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The leading partitional clustering technique, k-modes, is one of the most computationally efficient clus-
tering methods for categorical data. However, in the k-modes-type algorithms, the performance of their
clustering depends on initial cluster centers and the number of clusters needs be known or given in
advance. This paper proposes a novel initialization method for categorical data which is implemented
to the k-modes-type algorithms. The proposed method can not only obtain the good initial cluster centers
but also provide a criterion to find candidates for the number of clusters. The performance and scalability
of the proposed method has been studied on real data sets. The experimental results illustrate that the
proposed method is effective and can be applied to large data sets for its linear time complexity with
respect to the number of data points.
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1. Introduction means algorithm to propose the k-modes algorithm whose exten-
Clustering is a process of grouping a set of data points into clus-
ters so that the data points in the same cluster have high similarity
but are very dissimilar with data points in other clusters. Various
types of clustering algorithms have been proposed in the literature
(e.g., [1] and references therein). Clustering algorithms are gener-
ally categorized under two different categories, partitional and
hierarchical. The k-means algorithm [1–4] is a well known part-
itional clustering algorithm for its efficiency in clustering large
data sets. Fuzzy versions of the k-means algorithm have been
reported by Ruspini [5] and Bezdek [6], where each pattern is
allowed to have memberships in all clusters rather than having a
distinct membership to one single cluster. Numerous problems in
real world applications, such as pattern recognition and computer
vision, can be tackled effectively by the fuzzy k-means algorithm.
However, the use of the k-means-type algorithms is only limited
to numeric data.

Due to the fact that large categorical data sets exist in many
applications, it has been widely recognized that directly clustering
the raw categorical data is important. Examples include environ-
mental data analysis [7], market basket data analysis [8], DNA or
protein sequence analysis [9], text mining [10], and computer
security [11]. Therefore, in 1997, Huang [12,13] extended the k-
ll rights reserved.
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sions have removed the numeric-only limitation of the k-means
algorithm and enable the k-means clustering process to be used
to efficiently cluster large categorical data sets from real world dat-
abases. Furthermore, Huang and Ng introduced the fuzzy k-modes
algorithm [14], a generalized version of the k-modes algorithm,
which assigns membership degrees to data in different clusters.
Since first published, the k-modes-type algorithms have become
a popular technique for solving problems about clustering categor-
ical data in different application domains [15].

There are two major issues in the application of the k-means-
type (nonfuzzy or fuzzy) algorithms and the k-modes-type algo-
rithms in cluster analysis. The first issue is that these algorithms
use alternating minimization methods to solve nonconvex optimi-
zation problems in finding cluster solutions [1]. These algorithms
require a set of initial cluster centers to start and often end up with
different clustering results for different sets of initial cluster cen-
ters. Therefore, they are very sensitive to the initial cluster centers.
Usually, they begin with an initial set of randomly selected cluster
centers. Due to its simplicity, the random initialization method has
been widely used. However, these algorithms need to rerun many
times with different initializations in an attempt to find a good
solution. Moreover, the random initialization method works well
only when at least one of the random initializations is close to a
good solution. Therefore, how to select initial cluster centers is ex-
tremely important as they have a direct impact on the formation of
final clusters. For numeric data, many attempts have been reported
to solve the initialization problem. For example, several experts
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[16–19] used genetic algorithms to obtain good initial cluster cen-
ters. Arthur and Vassilvitskii [20] proposed and studied a careful
seeding for initial cluster centers to improve the performance.
Cao et al. [21] presented an selection method based on the
neighborhood rough-set model. Likas et al. [22] proposed a global
k-means clustering algorithm (GKM) to solve the local minimum
problem. However, due to the lack of intuitive geometric proper-
ties for categorical data, these techniques for numerical data can-
not be applicable to categorical data. For categorical data, Huang
[13] suggested to select the first k distinct objects from the data
set as the initial k modes or assign the most frequent categories
equally to the initial k modes. Although the methods are to make
the initial modes diverse, an uniform criteria is not given for select-
ing k initial modes in [13]. Sun [23] introduced an initialization
method which is based on the frame of refining. This method pre-
sents a study on applying Bradley’s iterative initial-point refine-
ment algorithm [24] to the k-modes clustering, but its time cost
is high and the parameters of this method are plenty which need
to be asserted in advance. Wu [25] proposed an initialization meth-
od based on density and distance, which limits the process in a
sub-sample data set and uses a refining framework. But this meth-
od needs to randomly select sub-sample, so the sole clustering re-
sult can not be guaranteed. Cao [26] redefined the density of data
points and proposed the new initialization method which is scal-
able and capable of dealing with large categorical data sets. How-
ever, Wu [25] and Cao [26] proposed that the density of a data
point is the total similarity measures between the data point and
all data points, which do not consider the local density of a data
point. In many cases, the global density of the boundary points
among the clusters are often higher than the cluster centers. In
summary, currently there are no universally accepted method for
obtaining initial cluster centers for categorical data. Hence, it is
very necessary to propose a new cluster centers initialization
method for categorical data.

The second issue is that the number of clusters k needs to be
determined in advance as an input to clustering algorithms. In a
real data set, k is usually unknown. In practice, different values
of k are tried, and cluster validation techniques are used to mea-
sure the clustering results and determine the best value of k, see,
for instance, [1]. In [27], Hamerly and Elkan studied statistical
methods to learn k in the k-means-type algorithms. In [28], Li
et al. presented an agglomerative fuzzy k-means clustering algo-
rithm for numerical data, an extension to the standard fuzzy k-
means algorithm by introducing a penalty term to the objective
function. The algorithm can determine the number of clusters by
analyzing the penalty factor. However, the algorithm needs to ran-
domly select a subset from data set as initial cluster centers, which
results in an uncertainty. For categorical data, a bottom-up hierar-
chical algorithm ACE was proposed in [29], which uses entropy as
an index function to capture the candidates for the number of clus-
ters. However, when the data set is very large, the ACE algorithm is
not efficient due to its computational burden of O(n2log2n) with n
being the number of data points.

