.
Step 2. Determine Zðtþ1Þ such that F ðW ðtÞ; Zðtþ1ÞÞ is

minimized. If F ðW ðtÞ; Zðtþ1ÞÞ ¼ F ðW ðtÞ; ZðtÞÞ, then stop;

otherwise, go to Step 3.
Step 3. Determine W ðtþ1Þ such that F ðW ðtþ1Þ; Zðtþ1ÞÞ is

minimized. If F ðW ðtþ1Þ; Zðtþ1ÞÞ ¼ F ðW ðtÞ; Zðtþ1ÞÞ, then stop;

otherwise, set t ¼ tþ 1 and go to Step 2.
We remark that Z is determined based on the frequencies

of attribute values in the cluster. The most frequent attribute

value in each attribute domain in a cluster is selected to

represent the cluster, which minimizes the within-cluster

dissimilarity. However, this approach often ignores the

representability of other attribute values whose frequencies

in the cluster may be close to the largest one.
Let us consider the following example to demonstrate

the problem: We suppose that there is a categorical

attribute aj which has four categorical values: “A,” “B,”

“C,” and “D,” and a cluster cl which contains 40 “A,”

35 “B,” 20 “C,” and 5 “D” in attribute aj. Fig. 1 shows the

categorical attribute distribution in cluster cl. Although “A”

is the most frequent categorical value in cluster cl, the

frequency of “B” is close to “A” in cluster cl. When we select

“A” from the attribute domain to represent cluster cl, other

60 percent categorical values will be ignored.

3 THE CONVERGENCE PROPERTY OF SEVERAL

MODIFIED K-MODES TYPE ALGORITHMS

To get rid of this deficiency, several modified algorithms

were developed in [20], [21], [22], [23], [24], [25] by

assigning appropriate weights to several attribute values

in each attribute. San et al. [20] introduced frequency-based

cluster prototypes to represent clusters, which are applied

to the k-modes clustering algorithm. A prototype in a

cluster is a list of all the categorical values in the attribute

with their frequencies in the cluster as the weights. The

higher the frequency of a categorical value in the cluster is,

the more representability the categorical value has in the

cluster. Kim et al. [21] presented a fuzzy k-modes algorithm

with frequency-based prototypes. He et al. [22] and Ng et al.

[23], [24] used the relative attribute frequencies in a cluster

as weights to reflect the representability of cluster mode in

the cluster and applied them to measure the similarity

between objects and cluster prototypes. This modification

can help the k-modes clustering process to recognize a

cluster with weak intrasimilarity. Lee and Pedrycz in [25]

introduced a generalization of the k-modes type clustering

algorithms with fuzzy p-mode prototypes. The above

modified algorithms can be seen as the special cases of

the generalized k-modes type algorithm.
In the generalized algorithm, a generalization, called

fuzzy p-mode prototype, of frequency-based prototypes is

defined. A cluster prototype at a categorical attribute is

expressed as a list of p categories that have larger

frequencies than others in the cluster.
The definition of the lth cluster prototype z0l ¼ ½z0l1;

z0l2; . . . ; z0lm� is formalized as

z0lj ¼
��
a
ðqÞ
j ; fljq

�
jaðqÞj 2 DðpljÞaj

; 1 � q � nj
	
; ð9Þ

where D
ðpljÞ
aj � Daj is a set of plj ð1 � plj � njÞ categorical

values of aj that have larger frequencies than others in the

lth cluster for 1 � j � m.
When given the cluster prototypes Z0 ¼ fz01; z02; . . . ; z0kg,

the dissimilarity measure d0ðz0l;xiÞ is defined as follows:

d0ðz0l;xiÞ ¼
Xm
j¼1

�0ðz0lj; xijÞ; ð10Þ

where

�0ðz0lj; xijÞ ¼
1� fljq; if xij 2 DðpljÞaj ;
1; otherwise:

�
ð11Þ

Here, fljq is the relative frequency of the categorical value

a
ðqÞ
j in the lth cluster, i.e.,

fljq ¼
jcljqj
jclj

; ð12Þ

where jcljqj ¼
Pn

i¼1;xij¼aðqÞj
w�li and jclj ¼

Pn
i¼1 w

�
li.

Based on the p-mode prototypes instead of the modes

and the dissimilarity measure d0 instead of the simple

matching dissimilarity measure d, Lee and Pedrycz pre-

sented a generalization of the k-modes type algorithms.

More precisely, they use the iterative method to minimize
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F 0ðW;Z0Þ ¼
Xk
l¼1

Xn
i¼1

w�lid
0ðz0l;xiÞ; ð13Þ

subject to the same conditions as those in (2).
When plj ¼ 1 for each attribute aj, 1 � j � m, Z0 is equal

to Z of the original k-modes type algorithms and �0 becomes

�0ðz0lj; xijÞ ¼
1� fljq; i!f xij ¼ zlj;
1; otherwise:

�
ð14Þ

Then, the generalized k-modes type algorithm becomes He
et al. and Ng et al.’s algorithms [22], [23], [24].

When plj ¼ nj for each attribute aj, 1 � j � m, a proto-
type in a cluster is a list of all the categories in the attribute,
with their frequencies in the cluster as the weights, i.e.,

z0lj ¼
��
a
ðqÞ
j ; fljq

�
jaðqÞj 2 Daj ; 1 � q � nj

	
; ð15Þ

and

�0ðz0lj; xijÞ ¼
Xnj
q¼1

fljq�
�
a
ðqÞ
j ; xij

�

¼
Xnj

q¼1;xij 6¼aðqÞj

fljq ¼ 1� fljr;
ð16Þ

where xij ¼ aðrÞj and 1 � r 6¼ q � nj, for 1 � j � m, 1 � l � k,
1 � i � n. In this case, the generalized k-modes type
algorithm becomes San et al. and Kim et al.’s algorithms
[20], [21].

