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A B S T R A C T

Self-supervised learning methods have demonstrated promising benefits to feature representation learning for
image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while
also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation
for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks
in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of
self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes
for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and
optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and
hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both
the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture
global context information for better feature representations. In addition, the depth estimations of hazy images
are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth
estimation not only enhances the model generalization ability across different dehazing datasets, leading to
state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy
images. Our code is available at https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git.
1. Introduction

Image dehazing [1–5] plays a crucial role in enhancing visual qual-
ity and facilitating high-level vision tasks in hazy weather conditions.
Existing image dehazing methods [6–8] have enjoyed the merits of
supervised learning [9], which relies on the laborious work of collecting
large sets of hazy-clean image pairs. Besides, such supervised methods
can easily overfit to the training data, which sacrifices the model
generalization ability. As a result, these methods cannot be well applied
to the real-world scenarios, and the model performance will degrade
heavily when applying to other datasets.

Therefore, to improve the generalization ability of the learned
model remains a highly challenging issue to be explored. Recently, self-
supervised learning methods have exhibited impressive performances
in feature representation learning, occasionally even outperforming
their supervised learning counterparts in a couple of high-level tasks.
Benefiting from better feature representations, self-supervised tech-
niques have also been applied in low-level vision tasks including image
dehazing. Li et al. [1] propose to predict the transmission map, atmo-
spheric light and dehazed images without ground-truth, from which
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the hazy inputs are reconstructed in a self-supervised manner. Al-
though this layer disentanglement mechanism achieves much better
performances compared with other unsupervised learning-based image
dehazing methods, some assumptions or priors to construct the loss
functions may be violated in real application. Liang et al. [2] generate
hazy images from collected clear images with depth estimations. Self-
supervised learning was then employed to restore the clear images and
further adapt restorations from the real hazy images. It does not de-
pend on the expensive collection of hazy-clean image pairs and profits
from extra clear images to improve the performance. It demonstrates
strong generalization abilities when applied to different test data. The
rapid progress in self-supervised learning gives promising directions for
further developments in image dehazing areas.

On the other hand, the interactions between the image depth and
dehazing tasks have attracted increasing attention. In hazy weather
conditions, visibility decreases as distance increases. As Fig. 1, the
depth information exhibits a strong correlation with the hazy den-
sities, which can be explained in the atmospheric scattering model.
Recently, Guo et al. [10] apply Dark Channel Prior [11] to model the
depth information and exploit 3D position embedding for the proposed
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Fig. 1. Visual representations of a hazy image, the corresponding depth map, our preliminary fusion results, one typical channel of attention maps by self-attention mechanism
without depth guidance, and by our hybrid attention mechanism. Note that our preliminary fusion brings more details compared with depth map and our hybrid attention map
is highly correlated to the semantic structures and hazy densities. Redder colors in attention maps mean larger attention values.
dehazing Transformer. Yang et al. [12] employ the scattering coeffi-
cients and depth estimations to formulate dehazing and rehazing cycles
with unpaired data to improve the generalization ability of the model.
The depth information proves to be important heuristic information
for the image dehazing task. How to explore depth guidance for image
dehazing is an interesting and promising issue for this community.

In this paper, we exploit depth estimations for hazy images to
guide image dehazing tasks in a self-supervised manner. Following [2],
we generate hazy images from clear images with the aid of depth
estimation from the pre-trained depth estimation models. In addi-
tion, self-supervision is adopted for the depth predictions from the
generated hazy images. We design depth-guided hybrid attention Trans-
former blocks to adaptively leverage both the cross-attention and self-
attention. It enjoys the merits of cross-attention which enables cross-
modality fusion of depth and hazy images to effectively model hazy
densities, and takes advantages of self-attention which could model
long-range correlations and capture global context information for
better feature representations. As Fig. 1, the hybrid attention map
has successfully captured the variations of hazy density and semantic
information which are crucial for image dehazing.

The depth provides additional positional information in the 3D
world. Furthermore, the depth estimations for hazy images are explored
for the detection tasks on hazy images. The state-of-the-art dehazing
performances are obtained, and extensive experimental results demon-
strate that the depth estimations not only improve the generalization
ability of the model across different dehazing datasets, but also benefit
the downstream detection tasks on the hazy images. In summary, we
make the following main contributions,

• A self-supervised image dehazing framework with self-supervised
depth guidance has been built, which sequentially generates hazy
inputs, estimates the depth for hazy images with the aid of the
depth estimations from clear images, and exploits the interactions
between depth and hazes for image dehazing.