In this paper, we propose a novel initialization method for cat-
egorical data to tackle the above two issues in application of the k-
modes-type clustering algorithms. In cluster centers initialization,
we do not use all data points as the potential exemplars but pro-
pose a method to construct a potential exemplars set. We define
a new density measure to reflect the cohesiveness of potential
exemplars. Based on the density measure and the distance mea-
sure, we select the initial cluster centers from the potential exem-
plars set. In determination of the number of clusters, we propose a
criterion to find the candidates for the number of clusters. The pro-
posed initialization method has been used along with the k-modes
algorithm and the fuzzy k-modes algorithm, respectively. The time
complexity of the proposed method has been analyzed. Compari-
sons with other initialization methods illustrate the effectiveness
of this approach. The major research highlights are as follows:

� Study initialization problems about clustering categorical data.
Categorical data is different from continuous or discretized
numerical data. Due to the lack of an inherent order on the
domains of the categorical attributes, the clustering techniques
for numerical data cannot be applicable to categorical data.
� A new initialization method is proposed to simultaneously find

the initial cluster centers and the number of clusters for cate-
gorical objects. In this paper, we took account of clustering
not attributes but objects.
� We applied three widely used external evaluation measures to

evaluate the effectiveness of the k-modes type algorithms with
the proposed initialization method on several real data sets
from UCI. These real data sets included the class information
(class labels and the number of classes). The class information
was not used to obtain the initial cluster centers and the num-
ber of clusters but was only used to evaluate the effectiveness of
the proposed initialization method.

The outline of the rest of this paper is as follows. A detailed re-
view of the k-modes algorithm and the fuzzy k-modes algorithm is
presented in Section 2. In Section 3, a new cluster centers initiali-
zation method is proposed. In Section 4, a criterion to find the can-
didates for the number of clusters is presented. Section 5
demonstrates the performance and scalability of the new initializa-
tion method. Finally, a concluding remark is given in Section 6.

2. The k-modes algorithm and the fuzzy k-modes algorithm

As we know, the structural data are stored in a table, where
each row (tuple) represents facts about a data point. A data table
is also called an information system in rough set theory [31–35].
Data are prevalently described by categorical attributes
[12,36,37]. More formally, a categorical data table is described as
a quadruple IS = (U,A,V, f), where:

(1) U = {x1,x2, . . . ,xn} is the nonempty set of n data points, called
a universe;

(2) A = {a1,a2, . . . ,am} is the nonempty set of m categorical
attributes;

(3) V is the union of attribute domains, i.e., V ¼
Sm

j¼1Vaj
, where

Vaj
¼ að1Þj ; að2Þj ; . . . ; a

ðnjÞ
j

n o
is the value domain of categorical

attribute aj and is finite and unordered, e.g., for any

1 6 p 6 q 6 nj, either aðpÞj ¼ aðqÞj or aðpÞj –aðqÞj . Here, nj is the
number of categories of attribute aj for 1 6 j 6m;

(4) f : U � A ? V is an information function such that
f ðxi; ajÞ 2 Vaj

for 1 6 i 6 n and 1 6 j 6m.

The objective of the k-modes-type algorithms [12–14] is to clus-
ter data points in U into k clusters by minimizing the function

FðW; ZÞ ¼
Xk

l¼1

Xn

i¼1

wa
lidðzl; xiÞ

subject to

wli 2 ½0;1�; 1 6 l 6 k; 1 6 i 6 n;

Xk

l¼1

wli ¼ 1; 1 6 i 6 n;

and

0 <
Xn

i¼1

wli < n; 1 6 l 6 k;
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where n is the number of data points in U, k(6n) is a given number
of clusters. The parameter a 2 [1,+1) is a positive coefficient for
controlling the membership of each datum. a = 1 gives the k-modes
algorithm. W = [wli] is a k-by-n real matrix, wli indicates whether xi

belongs to the lth cluster for the k-modes algorithm, wli = 1 if xi be-
longs to the lth cluster and 0 otherwise, and for the fuzzy k-modes
algorithm, wli is the membership degree of xi to the lth cluster.
Z = {z1,z2, . . . ,zk}, and zl is the lth cluster center with the categorical
attributes a1,a2, . . . ,am, where m is the number of attributes.

To cluster categorical data, the k-modes-type algorithms apply
the simple matching dissimilarity measure to compute the dis-
tance between a cluster center and a categorical data point, use
modes as cluster centers instead of means for clusters, and update
the cluster centers at each iteration to minimize the clustering cost
function.

The simple matching dissimilarity measure d(zl,xi) between a
center zl and a categorical data point xi is defined as

dðzl; xiÞ ¼
Xm

j¼1

daj
ðzl; xiÞ;

where

daj
ðzl; xiÞ

1; f ðzl; ajÞ– f ðxi; ajÞ;
0; f ðzl; ajÞ ¼ f ðxi; ajÞ:

�

It is easy to verify that 0 6 d(zl,xi) 6m and the function d de-
fines a metric space on the set of categorical data points. We note
that d is also a kind of generalized Hamming distance.