To analyze the convergence of these modified algo-
rithms, we rewrite the objective function (13) as

FfðW;V Þ ¼
Xk
l¼1

Xn
i¼1

w�lidfðvl;xiÞ; ð17Þ

subject to (2) and

vljq 2 ½0; 1�; 1 � l � k; 1 � j � m; 1 � q � nj;

0 <
Xnj
q¼1

vljq � 1; 1 � l � k; 1 � j � m;

vljq ¼ 0; if a
ðqÞ
j 2 Daj �D

ðpljÞ
aj ; 1 � q � nj;

fljq � max
a
ðsÞ
j 2Daj

�D
ðpljÞ
aj

fljs; if a
ðqÞ
j 2 DðpljÞaj

; 1 � q; s � nj;

8>>>>>>>><
>>>>>>>>:

ð18Þ

where

. plj is the number of elements in D
ðpljÞ
aj and 1 � plj �

nj for 1 � j � m.
. V ¼ ½v1;v2; . . . ;vk�0 and vl ¼ ½vl11; vl12; . . . ; vl1n1

; vl21;
vl22; . . . ; vl2n2

; . . . ; vlm1; vlm2; . . . , vlmnm �
0 is a list of

weights of all categorical values which is used to
summarize and characterize the lth cluster. The
larger vljq is, the more representability the catego-
rical value a

ðqÞ
j has in the lth cluster. Here, vl is seen

as the lth cluster prototype.
. dfðvl;xiÞ is a dissimilarity measure between object xi

and the prototype vl of the lth cluster which is
defined as

dfðvl;xiÞ ¼
Xm
j¼1

 ajðvl;xiÞ; ð19Þ

where

 ajðvl;xiÞ ¼ 1� vljr; if xij ¼ aðrÞj ; 1 � r � nj: ð20Þ

Similarly to solving (1), the optimization problem needs
to be solved by iteratively solving the following two
minimization problems:

1. Problem P1. Fix V ¼ V̂ , solve the reduced problem
FfðW; V̂ Þ.

2. Problem P2. Fix W ¼ Ŵ , solve the reduced problem
FfðŴ ; V Þ.

When � ¼ 1, Problem P1 is solved in [20] by

ŵli ¼
1; if dfðv̂l;xiÞ � dfðv̂h;xiÞ; 1 � h � k;
0; otherwise;

�
ð21Þ

for 1 � i � n, 1 � l � k. When � > 1, Problem P1 is solved
in [21] by

wli ¼
1Pk

h¼1
df ðv̂l ;xiÞ
df ðv̂h;xiÞ

h i1=ð��1Þ ; ð22Þ

for 1 � i � n, 1 � l � k.
Problem P2 is solved in [20], [21] by

vljq ¼ fljq; if a
ðqÞ
j 2 D

ðpljÞ
aj ;

0; otherwise;

�
ð23Þ

for 1 � 1 � k; 1 � j � m; 1 � q � nj.
Theorem 1. Let W ¼ Ŵ be fixed. FfðŴ ; V Þ is minimized iff

vljr ¼
1; fljr ¼ max

nj

q¼1
fljq;

0; otherwise;

(
ð24Þ

for 1 � l � k, 1 � j � m, 1 � r � nj.
Proof. Let

#l;j ¼
Xn
i¼1

w�li ajðvl;xiÞ;

for 1 � l � k and 1 � j � m. Then,

Xk
l¼1

Xn
i¼1

w�lidfðvl;xiÞ ¼
Xk
l¼1

Xn
i¼1

Xm
j¼1

w�li ajðvl;xiÞ

¼
Xk
l¼1

Xm
j¼1

Xn
i¼1

w�li ajðvl;xiÞ ¼
Xk
l¼1

Xm
j¼1

#l;j:

For 1 � l � k and 1 � j � m, each #l;j is nonnegative and
independent. Thus, minimizing the objective function is
equivalent to minimizing each #l;j. Note that

#l;j ¼
Xn
i¼1

w�li ajðvl;xiÞ ¼
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�li ajðvl;xiÞ

¼
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�lið1� vljqÞ

¼ jclj �
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�livljq ¼ jclj � jclj
Xnj
q¼1

vljqfljq:

1512 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 6, JUNE 2013



When W is given, jclj is fixed. It is clear that #l;j is
minimized iff

Pnj
q¼1 vljqfljq is maximal for 1 � t � nj.

Because of

0 <
Xnj
q¼1

vljq � 1 and vljq ¼ 0;

if a
ðqÞ
j 2 Daj nDðpljÞaj

; 1 � q � nj;

we know that

Xnj
q¼1

vljqfljq ¼
X

a
ðsÞ
j 2D

ðpljÞ
aj

vljsfljs � max
nj

q¼1
fljq:

Therefore,

vljr ¼
1; fljr ¼ max

nj

q¼1
fljq;

0; otherwise;

(

maximizes
Pnj

q¼1 vljqfljq for 1 � l � k, 1 � j � m, 1 � r �
nj. The result follows. tu
According to Theorem 1, we can see that while solving

Problem 2 for each attribute, only one categorical value with
the relatively maximum frequency has the representability
in the cluster. This means that Theorem 1 is equivalent to
the updating formula for cluster prototypes in the original
k-modes type algorithms. While Theorem 1 is used to
compute V , the distance function df also becomes the
simple matching dissimilarity measure, i.e.,

 ajðvl;xiÞ ¼
1; xij ¼ aðqÞj and vljq ¼ 0;

0; xij ¼ aðqÞj and vljq ¼ 1:

(
ð25Þ

The analysis tells us that the cluster process can converge to
a local minimal solution under the optimization framework
only if the modified algorithms are degenerate to the
original k-modes type algorithms.

To overcome the deficiencies of these existing modified
algorithms, in the next sections we will propose two new
modified k-modes type clustering algorithms, called
MKM_NOF and MKM_NDM, respectively. They will apply
different techniques to simultaneously guarantee the con-
vergence of the clustering process and implement the
representation of a cluster by using several categorical
values in each attribute with appropriate weights.

4 THE MKM_NOF ALGORITHM

To avoid the problem of identifying clusters by a single
categorical value from each attribute, a weight entropy term
is added to the objective function (17). This term is inspired
by the principle of maximum entropy, which provides an
unbiased probability assignment for ill-defined problems
on the basis of the given information. The principle was first
expounded by Jaynes [27] in 1957 and currently has been
applied to fuzzy clustering and subspace clustering [28],
[29]. Here, we will use the weight entropy term to help us
simultaneously minimize the within-cluster dispersion and
stimulate more categorical values from each attribute to
contribute to the identification of clusters.