The lth cluster center zl, referred to as the lth mode, is updated
as follows. Each f(zl,aj) for aj 2 A is updated. For the k-modes algo-
rithm (a = 1), f(zl,aj) satisfies the following criterion:

jfxi 2 Ujf ðxi; ajÞ ¼ f ðzl; ajÞ;wli ¼ 1gj ¼max
nj

q¼1
jfxi 2 Ujf ðxi; ajÞ

¼ aðqÞj ;wli ¼ 1gj

and satisfies the following criterion for the fuzzy k-modes algorithm
(a > 1):

X
f ðxi ;ajÞ¼f ðzl ;ajÞ;xi2U

wa
li ¼max

nj

q¼1

X
f ðxi ;ajÞ¼aðqÞ

j
;xi2U

wa
li :

For the k-modes algorithm (a = 1), W = [wli] is updated as

wli ¼
1; if dðzl; xiÞ ¼ min

16h6k
dðzh; xiÞ;

0; otherwise

(

and for fuzzy k-modes algorithm (a > 1), W = [wli] is updated as

wli ¼

1; if xi ¼ zl;

0; if xi ¼ zh;h – l;

1
Pk
h¼1

�
dðzl ;xiÞ
dðzh ;xiÞ

h i1=ða�1Þ
; if xi – zl and xi – zh;1 6 h 6 k:

8>>><
>>>:

The whole process of the k-modes-type algorithms is described
as follows [14]:

Step 1: Choose an initial point set Z(1) # Rm, where Rm ¼ Va1�
Va2 � � � � � Vam . Determine W(1) such that F(W,Z(1)) is min-
imized. Set t = 1.

Step 2: Determine Z(t+1) such that F(W(t),Z(t+1)) is minimized. If
F(W(t),Z(t+1)) = F(W(t),Z(t)), then stop; otherwise goto Step 3.

Step 3: Determine W(t+1) such that F(W(t+1),Z(t+1)) is minimized. If
F(W(t+1),Z(t+1)) = F(W(t),Z(t+1)), then stop; otherwise set
t = t + 1 and goto Step 2.
This procedure removes the numeric-only limitation of the k-
means-type algorithm. Moreover, the fuzzy partition matrix pro-
vides more information to help the user to determine the final
clustering and to identify the boundary data points. Such informa-
tion is extremely useful in applications such as data mining in
which the uncertain boundary data points are sometimes more
interesting than data points which can be clustered with certainty.
However, similar to the k-means-type algorithms, the k-modes-
type algorithms are sensitive to initial cluster centers and need
to give the number of clusters in advance. To solve these problems,
a new initialization method for categorical data is proposed in Sec-
tions 3 and 4.

3. A new cluster centers initialization method

Currently, most cluster centers initialization methods generally
consider all data points as potential exemplars or randomly choose
a part of data points from a given data set to be as potential exem-
plars. The first method has very high computing cost and maybe
weaken the representability of exemplars to clusters. The second
method maybe result in an uncertainty.

We propose a new method to construct potential exemplars,
instead of randomly selecting. Since categorical data can be parti-
tioned into several subsets by each categorical attribute, for each
subset, we do not consider all the data points in it as potential
exemplars but select a data point to represent it and be as a po-
tential exemplar. These chosen data points make up a set of po-
tential exemplars. Similar to the selection method of cluster
representative in the k-modes algorithm, in a given subset, we
will select the most frequent attribute value in each attribute do-
main to compose its representative point. The formal definitions
are as follows:

Definition 1. Let IS = (U,A,V, f) be a categorical data table. A subset
UaðqÞj

# U is defined as

UaðqÞ
j
¼ fxi 2 Ujf ðxi; ajÞ ¼ aðqÞj ;1 6 i 6 ng

for 1 6 j 6m, 1 6 q 6 nj.
Definition 2. Let IS = (U,A,V, f) be a categorical data table. The rep-
resentative point caðqÞ

j
of the subset UaðqÞ

j
is defined as

caðqÞ
j
¼ f ðcaðqÞ

j
; a1Þ; f ðcaðqÞ

j
; a2Þ; . . . ; f ðcaðqÞ

j
; amÞ

� �
;

where

jfxjf ðx; ahÞ ¼ f ðcaðqÞ
j
; ahÞ; x 2 UaðqÞ

j
gj

¼max
nh

t¼1
xjf ðx; ahÞ ¼ aðtÞh ; x 2 UaðqÞ

j

� �����
����; 1 6 h 6 m

for 1 6 j 6m, 1 6 q 6 nj.
Property 1. Let IS = (U,A,V, f) be a categorical data table. The repre-
sentative point caðqÞ

j
of the subset UaðqÞ

j
satisfiesX

x2U
aðqÞ

j

dðcaðqÞ
j
; xÞ ¼min

v2Rm

X
x2U

aðqÞ
j

dðv; xÞ;

for 1 6 j 6m, 1 6 q 6 nj, where Rm ¼ Va1 � Va2 � . . .� Vam .
Proof. For a given UaðqÞ
j

, we write the sum of the distance between
v 2 Rm and every object x in UaðqÞ

j
as
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X
x2U

a
ðqÞ
j

dðv ; xÞ ¼
X

x2U
a
ðqÞ
j

Xm

h¼1

dah
ðv; xÞ ¼

Xm

h¼1

X
x2U

a
ðqÞ
j

dah
ðv ; xÞ

¼
Xm

h¼1

ðjUaðqÞ
j
j � jfxjf ðx; ahÞ ¼ f ðv ; ahÞ; x 2 UaðqÞ

j
gjÞ:

It is clear that
P

x2U
aðqÞ

j

dðv ; xÞ is minimized iff jfxjf ðx; ahÞ ¼
f ðv ; ahÞ; x 2 UaðqÞ

j
gj is maximal for 1 6 h 6m. The result follows. h

Intuitively, the smaller the sum of difference between a data
point and each data point in a given subset is, the higher represent-
ability the data point has in the subset. Property 1 tells us that the
selected representative point caðqÞ

j
minimizes the sum of distance

between the representative point and each data point in UaðqÞ
j

.
Therefore, caðqÞ

j
has good representability in the subset UaðqÞ

j
and

can be seen as a center point of UaðqÞ
j

which is similar to the mean
of numerical data. For each subset, we use a center point (mode) of
the subset as a potential exemplar to represent the subset.
According to Definition 2, we know that the representative point
of a subset UaðqÞ

j
is not unique. Therefore, while more than one rep-

resentative point exists in the subset, we select one from them to
be as the representative point at random or select one which is dif-
ferent from the representative points of other subsets.

Definition 3. Let IS = (U,A,V, f) be a categorical data table. The
potential exemplars set S is defined as

S ¼ fcaðqÞ
j
jcaðqÞ

j
–caðpÞ

i
;1 6 p 6 ni;1 6 q 6 nj;1 6 i < j 6 mg:

According to the definition, we know that jSj 6 jVj, where
jV j ¼

Pm
i¼1nj. When the data set is very large, jVj � jUj.

Let us consider the following example to demonstrate the pro-
cess of constructing a set of potential exemplars from a given data
set.

Example 1. Given a categorical data table IS = (U,A,V, f) shown in
Table 1, where U = {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,
x14,x15}, A = {a1,a2,a3,a4}, Va1 ¼ fB;C;Dg, Va2 ¼ fE; F;Gg,
Va3 ¼ fH; I; J;Kg and Va4 ¼ fL;M;Ng. There are three classes with
their modes and their five objects.

According to the attribute a1, U is partitioned into three subsets:

UB ¼ fx2; x3; x4; x5g; UC ¼ fx6; x7; x8; x10; x12g; UD

¼ fx1; x9; x11; x13; x14; x15g;
Table 1
An example data set.

Objectsnattributes a1 a2 a3 a4

x1 D E H L
x2 B E I L
x3 B G H N
x4 B E H L
x5 B E K L

The mode z1 of Class 1 B E H L
x6 C F J M
x7 C F I N
x8 C G I M
x9 D E H M
x10 C E I M

The mode z2 of Class 2 C F I M
x11 D G I N
x12 C G H N
x13 D G J N
x14 D E J N
x15 D G J M

The mode z3 of Class 3 D G J N
According to the attribute a2, U is partitioned into three subsets:

UE ¼ fx1; x2; x4; x5; x10; x14g; UF ¼ fx6; x7; x9g;
UG ¼ fx3; x8; x11; x12; x13; x15g;

According to the attribute a3, U is partitioned into four subsets:

UH ¼ fx1; x3; x4; x9; x15g; UI ¼ fx2; x7; x8; x10; x11g;
UJ ¼ fx6; x13; x14; x15g; UK ¼ fx5g;

According to the attribute a4, U is partitioned into three subsets:

UL ¼ fx1; x2; x3; x5g; UM ¼ fx6; x8; x9; x10; x15g;
UN ¼ fx4; x7; x11; x12; x13; x14g;

By computing, the potential exemplars set S is shown in Table 2.
Next, we will integrate density measure and distance measure

to select k exemplars as the initial cluster centers from the poten-
tial exemplars set S. That implies a hypothesis: k 6 jSjwhich is con-
sistent with real data sets. In real large data sets, k 6 jSj � jUj. In
the selecting process, we use the simple dissimilarity measure
(see Section 2) as distance measure to reflect the difference be-
tween any two exemplars. How to measure the density of an
exemplar? Intuitively, for any two exemplars ci, cj 2 S(1 6 i <
j 6 jSj), if ci is thought to have higher density than cj, the number
of data points around ci should be more than cj. Therefore, for
any exemplar in S, we will use the number of data points that is
the nearest to the exemplar to measure its density. The definition
is given as follows:

Definition 4. Let IS = (U,A,V, f) be a categorical data table. The
density of a potential exemplar c 2 S is defined as

DensðcÞ ¼ jfxi 2 Ujdðxi; cÞ ¼min
c02S

dðxi; c0Þ;1 6 i 6 ngj:

Obviously, we have 0 6 Dens(c) 6 n. In the potential exemplars
set, the more Dens(c) is, if can be expressed in a graph, the more
data points around the c is, the more possible c is to be as a cluster
center. So we select the potential exemplar with the maximum
density as the first initial cluster center. For selection of the rest
of initial cluster centers, we consider not only the density of the
potential exemplars, but also the distance between the potential
exemplars. If the distance between the potential exemplars is the
only considered factor, it is possible that outliers are taken as clus-
ter centers. Similarly, if only the density of the potential exemplars
is taken into account, it is utmost possible that many cluster cen-
ters locate in the surrounding of one center. They are unreliable
initial points which could lead to bad partitions after the clustering
process. To avoid these potential problems, we integrate distance
with density together to measure the possibility of each potential
exemplar to be an initial cluster center.

Generally, methods to integrate the two factors can be classified
into two categories. The one is a linear combination defined as the
sum of distance and density with appropriate weighting factor, i.e.,
gDens + (1 � g)d, where g 2 [0,1] is a weighting value. The other is
a nonlinear combination characterized by the multiplication of
Table 2
The potential exemplars set in Example 1.