The new objective function and optimization problem
can be written as follows:

FeðW;V Þ ¼
Xk
l¼1

Xn
i¼1

�
w�lidfðvl;xiÞ þ �

Xm
j¼1

Xnj
q¼1

vljq log vljq

�
;

ð26Þ

subject to the same conditions as in those in (2) and

vljq 2 ½0; 1�; 1 � l � k; 1 � j � m; 1 � q � nj;Xnj
q¼1

vljq ¼ 1; 1 � l � k; 1 � j � m:

8><
>: ð27Þ

In the objective function, the first term is the sum of the
within-cluster dispersions that we want to minimize and
the second term is the negative weight entropy that we
want to maximize. Due to the second term, a cluster will be
represented by several categorical values with nonzero
weights in an attribute instead of one, which makes a
significant difference between the proposed approach and
the existing ones. For any attribute aj ð1 � j � mÞ, when
vljq	 is close to one for some q	 and vljq is close to zero for all
q 6¼ q	, the value of negative entropy �

Pnj
q¼1 vljq log vljq is

close to zero. In this case, the lth cluster will certainly be
represented by the single q	th categorical value of aj, and
the corresponding entropy value is small. However, when
some of vljq are about the same and greater than zero and
the others are close to zero, the negative entropy will
become more positive, i.e., much larger than zero. In this
situation, the lth cluster will be represented by several
categorical values of aj. Therefore, with the weight entropy
term, the clustering process attempts to simultaneously
minimize the within-cluster dispersions and maximize the
negative weight entropy, which can stimulate more
categorical values to contribute to the description of
clusters. In the minimization process of (26), the value of
parameter � determines which term will play a more
important role. The larger the value of � is, the more
the second term contributes in the optimization process and
the “smoother” or fuzzier the resulting V are. However, the
value of � should not be too large. The reason is that when �
is very large for each cluster, vljq is close to 1=nj, which
makes the descriptions of all the clusters become identical.

Similarly to solving (17), we minimize (26) by iteratively
solving Problems 1 and 2. When V is fixed, W is updated by
(21) and (22). Now, the key issue is to rigorously derive the
updating formula of V for solving Problem 2 when W is
fixed. Theorem 2 below presents the updating formula of V .

Theorem 2. Let W ¼ Ŵ be fixed. FeðŴ ; V Þ is minimized iff

vljr ¼
exp

jcljrj
�


 �
Pnj

q¼1 exp
jcljq j
�


 � ; ð28Þ

for 1 � l � k, 1 � j � m, 1 � r � nj.
Proof. Let

�l;j ¼
Xn
i¼1

w�li ajðvl;xiÞ þ �
Xnj
q¼1

vljq log vljq;
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for 1 � l � k and 1 � j � m. Then,

Xk
l¼1

Xn
i¼1

w�lidfðvl;xiÞ þ �
Xm
j¼1

Xnj
q¼1

vljq log vljq

" #

¼
Xk
l¼1

Xn
i¼1

Xm
j¼1

w�li ajðvl;xiÞ þ �
Xnj
q¼1

vljq log vljq

" #

¼
Xk
l¼1

Xm
j¼1

Xn
i¼1

w�li ajðvl;xiÞ þ �
Xnj
q¼1

vljq log vljq

" #

¼
Xk
l¼1

Xm
j¼1

�l;j:

For 1 � l � k and 1 � j � m, each �l;j is nonnegative and

independent. Thus, minimizing the objective function is

equivalent to minimizing each �l;j. Note that

�l;j ¼
Xn
i¼1

w�li ajðvl;xiÞ þ �
Xnj
q¼1

vljq log vljq

¼
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�li ajðvl;xiÞ þ �
Xnj
q¼1

vljq log vljq

¼
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�lið1� vljqÞ þ �
Xnj
q¼1

vljq log vljq

¼ jclj �
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�livljq þ �
Xnj
q¼1

vljq log vljq

¼ jclj �
Xnj
q¼1

jcljqjvljq þ �
Xnj
q¼1

vljq log vljq;

where jclj and jcljqj ð1 � q � njÞ are constants for fixed

W . This means that minimizing �l;j is equivalent to

minimizing

�
Xnj
q¼1

jcljqjvljq þ �
Xnj
q¼1

vljq log vljq: ð29Þ

Since �l;j is a strictly convex function, the well-known

K-K-T necessary optimization condition is also sufficient.

Therefore, v̂lj is an optimal solution if and only if there

exists �̂ together with v̂lj satisfying the following system

of equations:

rvlj ~�l;jðvlj; �Þ ¼ 0;Xnj
q¼1

vljq ¼ 1;
ð30Þ

where vlj ¼ fvlj1; vlj2; . . . ; vljnjg and

~�l;jðvlj; �Þ ¼ �
Xnj
q¼1

jcljqjvljq þ �
Xnj
q¼1

vljq log vljq

þ �
Xnj
q¼1

vljq � 1

 !
:

ð31Þ

We have

@~�l;jðvlj; �Þ
@vljr

¼ �jcljrj þ �ð1þ log vljrÞ þ �; 1 � q � nj: ð32Þ

From (30) and (32), we obtain the optimal solution

v̂ljr ¼
exp

jcljrj
�


 �
Pnj

q¼1 exp
jcljq j
�


 � :
This completes the proof. tu
Due to jcljrj ¼ fljrjclj, vljr is proportional to fljr. Therefore,

the larger fljr, the larger vljr, the more representability the
categorical value a

ðqÞ
j has in the lth cluster.

Let us consider the example in Section 2 again. Without
loss of generality, assume � ¼ 10. According to (28), we
can compute the representability of the categorical values
“A,” “B,” “C,” and “D” in the cluster cl as follows: vlj1 ¼
0:5643, vlj2 ¼ 0:3423, vlj3 ¼ 0:0764, and vlj4 ¼ 0:0170. We see
that the proposed representation method can sufficiently
reflect the representability of all the categorical values in
the cluster compared to the original k-modes type algo-
rithms. And the larger the frequency of a categorical value
in cl is, the higher its representability of cl is.

Based on Theorem 2, an algorithm is proposed to
minimize (26), which is as follows:

Algorithm-MKM_NOF

Input: The number of clusters k and the parameters � and
�. Randomly choose a set of k objects X ¼ fx1;x2; . . . , xkg 

U to initialize V ð1Þ, i.e., set vljq ¼ 1 if xlj ¼ aðqÞj , otherwise,

vljq ¼ 0, for 1 � l � k, 1 � j � m and 1 � q � nj.
REPEAT

Update the partition matrix W by (21) or (22);

Update the weights of cluster prototypes V by Theorem 2;

UNTIL the value of the objective function Fe does not

change.
If the clustering process needs t iterations to converge, the

total computational complexity of the MKM_NOF algo-

rithm is OðmnktÞ which is as much as the original k-modes

type algorithms (OðmnktÞ). This shows that the computa-

tional complexity increases linearly as either the number of

objects, attributes or clusters increases. As for the storage,

we need Oðmnþ nkþ 2
Pm

j¼1 njkÞ space to hold the set of n

objects, the partition matrix W , the cluster prototypes V ,
and the frequencies of all the categorical values in each

cluster. The storage space is very close to that of the original

k-modes type algorithms. (Oðmnþ nkþmkþ
Pm

j¼1 njkÞ).

5 THE MKM_NDM ALGORITHM

In this section, we introduce a new dissimilarity measure
into the objective function (17). More precisely, we will
minimize

FnðW;V Þ ¼
Xk
l¼1

Xn
i¼1

w�lidnðvl;xiÞ; ð33Þ

subject to the same conditions as those in (2) and (27), where
the dissimilarity measure dnðvl;xiÞ is defined as follows:
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dnðvl;xiÞ ¼
Xm
j¼1

�ajðvl;xiÞ; ð34Þ

with

�ajðvl;xiÞ ¼ ð1� vljrÞ
2 þ

Xnj
q¼1;q 6¼r

v2
ljq; if xlj ¼ a

ðrÞ
j ; 1 � r � nj:

ð35Þ

According to (35), �ajðvl;xiÞ depends on two factors, i.e.,

vljr and
Pnj

q¼1;q 6¼r v
2
ljq. The first factor vljr is the represent-

ability of a
ðrÞ
j in the lth cluster. The larger vljr is, the more

representability a
ðrÞ
j has in the lth cluster, the smaller the

dissimilarity between vl and xi in the attribute aj. When

the representability of a
ðrÞ
j is one, �ajðvl;xiÞ ¼ 0 and thus the

corresponding function value is the same as that in the

simple matching dissimilarity measure d in the original

k-modes type algorithms. The second factor
Pnj

q¼1;q 6¼r v
2
ljq is

an uncertainty measure on the representability of other

categories of aj in the lth cluster. Since
Pnj

q¼1;q 6¼r v
2
ljq is a

strictly convex function, the K-K-T necessary optimality

condition is also sufficient. Thus, v0lj ¼ fvljqj1 � q � nj; q 6¼
rg is an optimal solution of min

Pnj
q¼1;q 6¼r v

2
ljq subject toPnj

q¼1 vljq � 1þ vljr ¼ 0 if and only if there is some �̂

together with v̂0lj satisfying the following system of

equations:

rv0
lj

~’ðv0lj; �Þ ¼ 0;

1�
Xnj
q¼1

vljq ¼ vljr;
ð36Þ

where

~’ðv0lj; �Þ ¼
Xnj

q¼1;q 6¼r
v2
ljq þ �

�Xnj
q¼1

vljq � 1þ vljr

: ð37Þ

Note that

@ ~’ðv0lj; �Þ
@vljq

¼ 2vljq þ �; 1 � q � nj; q 6¼ r: ð38Þ

From (36) and (38), we obtain that

v̂ljq ¼
1� vljr
nj � 1

; 1 � q � nj; q 6¼ r: ð39Þ

The above analysis shows that, when vljq, 1 � q � nj, q 6¼ r,
are equal,

Pnj
q¼1;q 6¼r v

2
ljq achieves its minimum value given by

ð1� vljrÞ2

nj � 1
:

We also know that

Xnj
q¼1;q 6¼r

v2
ljq �

� Xnj
q¼1;q 6¼r

vljq

2

¼ ð1� vljrÞ2:

Hence, if only one of vljq, 1 � q � nj, is nonzero,
Pnj

q¼1;q 6¼r v
2
ljq

achieves its maximum value given by

ð1� vljrÞ2:

The value of
Pnj

q¼1;q 6¼r v
2
ljq reflects an uncertainty degree on

the representability of categorical values a
ðqÞ
j (1 � q � nj,

q � r) in the lth cluster. The larger
Pnj

q¼1;q 6¼r v
2
ljq is, the smaller

the uncertainty degree is, the larger the dissimilarity
between vl and xi in the attribute aj is.

Property 1 (Maximum). The maximum value of �ajðvl;xiÞ is 2.
This value is achieved only if there exists some q � nj such
that vljq ¼ 1 and xij 6¼ aðqÞj .

Property 2 (Minimum). The minimum value of �ajðvl;xiÞ is 0.
This value is achieved only if xij ¼ aðqÞj for some q and vljq ¼ 1.

Property 3. �ajðvl;xiÞ ¼ 2 ajðvl;xiÞ þ
Pnj

q¼1 v
2
ljq � 1, where

 ajðvl;xiÞ can be found in Section 3.

Similarly to the way for solving (17), we will minimize
(33) by iteratively solving Problems 1 and 2.

When � ¼ 1, Problem P1 is solved by

ŵli ¼
1; if dnðv̂l;xiÞ � dnðv̂h;xiÞ; 1 � h � k;
0; otherwise;

�
ð40Þ

for 1 � i � n, 1 � l � k. When � > 1, Problem P1 is solved by

wli ¼
1Pk

h¼1
dnðv̂l ;xiÞ
dnðv̂h;xiÞ

h i1=ð��1Þ ; ð41Þ

for 1 � i � n, 1 � l � k.
Theorem 3 below rigorously shows the updating formula

of V to solve Problem 2 when W is fixed.