Exemplarsnattributes a1 a2 a3 a4

c1 B E H L
c2 C F I M
c3 D G J N
c4 C F I M
c5 D G H N
c6 C E I M
c7 B E K L
c8 D G J M
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distance and density, i.e., Densg � d1�g. Here, we use the first meth-
od to select initial cluster centers. There are three reasons: (1) the
second method can become the first method by logarithmic trans-
formation, i.e., ln(Densg � d1�g) = glnDens + (1 � g)lnd. This means
that the two methods have mathematical properties in common.
(2) The second method is too sensitive to the changes in the values
of the two factors. For example, in the first method, if Dens be-
comes Dens + MDens, Dens + d increases by MDens (to simplify the
analysis, we omit the weight g in the example). However, in the
second method, if Dens becomes Dens + MDens, Dens � d increases
by MDens � d. (3) In experimental studies, we also found that the
first method is more appropriate to select initial cluster centers
than the second method. Therefore, we will define the possibility
of a potential exemplar from S to be the l + 1th cluster center
(0 6 l < jSj) based on the summation type.

Definition 5. Let IS = (U,A,V, f) be a categorical data table, and
Zl = {z1,z2, . . . ,zl} be a set of the first l initial cluster centers
obtained, where 0 < l < k. For any c 2 S, the possibility of the
potential exemplar c to be the l + 1th cluster center zl+1 is defined
as
Possibilitylþ1ðcÞ ¼
g DensðcÞ

n þ ð1� gÞminl
i¼1dðc;ziÞ

m ; min
l

i¼1
dðc; ziÞ– 0;

0; min
l

i¼1
dðc; ziÞ ¼ 0;

8>><
>>:

where g 2 [0,1] is a weight value.
According to Definition 5, we have 0 6 Possibilityl+1(c) 6 1. The

weight g is to maintain a balance between the effect of density
and that of distance. We set g = 1/2 which means that the effect
of density is seen as important as that of distance on selecting ini-
tial cluster centers.

A new cluster centers initialization method is described as
follows:

Input: IS = (U,A,V, f) and k, where k is the number of clusters
desired.

Output: Centers.
Step 1: Centers = ;;
Step 2: Construct the potential exemplars set S;
Step 3: For each c 2 S, calculate the Dens(c) and choose the dens-

est potential exemplar c as the first cluster center. Set
Centers = Centers

S
{c} and i = 1;

Step 4: If i < k, then let i = i + 1 and choose the most probable
exemplar c from S as the i + 1 cluster center, Centers = Cen-
ters

S
{c} where c satisfies
PossibilityiðcÞ ¼max
c02S

Possibilityiðc0Þ;

and goto Step 4, otherwise goto Step 5;

Step 5: End.

Constructing the potential exemplars set S will take O(nmjVj),
where jV j ¼

Pm
i¼1nj. Computing the density value for each potential

exemplar in S will take O(nmjVj). For selection of the first cluster
center, the computation is O(jVj), and for the rest of initial cluster
centers, the computation is O(mk2jVj). Therefore, the computa-
tional cost of the proposed method is O(2nmjVj + jVj + mk2jVj)
which is linear with respect to the number of data points. When
the number of data points is large, m, k, jVj � n. Therefore, the
method is scalable to large data sets.

Let us continue Example 1 to show the process of selecting ini-
tial cluster centers from the constructed set of potential exemplars
when the number of clusters is known, i.e., k = 3.
Example 2 (Continued from Example 1). By Definition 4, the
density of each potential exemplar in S is computed as

Densðc1Þ ¼ jfx1; x2; x3; x4gj ¼ 4;

Densðc2Þ ¼ jfx6; x7; x8gj ¼ 3;

Densðc3Þ ¼ jfx11; x12; x14gj ¼ 3;

Densðc4Þ ¼ jfx6; x9gj ¼ 2;

Densðc5Þ ¼ jfx11; x12gj ¼ 2;

Densðc6Þ ¼ jfx8; x10gj ¼ 2;

Densðc7Þ ¼ jfx15gj ¼ 1;

Densðc8Þ ¼ jfx2; x5gj ¼ 2:

We select the densest potential exemplar c1 as the first cluster cen-
ter z1.

Furthermore, we compute the possibility of each potential
exemplar c 2 S to be the second cluster center z2 as follows

Possibility2ðc1Þ ¼ 0;

Possibility2ðc2Þ ¼ ð3=15þ 4=4Þ=2 ¼ 0:6000;

Possibility2ðc3Þ ¼ ð3=15þ 4=4Þ=2 ¼ 0:6000;

Possibility2ðc4Þ ¼ ð2=15þ 3=4Þ=2 � 0:4417;

Possibility2ðc5Þ ¼ ð2=15þ 3=4Þ=2 � 0:4417;

Possibility2ðc6Þ ¼ ð2=15þ 3=4Þ=2 � 0:4417;

Possibility2ðc7Þ ¼ ð1=15þ 4=4Þ=2 � 0:5333;

Possibility2ðc8Þ ¼ ð2=15þ 1=4Þ=2 � 0:1917:

Since the maximum of Possibility2(�) is not unique, we can select any
of c2 and c3 as the second cluster center z2. Here, we select the po-
tential exemplar c2 of first achieving the maximum.