Theorem 3. Let W ¼ Ŵ be fixed. FnðŴ ; V Þ is minimized iff

vljr ¼ fljr; ð42Þ

for 1 � l � k, 1 � j � m, 1 � r � nj.
Proof. Let

�l;j ¼
Xn
i¼1

w�li�ajðvl;xiÞ;

for 1 � l � k and 1 � j � m. Then,

Xk
l¼1

Xn
i¼1

w�lidnðvl;xiÞ ¼
Xk
l¼1

Xn
i¼1

Xm
j¼1

w�li�ajðvl;xiÞ

¼
Xk
l¼1

Xm
j¼1

Xn
i¼1

w�li�ajðvl;xiÞ ¼
Xk
l¼1

Xm
j¼1

�l;j:

For 1 � l � k and 1 � j � m, each �l;j is nonnegative and
independent. Thus, minimizing the objective function is
equivalent to minimizing each �l;j. Note that

�l;j ¼
Xn
i¼1

w�li�ajðvl;xiÞ

¼
Xnj
q¼1

Xn
i¼1;xij¼aðqÞj

w�li�ajðvl;xiÞ

¼
Xnj
q¼1

�
jcljqjð1� vljqÞ2 þ ðjclj � jcljqjÞv2

ljq

�

¼
Xnj
q¼1

�
jcljv2

ljq � 2jcljqjvljq
�
þ jclj;
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where jclj and jcljqj ð1 � q � njÞ are constants for fixed
W . This means that minimizing �l;j is equivalent to
minimizing

Xnj
q¼1

�
jcljv2

ljq � 2jcljqjvljq
�
: ð43Þ

Since �l;j is a strictly convex function, the well-known
K-K-T necessary optimization condition is also sufficient.
Therefore, v̂lj is an optimal solution if and only if there
exists �̂ together with v̂lj satisfying the following system
of equations:

rvlj
~�l;jðvlj; �Þ ¼ 0;Xnj

q¼1

vljq ¼ 1;
ð44Þ

where vlj ¼ fvlj1; vlj2; . . . ; vljnjg and

~�l;jðvlj; �Þ ¼
Xnj
q¼1

�
jcljv2

ljq � 2jcljqjvljq
�
þ �

�Xnj
q¼1

vljq � 1


: ð45Þ

We have

@ ~�l;jðvlj; �Þ
@vljr

¼ 2jclj � 2jcljrjvljr þ �; 1 � q � nj: ð46Þ

From (44) and (46), we obtain the optimal solution

v̂ljr ¼
jcljrj
jclj

:

This completes the proof. tu
Here, the relative frequency of each categorical value in a

cluster is used to reflect its representability in the cluster. It
is obvious that the larger the frequency of a categorical
value in a cluster is, the larger its representability in the
cluster is. Let us consider the example in Section 2 again.
According to (42), we can compute the representability of
the categorical values “A,” “B,” “C,” and “D” in cluster cl as
follows: vlj1 ¼ 0:4, vlj2 ¼ 0:35, vlj3 ¼ 0:2, and vlj4 ¼ 0:05.

Based on Theorem 3, an algorithm is proposed to
minimize (33), which is as follows:

Algorithm-MKM_NDM

Input: The number of clusters k and the parameter �;

Randomly choose a set of k objects X ¼ fx1;x2; . . . ;xkg 
 U
to initialize V ð1Þ, i.e., set vljq ¼ 1 if xlj ¼ aðqÞj , otherwise,

vljq ¼ 0, for 1 � l � k, 1 � j � m and 1 � q � nj.
REPEAT

Update the partition matrix W by (40) or (41);

Update the weights of cluster prototypes V by Theorem 3;

UNTIL the value of the objective function Fn does not
change.

The total time and space complexities of the MKM_NDM

algorithm are as much as the MKM_NOF algorithm.

6 CONVERGENCE ANALYSIS

When � ¼ 1, the convergence of the MKM_NOF and
MKM_NDM algorithms can be obtained as in Theorems 4
and 5 below.

Theorem 4. When � ¼ 1, the MKM_NOF algorithm converges

to a local minimal solution in a finite number of iterations.

Proof. We first note that there are only a finite number of
possible partitions W . We then show that each possible
partition W appears at most once by the algorithm.
Assume that W ðt1Þ ¼W ðt2Þ, where t1 6¼ t2. We note that,
given W ðtÞ, we can compute the minimizer V ðtÞ according
to Theorem 2. For W ðt1Þ and W ðt2Þ, we have the
minimizers V ðt1Þ and V ðt2Þ, respectively. It is clear that
V ðt1Þ ¼ V ðt2Þ since W ðt1Þ ¼W ðt2Þ. Therefore, we obtain

FeðW ðt1Þ; V ðt1ÞÞ ¼ FeðW ðt2Þ; V ðt1ÞÞ ¼ FeðW ðt2Þ; V ðt2ÞÞ:

However, the sequence Feð�; �Þ generated by the
MKM_NOF algorithm is strictly decreasing. Hence, the

result follows. tu

Theorem 5. When � ¼ 1, the MKM_NDM algorithm converges

to a local minimal solution in a finite number of iterations.

Proof. Similar to Theorem 4. tu

Next, we will analyze the convergence of the MKM_NOF
and MKM_NDM algorithms when � > 1. For convenience,
we define:

.

Mhw ¼ W 2 IRkn:wli 2 f0; 1g and
Xk
l¼1

wli ¼ 1; 8l; i
( )

:

. Mfw ¼ fW 2 IRkn : wli satisfies ð2Þ; 8l; ig.

.

Hhv ¼

V 2 IRks : vljq 2 f0; 1g and
Xnj
q¼1

vljq ¼ 1; 8l; j; q
( )

;

where s ¼
Pm

j¼1 nj.
. Hfv ¼ fV 2 IRks : vljq satisfies ð27Þ; 8l; j; qg.
. Ge1 : Hfv !Mfw, Ge1ðV Þ ¼W ¼ ½wli�, where the en-

tries of W are calculated via (22).
. Ge2 : Mfw ! Hfv, Ge2ðW Þ ¼ V ¼ ½vljq�, where the

entries of V are calculated via Theorem 2.
. Je : ðMfw �HfvÞ ! ðMfw �HfvÞ, Je ¼ Ge2 �Ge1.
. Gn1 : Hfv !Mfw, Gn1ðV Þ ¼W ¼ ½wli�, where the

entries of W are calculated via (41).
. Gn2 : Mfw ! Hfv, Gn2ðWÞ ¼ V ¼ ½vljq�, where the

entries of V are calculated via Theorem 3.
. Jn : ðMfw �HfvÞ ! ðMfw �HfvÞ, Jn ¼ Gn2 �Gn1.

Similar to the approach by which Bezdek analyzed the
convergence of the fuzzy k-means algorithm [30], [31], our
strategy will be to apply Zangwill’s theorem [32] to discuss
the convergence of the MKM_NOF and MKM_NDM
algorithms (� > 1).

Theorem 6 [32]. Let f : Df 
 IRm ! IR: S ¼ fx	 2 Df :

fðx	Þ < fðyÞ8y 2 B0ðx	; rÞg , where B0ðx	; rÞ ¼ fy 2 IRm:

kx	 � yk < r; k � k any norm on IRmg, A : Df ! Df be an

iterative algorithm, xkþ1 ¼ AðxkÞ, and g be attached to
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sequences of iterates generated by A to monitor the progress of

A in seeking a solution x	 2 S. If the following conditions
hold, g is a descent function for fA;Sg, A is continuous on

DfnS, and the iterate sequences fAðxkÞ : k ¼ 1; 2; . . . ;x1 2
Dfg 
 K are contained in a compact set K � Df for arbitrary

x1 2 Df , then for each iterative sequence fxkg generated by A,
we have either fxkg terminates at a solution x	 2 S or 9 a

subsequence fxkjg � fxkg so that fxkjg ! x	 2 S.

Theorem 6 and its generalizations can be used to obtain
convergence proofs for almost all of the classical iterative
optimization algorithms, e.g., steepest descent, Newton’s
method, etc., by using this approach as an alternative to
more conventional arguments.

According to Theorems 2 and 3, we know the sequences
Feð�; �Þ and Fnð�; �Þ generated by the MKM_NOF and
MKM_NDM algorithms, respectively, are strictly decreas-
ing. This indicates the MKM_NOF and MKM_NDM
algorithms satisfy the first requirement of Theorem 6.

The second requirement of Theorem 6 is that algorithms
Je and Jn be continuous on the domains of Fe n S and
Fn n S, respectively. Je and Jn are in fact continuous on all
of Mfw �Hfv, as we show in the following.

Theorem 7. Je is continuous on ðMfw �HfvÞ.
Proof. Since Je ¼ Ge2 �Ge1, and the composition of the

continuous functions is again continuous, it suffices to
show that Ge1 and Ge2 are each continuous. To see that
Ge1 is continuous in the ðknÞ variables fwlig, note that Ge1

is a vector field, with the resolution by ðksÞ scalar field
where s ¼

Pm
j¼1 nj, say

Ge1 ¼ ½Gð111Þ
e1 ; G

ð112Þ
e1 ; . . . ; G

ðljrÞ
e1 ; . . . ; G

ðkmnmÞ
e1 � : IRkn ! IRks;

where G
ðljrÞ
e1 : IRkn ! IR is defined via Theorem 2 as

G
ðljrÞ
e1 ðWÞ ¼

exp
jcljrj
�


 �
Pnj

q¼1 exp
jcljq j
�


 � ¼ vljr; 8l; j; r:
Now, fwli ! w�lig is continuous, fjcljrj ! expðjcljrj=�Þg

is continuous, and the sum of continuous functions is
continuous; thus, G

ðljrÞ
1 ðW Þ is the quotient of two

continuous scalar fields for all 1 � l � k, 1 � j � m, 1 �
r � nj. In view of constraint (6), the denominator of
G
ðljrÞ
e1 ðWÞ never vanishes, so G

ðljrÞ
e1 ðWÞ is also continuous

8l; j; r. Therefore, Ge1 is continuous on their entire
domains. Next, we show that Ge2 is a continuous
function of the ðksÞ variables fvljqg. Ge2 is a vector field
with the resolution by ðknÞ scalar fields:

Ge2 ¼
�
G
ð11Þ
e2 ; G

ð12Þ
e2 ; . . . ; G

ðliÞ
e2 ; . . . ; G

ðknÞ
e2

�
: IRks ! IR;kn

where G
ðliÞ
e2 : IRks ! IR is defined via (18) as

G
ðliÞ
e2 ðV Þ ¼ 1

�Xk
h¼1

dfðvl;xiÞ
dfðvh;xiÞ

� �1=ð��1Þ
:

According to (19), we know that fvl ! dfðvl;xiÞg is
continuous. Since the sum of continuous functions is
continuous, G

ðliÞ
e2 ðV Þ is the quotient of two continuous

scalar fields for all 1 � l � k,1 � i � n. In view of our

general hypothesis that dfðvl;xiÞ > 0 8l; i, GðliÞe2 is con-
tinuous for all l; i. Therefore, Ge2 is continuous on their
entire domains. Thus, J ¼ Ge2 �Ge1 is continuous on
ðMfw �HfvÞ. tu

Theorem 8. Jn is continuous on ðMfw �HfvÞ.
Proof. Similar to Theorem 7. tu

The final condition needed for Theorem 6 is compactness
of ðMfw �HfvÞ, which contains all of the possible iterate
sequences generated by Je and Jn.

Theorem 9. Mfw �Hfv is a compact set.

Proof. Since Hfv is the k-fold Cartesian product of the
convex hull of Hhv and Hhv is a finite set, Hfv is closed
and bound in IRks. Therefore, Hfv is compact. Similarly,
since Mfw is the k-fold Cartesian product of the convex
hull of Mhw and Mhw is a finite set, Mfw is closed and
bound in IRkn. Therefore, Mfw is compact. Thus, Mfw �
Hfv is compact. tu

We now assemble the hypotheses and results of the
above theorems into a formal statement for convergence of
the MKM_NOF and MKM_NDM algorithms.