Finally, we compute the possibility of each potential exemplar
c 2 S to be the third cluster center z3 as follows

Possibility3ðc1Þ ¼ 0;

Possibility3ðc2Þ ¼ 0;

Possibility3ðc3Þ ¼ ð3=15þ 4=4Þ=2 ¼ 0:6000;

Possibility3ðc4Þ ¼ ð2=15þ 1=4Þ=2 � 0:1917;

Possibility3ðc5Þ ¼ ð2=15þ 3=4Þ=2 � 0:4417;

Possibility3ðc6Þ ¼ ð2=15þ 1=4Þ=2 � 0:1917;

Possibility3ðc7Þ ¼ ð1=15þ 3=4Þ=2 � 0:4083;

Possibility3ðc8Þ ¼ ð2=15þ 1=4Þ=2 � 0:1917:

We select the potential exemplar c3 with the maximum of Possibil-
ity3(�) as the third cluster center z3. We see that the first three initial
cluster centers are consistent with the true modes of these classes.
4. Finding the number of clusters

While choosing initial cluster centers, we choose a potential
exemplar which is with high density and far from other initial clus-
ter centers to be as an initial cluster center. Suppose the best clus-
tering structure has k clusters. Intuitively, when we choose the
k + 1th potential exemplar as the k + 1th cluster center, the poten-
tial exemplar will be representative of the same cluster as one of
the first k initial cluster centers. This means that maxc2SPossibil-
ityk+1(c) is far smaller than maxc2SPossibilityl(c), (1 6 l 6 k). The val-
ues from k to k + 1 have dramatic change. Moreover, the values
from k + 1 to k + n(k + n 6 jSj) should be much less distinctive, be-
cause each of these chosen k + 2,k + 3, . . . ,k + n potential exemplars
also will be representative of the same cluster as one of the first k
initial cluster centers. This heuristic tells us that the value of
maxc2SPossibilityl(c), (1 6 l 6 jSj) could reflect the possibility of
the lth cluster existing. The higher the value is, the more probably
the lth cluster exist. We will explore the changes of the values from
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k to k + 1 to find the candidates for number of clusters. Next, we
will define the possibility function of a cluster existing.

Definition 6. Let IS = (U,A,V, f) be a categorical data table and S be
the potential exemplars set. The possibility of the lth cluster
existing is defined as

PðlÞ ¼
max

c2S
PossibilitylðcÞ; l – 1;

Pð2Þ; l ¼ 1:

(

Since the number of clusters is usually not less than 2, the
function values from k = 1 to 2 should not have dramatic change,
otherwise it is meaningless. Therefore, we set P(1) = P(2) in the def-
inition of the function P.
Property 2. Let IS = (U,A,V, f) be a categorical data table.
P(l) P P(l + 1), 0 < l < jSj, where jSj is the number of the potential
exemplars set S.

We use a curve to describe the function P with different k (Fig. 1).
When the curve from k to k + 1 is dramatic and from k + 1 goes into
a plateau, we consider k as a candidate for the number of clusters.
This means that k + 1 should be a knee point on the function P.

In order to easily find the number of clusters, we define a func-
tion which reflects difference between the neighboring values on
the function P.

Definition 7. Let IS = (U,A,V, f) be a categorical data table. The
difference between P(l) and P(l + 1) is defined as

CðlÞ ¼ PðlÞ � Pðlþ 1Þ; 1 6 l < jSj:
When P(k) has dramatic difference with P(k + 1), C(k) is very

large. When the function P from k + 1 goes into a plateau,
C(k + 1),C(k + 2), . . . ,C(k + n) are very small. Therefore, C(k) is an
obvious peak on the function C (Fig. 2).

We need to input a value k0 and analyze the function P and C
with different k in the range of 1 6 k 6 k0. k0 is a estimated number
larger than the possible number of clusters in the given data set. In
real world, k0 is estimated easier than the real number of clusters k.
However, when the value of k0 cannot be determined, we set
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k0 = jSj. In Section 3, we have known that obtaining the first k0 initial
cluster centers will take Oð2nmjV j þ jV j þmk02jV jÞ. After the initial
cluster centers are obtained, the computation complexity of find-
ing the number of clusters is O(k0)(k0 6 jVj � n).

Let us consider the examples in Section 3 again to show the pro-
cess of determining the number of clusters that is assumed to be
unknown.

Example 3 (Continued from Example 2). We set k0 = 8 and compute
the possibility of the lth cluster existing for 1 6 l 6 8 by Definition
6 as follows

Pð1Þ ¼ Pð2Þ ¼max
c2S

Possibility2ðcÞ ¼ 0:6000;

Pð3Þ ¼max
c2S

Possibility3ðcÞ ¼ 0:6000;

Pð4Þ ¼max
c2S

Possibility4ðcÞ � 0:1917;

Pð5Þ ¼max
c2S

Possibility5ðcÞ � 0:1917;

Pð6Þ ¼max
c2S

Possibility6ðcÞ � 0:1917;

Pð7Þ ¼max
c2S

Possibility7ðcÞ � 0:1917;

Pð8Þ ¼max
c2S

Possibility8ðcÞ � 0:1583:

Fig. 3 shows P(4) is a knee point on the function P. This indicates
that k = 3 may be the true number of clusters of the given data
set in Table 1.