Theorem 10. The MKM_NOF algorithm ð� > 1Þ either
terminates at a point ðW 	; V 	Þ in the solution set � or a
subsequence exists convergent to a point in � where

� ¼ fðW 	; V 	Þ 2Mfw �HfvjFeðW 	; V 	Þ
� FeðW;V 	Þ and FeðW 	; V 	Þ
� FeðW 	; V Þ for all V 2 Hfvg:

Theorem 11. The MKM_NDM algorithm ð� > 1Þ either
terminates at a point ðW 	; V 	Þ in the solution set � or a
subsequence exists convergent to a point in � where

� ¼ fðW 	; V 	Þ 2Mfw �HfvjFnðW 	; V 	Þ
� FnðW;V 	Þ and FnðW 	; V 	Þ
� FnðW 	; V Þ for all V 2 Hfvg:

7 EXPERIMENTAL RESULTS

The main aim of this section is to illustrate the convergence
results and evaluate the clustering performance and
efficiency of the MKM_NOF and MKM_NDM algorithms.
We used five datasets obtained from the UCI Machine
Learning Repository [33] to test the proposed algorithms.
These datasets are shown in Table 1.
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7.1 Convergence Results

For the existing modified k-modes [20], [21], [22], [23], [24],
MKM_NOF and MKM_NDM algorithms, we tested the
convergence of their hard and fuzzy clustering processes,
i.e., � ¼ 1 and � ¼ 1:5, respectively. In the testing proce-
dure, we carried out 100 runs of these algorithms on the
breast cancer dataset, respectively. In each run, different
initial cluster prototypes were used in these algorithms. The
convergence behaviors are shown in Figs. 2 and 3. In each
subfigure, we show the 100 curves, where each curve refers
to the objective function values with the iterations of an
algorithm in each run.

Fig. 2 shows the convergence behaviors of the objective
function F 0 with random initializations and different
parameters. When the parameters plj ¼ 1 for 1 � l � k,
1 � j � m, and � ¼ 1, the objective function F 0 represents
the algorithm proposed by He and Ng et al. [22], [23].
When the parameters plj ¼ 1 for 1 � l � k, 1 � j � m, and
� > 1, the objective function F 0 represents the algorithm
proposed by Ng et al. [24]. When the parameters plj ¼ nj
for 1 � l � k, 1 � j � m, and � ¼ 1, the objective function
F 0 represents the algorithm proposed by San et al. [20].
When the parameters plj ¼ nj for 1 � l � k, 1 � j � m, and
� > 1, the objective function F 0 represents the algorithm
proposed by Kim et al. [21]. According to Fig. 2, we see
that some of the sequences of the objective function values
generated by these algorithms are not decreasing in
iterative processes. This indicates that they cannot guar-
antee to obtain the local minimum solutions of their
objective functions in the clustering processes.

Fig. 3 illustrates the convergence behaviors of the
MKM_NOF and MKM_NDM algorithms on the breast

cancer dataset. It is clear from Fig. 3 that the objective
function values are decreasing in each curve. We also see in
these subfigures that the MKM_NOF and MKM_NDM
algorithms stop after a finite number of iterations, i.e., the
objective function values do not decrease any more. This is
exactly the results we showed in Section 6. Therefore, the
MKM_NOF and MKM_NDM algorithms can be used safely.

7.2 Performance Results

To evaluate the performance of clustering algorithms, we
considered three widely used evaluation methods.

The category utility (CU) function: The category utility
function [35] is an internal criterion which attempts to
maximize both the probability that two data objects in
the same cluster obtain the same attribute values and the
probability that data points from different clusters have
different attributes. CU is defined as follows:

CU ¼
Xk
l¼1

jclj
n

Xm
j¼1

Xnj
q¼1

P ðaðqÞj jclÞ
2 � P ðaðqÞj Þ

2
h i

;

where

P ðaðqÞj jclÞ ¼
jfxijxij ¼ aðqÞj ;xi 2 clgj

jclj
; P
�
a
ðqÞ
j

�

¼
jfxijxij ¼ aðqÞj ;xi 2 Ugj

n
;

and cl is a set of objects in the lth cluster.
The adjusted rand index: The adjusted rand index is an

external criterion which attempts to measure the similarity
between two partitions of objects in the same dataset.
Given a set U of n data objects and two groupings (e.g.,
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Fig. 2. (a) The objective function values F 0 against the iterations with different initial guesses when plj ¼ 1 for 1 � l � k, 1 � j � m, and � ¼ 1. (b)
The objective function values F 0 against the iterations with different initial guesses when plj ¼ 1 for 1 � l � k, 1 � j � m, and � ¼ 1:5. (c) The
objective function values F 0 against the iterations with different initial guesses when plj ¼ nj for 1 � l � k, 1 � j � m, and � ¼ 1. (d) The objective
function values F 0 against the iterations with different initial guesses when plj ¼ nj for 1 � l � k, 1 � j � m, and � ¼ 1:5.

Fig. 3. (a) The objective function values Fe against the iterations with different initial guesses when � ¼ 1. (b) The objective function values Fe against
the iterations with different initial guesses when � ¼ 1:5. (c) The objective function values Fn against the iterations with different initial guesses when
� ¼ 1. (d) The objective function values Fn against the iterations with different initial guesses when � ¼ 1:5.



clusterings) of these objects, namely, C ¼ fc1; c2; . . . ; ckg
and P ¼ fp1; p2; . . . ; pk0 g, the overlappings between C and
P can be summarized in a contingency table where nij
denotes the number of common objects of groups ci and
plj: nij ¼ jci \ pljj. The adjusted rand index is defined as
AdjustedIndex ¼ Index�ExpectedIndex

MaxIndex�ExpectedIndex , more specifically,

ARI ¼
P

ij

�
nij
2

�
�
�P

i

�
bi
2

�P
j

�
dj
2

��
=
�
n
2

�
1
2

�P
i

�
bi
2

�
þ
P

j

�
dj
2

��
�
�P

i

�
bi
2

�P
j

�
dj
2

��
=
�
n
2

� ;
where nij; bi; dj are values from the contingency table
(Table 2). Since these given datasets contain the clustering
label on each data object, we will evaluate the clustering
results by using ARI to compare them with the original
clustering labels. If the clustering result is close to the true
class distribution, then the value of ARI is high.

The set matching technique: This category of methods is
based on measuring the shared set cardinality between two
clusterings. Similar to the adjusted rand index, the set
matching technique is also an external criterion in which
external information-class labels need be used. It computes
the best matches between clusters (in terms of shared
points) from each of the two clusterings and returns a value
equal to the total number of points shared between pairs of
matched clusters. The simplest form of the set matching
technique is called the set matching accuracy (AC) [37],
which is defined as

AC ¼
Xk
i¼1

maxk
0

j¼1nij

n
;

where nij; k; k
0 are values from Table 2. If the clustering

result is close to the true class distribution, then the value of
AC is high.