Furthermore, we compute the difference between P(l) and
P(l + 1) by Definition 7 for 1 6 l 6 7 as follows

Cð1Þ ¼ Pð1Þ � Pð2Þ ¼ 0;

Cð2Þ ¼ Pð2Þ � Pð3Þ ¼ 0;

Cð3Þ ¼ Pð3Þ � Pð4Þ � 0:4083;

Cð4Þ ¼ Pð4Þ � Pð5Þ ¼ 0;

Cð5Þ ¼ Pð5Þ � Pð6Þ ¼ 0;

Cð6Þ ¼ Pð6Þ � Pð7Þ ¼ 0;

Cð7Þ ¼ Pð7Þ � Pð8Þ � 0:0333:

Fig. 4 shows C(3) is an obvious peak on the function C. Therefore, we
determine that the number of clusters is 3 which is consistent with
the true number of clusters of the given data set.
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In the above example, we see only one obvious peak on the
function C. However, for real data sets, there may be more than
one obvious peak on the function C. In this case, we cannot decide
the exact number of clusters. Therefore, we consider all the obvi-
ous peaks on the functions C as the candidates for the number of
clusters, which fit reality. For example, a data set has three big
clusters and four small clusters which are very close to each other.
When the function P and C are used to analyze the number of clus-
ters, there may be two knee points, P(4) and P(7) on the function P
(showed in Fig. 5) and two obvious peaks, C(4) and C(7) on the
function C (showed in Fig. 6). Whether the number of clusters k
is 4 or 7 depends on if the four small clusters is viewed as one or
four clusters, which implies that it is possible that the number of
clusters is not unique. The proposed method is implemented in
the framework shown in Fig. 7.
5. Experimental analysis

In this section, in order to evaluate the performance and scala-
bility of the proposed initialization method, several standard data
sets are downloaded from the UCI Machine Learning Repository
[43].

The performance analysis of the proposed method consists of
two parts. The one is to evaluate the effectiveness of the initial
cluster centers obtained by the proposed method. Generally speak-
ing, there are two types of clustering validation techniques [1,38–
42], which are based on external and internal criteria, respectively.
The focus of this paper is on the evaluation of external clustering
validation measures. In this part, we first introduce three com-
monly used external evaluation measures [42] which are used to
compare a clustering result with the true class distribution on a gi-
ven data set. As external criteria, these measures use external
information-class labels and the number of clusters. If the cluster
result is close to the true class distribution, then the values of these
evaluation measures are high. To ensure that the comparisons are
in a uniform environmental condition, we set that the number of
clusters is equal to the true number of clusters for each of the given
data sets. Furthermore, we use these evaluation measures to eval-
uate and compare the clustering results of k-modes-type algo-
rithms based on different initialization cluster centers methods
including random initialization method, Cao’s method [26], Wu’s
method [25] and the proposed method. For the random initializa-
tion method, we randomly select 100 initial cluster centers to carry
out 100 runs of the k-modes algorithm and the fuzzy k-modes
algorithm on each of the given data sets and compute the average
values of AC, PR, RE for 100 clustering results. For the fuzzy k-
modes algorithm, we specified a = 1.1 that is suggested in [14]. Ta-
bles 3–10 show the summary results for the four initialization
methods on the given data sets. The other is to evaluate the effec-
tiveness of candidates for the number of clusters determined by
the proposed method. In this part, we suppose that the number
of clusters is unknown in each of the given data sets and use the
proposed method in Section 4 to find the candidates for the num-
ber of clusters. We compare the found candidates with the true
number of clusters. The closer the found candidates are to the true
number of clusters, the more effective the proposed method is.
Figs. 8–11 show the results of applying the proposed method to
find candidates for the number of clusters on each of the given data
sets from UCI. In the scalability analysis, we test the proposed
method on the connect-4 data set from UCI [43].

5.1. Performance analysis

To evaluate the performance of clustering algorithms, three
evaluation measures are introduced in [42]. If data set contains k
classes for a given clustering, let ai denote the number of data
points that are correctly assigned to class Ci, let bi denote the num-
ber of data points that are incorrectly assigned to the class Ci, and
let ci denote the number of data points that are incorrectly rejected
from the class Ci. The accuracy, precision and recall are defined as
follows

AC ¼
Pk

i¼1ai

n
; PR ¼

Pk
i¼1

ai
aiþbi

� 	
k

; RE ¼
Pk

i¼1
ai

aiþci

� 	
k

;

respectively.
We present comparative results of clustering on soybean data,

lung cancer data, zoo data and mushroom data, respectively.

5.1.1. Soybean data
The soybean data set has 47 records, each of which is described

by 35 attributes. Each record is labeled as one of the four diseases:
Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and
Phytophthora Rot. Except for Phytophthora Rot which has 17 re-
cords, all other diseases have 10 records each. We only selected
21 attributes in this experiment, since the other attributes only
have one category. The clustering results of the k-modes-type algo-
rithms with different initial cluster centers on the soybean data are
summarized in Tables 3 and 4. The candidate for the number of
clusters is generated by the proposed method on the soybean data
(Fig. 8 clearly indicates that 4 is the only significant k).

5.1.2. Lung cancer data
Lung cancer data set contains 32 instances described by 56 cat-

egorical attributes. Data set has three classes. The clustering results
of the k-modes-type algorithms with different initial cluster cen-
ters on the lung cancer data are summarized in Tables 5 and 6.
The candidate for the number of clusters is generated by the pro-
posed method on the lung cancer data (Fig. 9 clearly indicates that
3 is the only significant k).

5.1.3. Zoo data
Zoo data set contains 101 elements described by 17 Boolean-

valued attributes. It has seven classes. The clustering results of



Fig. 7. The flowchart of the overall implementation of the proposed method.

Table 3
The summary clustering results of the k-modes algorithm on the soybean data.

Random Wu’s method Cao’s method Proposed method

AC 0.8553 1.0000 1.0000 1.0000
PR 0.9020 1.0000 1.0000 1.0000
RE 0.8407 1.0000 1.0000 1.0000

Table 4
The summary clustering results of the fuzzy k-modes algorithm on the soybean data.

Random Wu’s method Cao’s method Proposed method

AC 0.8336 1.0000 1.0000 1.0000
PR 0.8840 1.0000 1.0000 1.0000
RE 0.8176 1.0000 1.0000 1.0000
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the k-modes-type algorithms with different initial cluster centers
on the zoo data are summarized in Tables 7 and 8. Due to the fact
that the zoo data has three big clusters and four small clusters
which are very close to each other, we can see that there are more
than one obvious peak in Fig. 10. In Fig. 10, although C(3) is the
maximum value in the function C, k = 3 is not seen as a candidate
for the number of clusters. Because C(4) is also a very high value.
This indicates that when the change level from P(3) to P(4) is dra-
matic, the curve of the function P from k = 4 does not go into a pla-
teau. Therefore, the candidates for the number of clusters for the
zoo data should be k = 4 and 7.



Table 5
The summary clustering results of the k-modes algorithm on the lung cancer data.

Random Wu’s method Cao’s method Proposed method

AC 0.5313 0.5000 0.5000 0.6250
PR 0.5880 0.5584 0.5584 0.7930
RE 0.5374 0.5014 0.5014 0.5744

Table 6
The summary clustering results of the fuzzy k-modes algorithm on the lung cancer
data.

Random Wu’s method Cao’s method Proposed method

AC 0.5497 0.5000 0.5000 0.6250
PR 0.5965 0.4880 0.4880 0.6852
RE 0.5626 0.5630 0.5630 0.5667

Table 7
The summary clustering results of the k-modes algorithm on the zoo data.

Random Wu’s method Cao’s method Proposed method

AC 0.8324 0.8812 0.8812 0.9505
PR 0.8433 0.8702 0.8702 0.9378
RE 0.6576 0.6714 0.6714 0.8571

Table 8
The summary clustering results of the fuzzy k-modes algorithm on the zoo data.

Random Wu’s method Cao’s method Proposed method

AC 0.8375 0.8812 0.9208 0.9505
PR 0.8442 0.8717 0.8819 0.9116
RE 0.6471 0.6714 0.7857 0.8571

Table 9
The summary clustering results of the k-modes algorithm on the mushroom data.

Random Wu’s method Cao’s method Proposed method

AC 0.7176 0.8754 0.8754 0.8892
PR 0.7453 0.9019 0.9019 0.9042
RE 0.7132 0.8709 0.8709 0.8858

Table 10
The summary clustering results of the fuzzy k-modes algorithm on the mushroom
data.

Random Wu’s method Cao’s method Proposed method

AC 0.7001 0.8754 0.8754 0.8892
PR 0.7166 0.9013 0.9013 0.9042
RE 0.6947 0.8709 0.8709 0.8858

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

The number of clusters k

Th
e 

fu
nc

tio
n 

C
(k

)

k=4

Fig. 8. The candidates for the number of clusters on the soybean data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.05

0.1

0.15

0.2

The number of clusters k
Th

e 
fu

nc
tio

n 
C

(x
) k=3

Fig. 9. The candidates for the number of clusters on the lung cancer data.
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Fig. 11. The candidates for the number of clusters on the mushroom data.
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5.1.4. Mushroom data
Mushroom data set consists of 8124 data objects and 22 cate-

gorical attributes. Each object belongs to one of two classes, edible
(4208 objects) and poisonous (3916 objects). The clustering results
of the k-modes-type algorithms with different initial cluster cen-
ters on the mushroom data are summarized in Tables 9 and 10.
The candidate for the number of clusters is generated by the pro-
posed method on the mushroom data (Fig. 11 clearly indicates that
2 is the only significant k).

According to Tables 3–10, the performance of the k-modes-type
algorithms based on the proposed cluster centers initialization
method is better than other methods for AC, PR and RE. According
to Figs. 8, 9 and 11, we see that the found candidates for the num-
bers of clusters are consistent with the real numbers of clusters on
these data sets from UCI.
5.2. Scalability analysis

To test the scalability of the new method, we choose the con-
nect-4 data set from UCI. The data set contains 67,557 data points
and 42 categorical attributes. It has three class: win (44,473), loss
(16,635) and draw (6449). The computational results are per-
formed by using a machine with an Intel Q9400 and 2G RAM.
The computational times of the proposed method are plotted with
respect to the number of data points, attributes and clusters, while
the other corresponding parameters are fixed.
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Fig. 12(a) shows the computational times against the number of
data points, while the number of attributes is 42 and the number of
clusters is 3. Fig. 12(b) shows the computational times against the
number of attributes, while the numbers of clusters is 3 and the
number of data points is 30,000. Fig. 12(c) shows the computa-
tional times against the number of clusters, while the number of
attributes is 42 and the number of data points is 30,000. According
to the figures, we see that the proposed method is scalable, i.e., it
can efficiently deal with large categorical data.

6. Conclusions

Categorical data are ubiquitous in real-world databases. The
development of the k-modes-type algorithms was motivated to
solve this problem. However, the performance of these algorithms
strongly depends on two parameters, an initial set of cluster cen-
ters and the number of clusters. When the prior information about
setting the two parameters for a data set is not available, it is dif-
ficult for users to implement these algorithms to effectively cluster
the data set. In this paper, a new initialization method for categor-
ical data clustering has been proposed. The proposed method can
simultaneously obtain the good initial cluster centers and the can-
didates for the number of clusters. Furthermore, the time complex-
ity of the proposed method has been analyzed. We tested the
proposed method on real world data sets from UCI Machine Learn-
ing Repository. The experimental results have illustrated that the
proposed method is effective and efficient for initializing categori-
cal data.
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