Based on the above evaluation measures, we compared
the proposed algorithms with the existing k-modes type

algorithms [16], [19], [20], [21], [22], [23], [24], [25] on four
real datasets: the soybean data, the heart disease data, the
breast cancer data, and the mushroom data, respectively. To
ensure that the comparisons were in a uniform environ-
mental condition, we first set the number of clusters is equal
to the “true” number of classes for each of the given
datasets. Next, due to the fact that the performance of these
algorithms depends on initial cluster centers, we randomly
selected 100 initial cluster prototypes for each of the given
datasets. Furthermore, we selected 10 values of � that were
from 1 to 1.9 with step length of 0.1. For each value of �, we
carried out 100 runs of each algorithm on each dataset and
computed the average values of its 100 clustering results for
ARI, CU , and AC. When � > 1, these algorithms produced
a fuzzy partition matrix W . We obtained the cluster
memberships from W as follows. The object xi was assigned
to the lth cluster if wli ¼ max1�h�kwhi. If the maximum was
not unique, then xi was assigned to the cluster of first
achieving the maximum. Since the convergence of these
existing k-modes type algorithms cannot be guaranteed, we
set the maximum number of their iterations in each run as
30. For the MKM_NOF algorithm, we set � ¼ 0:03 	 n in the
experimental analysis (we tried several values of � and
found that the value of �=n in the interval ½0:01; 0:05� can
provide the better clustering results on most real datasets),
where n is the number of objects.

Figs. 4, 5, 6, and 7 show the comparison results of the
these algorithms with different � values. In these figures,
“Original KM,” “MKM_1,” and “MKM_1” stand for the
original k-modes type algorithm, the generalized k-modes
type algorithm with plj ¼ 1 for 1 � l � k and 1 � j � m
(nbsp;equivalent to He et al. and Ng et al.’s algorithms) and
the generalized k-modes type algorithm with plj ¼ nj for
1 � l � k and 1 � j � m (equivalent to San et al. and Kim
et al.’s algorithms), respectively.

According to Figs. 4, 5, 6, and 7, we see that MKM_NOF
and MKM_NDM algorithms can effectively enhance the
performance of the original k-modes type algorithms and are
superior to the MKM_1 algorithm for ARI, CU , and AC.
Moreover, we also see that the performance of the
MKM_NDM algorithm is slightly better than the MKM_2
algorithm. Compared to the MKM_NDM algorithm, the
clustering results of the MKM_NOF algorithm are sensitive
to the change of� values. This indicates that the MKM_NDM
algorithm has much better robustness than the MKM_NOF
algorithm. We found that the performance of the MKM_NOF

BAI ET AL.: THE IMPACT OF CLUSTER REPRESENTATIVES ON THE CONVERGENCE OF THE K-MODES TYPE CLUSTERING 1519

TABLE 2
Notation for the Contingency Table

for Comparing Two Partitions

Fig. 4. (a) Means of ARI with respect to different values of � on the soybean data. (b) Means of CU with respect to different values of � on the
soybean data. (c) Means of AC with respect to different values of � on the soybean data.



algorithm with the � value in the interval ½1; 1:5Þ is close to

that of the MKM_NDM and MKM_2 algorithms.
Therefore, the above experimental results tell us that the

proposed algorithms can not only guarantee to be con-

vergent but can also obtain the better clustering results.

7.3 Scalability Results

In the scalability analysis, we tested the original k-modes

type algorithm, the MKM_NOF algorithm, and the

MKM_NDM algorithm on the connect-4 dataset from UCI

[33]. The computational results were performed by using a

machine with an Intel Q9400 and 2 G RAM. The computa-

tional times of algorithms were plotted with respect to the

number of objects, attributes, and clusters, while the other

corresponding parameters were fixed. All of the experi-

ments were repeated five times and the average computa-

tional times were depicted. For each of the three algorithms,

we tested the computational times of the hard and fuzzy

clustering processes, i.e., a ¼ 1 and a ¼ 1:5, respectively.

Figs. 8a and 9a show the computational times against the
number of objects while the number of attributes is 42 and
the number of clusters is 3. Figs. 8b and 9b show the
computational times against the number of attributes while
the number of clusters is 3 and the number of objects is
680,000. Figs. 8c and 9c show the computational times
against the number of clusters while the number of
attributes is 42 and the number of objects is 680,000.
According to the figures, we see that all three algorithms are
scalable, i.e., the computational times increase linearly with
respect to either the number of objects, attributes, or
clusters. The MKM_NOF and MKM_NDM algorithms
require more computational times than the original k-mode
type algorithms. It is an expected outcome since the
proposed algorithms require some additional arithmetic
operations for the weight calculation of cluster prototypes
and iterations for searching a local minimal solution
compared to the original k-mode type algorithms. How-
ever, according to the tests, the MKM_NOF and
MKM_NDM algorithms are still scalable, i.e., they can
cluster categorical objects efficiently. In addition, we also
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Fig. 6. (a) Means of ARI with respect to different values of � on the breast cancer data. (b) Means of CU with respect to different values of � on the
breast cancer data. (c) Means of AC with respect to different values of � on the breast cancer data.

Fig. 7. (a) Means of ARI with respect to different values of � on the mushroom data. (b) Means of CU with respect to different values of � on the
mushroom data. (c) Means of AC with respect to different values of � on the mushroom data.

Fig. 5. (a) Means of ARI with respect to different values of � on the heart disease data. (b) Means of CU with respect to different values of � on the
heart disease data. (c) Means of AC with respect to different values of � on the heart disease data.



see that the computational times of the MKM_NOF
algorithm are more than the MKM_NDM algorithm
because the MKM_NOF algorithm requires more iterations
than the MKM_NDM algorithm in clustering process.

8 CONCLUSION

In this paper, we have analyzed the convergence of several
modified k-modes algorithms using the frequency-based
cluster prototypes. It is proven that these modified
algorithms cannot converge to the local minimum solutions
of their objective functions unless they degrade to the
original k-modes type algorithms. To remedy this short-
coming, we have proposed two new modified algorithms,
called MKM_NOF and MKM_NDM, respectively, which
apply different techniques to represent a cluster by
weighted cluster prototypes. We rigorously derive the
updating formulas of the two algorithms and prove their
convergence under their optimization frameworks. Experi-
mental results have shown that the MKM_NOF and
MKM_NDM algorithms are efficient and effective in
clustering categorical datasets.
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