• We design depth-guided hybrid attention Transformer blocks to
exploit the correlations between the image depth and hazy den-
sities in the images, which adaptively leverage both the cross-
attention and self-attention to effectively model hazy densities via
cross-modality fusion and capture global context information for
better feature representations.

• The state-of-the-art dehazing performances are obtained com-
pared with the unsupervised or self-supervised dehazing methods.
The self-supervised depth estimations not only improve the model
generalization ability across different dehazing datasets, but also
benefit the downstream detection tasks on hazy images.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the existing related literature of Transformer-based dehazing
methods, self-supervised learning for image dehazing and object de-
tection methods on hazy images. Section 3 describes our approach in
detail, covering the hazy image generation, the architectures for the
depth-guided image dehazing, and the depth guidance for detection
on hazy images. Section 4 reports the implementation details, the
performance comparisons of dehazing and detection tasks for hazy
images, as well as the ablation study. Finally, in Section 5, we conclude
this paper.
2 
2. Related work

Image dehazing tasks have been widely concerned for decades. The
existing image dehazing methods can be broadly categorized into tra-
ditional handcrafted image dehazing methods [11] and learning-based
image dehazing methods [2,13]. Among the learning-based image de-
hazing methods, transform-based and self-supervised learning-based
dehazing methods are reviewed to better understand our approach.

2.1. Transformer-based dehazing methods

Recently, Vision Transformers have been successfully applied in lots
of computer vision tasks [14–16] which enjoy the merits of modeling
long-range correlations and paralleling the computations for attention.
For dehazing tasks, vision Transformers are also explored with different
architectural designs [10,16]. Valanarasu et al. [16] develop learnable
weather query embedding for decoders of Transformers to enable en-
hancement for multiple kinds of distortions. Guo et al. [10] attempt
to combine CNN and Transformers for dehazing which modulates the
CNN features via global context information. Cross-attention mech-
anisms have demonstrated great potential for cross-modality fusion
problems [15,17]. Wei et al. [17] design the Multi-Modality Cross
Attention Network for matching image and sentence, which exploits the
inter-modality relationship between the sentence words and image re-
gions. Wang et al. [15] apply cross-attentions to fulfill the multi-modal
token fusion method with Transformers and obtains the state-of-the-
art performances for several fusion tasks for different modalities. To
better fuse the information from depth and hazy images, cross-attention
mechanisms implemented by Transformers are explored in this paper.

The performances of supervised Transformer-based dehazing meth-
ods are limited by the size of dataset as the hazy-clean image pairs
are inherent unavailable or too expensive to collect. The performances
deteriorate when the supervised models are applied to other datasets.
Improving the generalization ability of models is a crucial issue for
dehazing methods.

2.2. Self-supervised learning for image dehazing

To improve the generalization ability of model and the feature
representation abilities, unsupervised or self-supervised learning is de-
veloped to train models without extra labels. Depth-Aware Unpaired
Video Dehazing [18] employs depth to simulate ego-motion and models
haze variations with unpair data. Visual-quality-driven unsupervised
image dehazing [19] develops interactive fusion modules and iterative
optimization modules to refine dehazed results. Generative Adversarial
and Self-Supervised Dehazing Network [20] restores hazy image in a
self-supervised learning and adversarial learning manner.

Self-supervised learning could enable large-scale training from the
input itself by pretext learning or contrastive learning, obtaining more
discriminative feature representations which could further benefit the
downstream tasks. There are some self-supervised learning based works
[2,21,22] which similarly integrate pre-trained deep models to extract
features or obtain priors without data annotations. Liang et al. [2]
perform self-supervised learning and adaptation to restore clear images
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Fig. 2. The framework of the proposed depth-guided self-supervised dehazing method. It consists of the self-supervised hazy image generation module, the self-supervised depth
estimation block, the depth-guided hybrid attention Transformer blocks, the self-attention Transformer blocks, and the image restoration module.
with aid of the pre-trained depth estimation model. In this paper,
we further develop depth estimation model for hazy images via self-
supervised learning and the estimated depth information would benefit
the following dehazing and the detection tasks for hazy images.

Although these pre-trained deep models are obtained with the aid
of human information, this human information does not overlap with
the current tasks. Utilizing pre-trained deep models in our approach
serves to extract superior features than hand-designed features or intro-
duces effective priors, thereby circumventing the typically arduous and
labor-intensive manual annotations or collection for the current task.

3. Our approach

As shown in Fig. 2, we propose a self-supervised image dehazing
framework to sequentially generate hazy inputs, estimate the depth
for hazy images in a self-supervised dual-network manner from clear
images, and exploit the interactions between depth and hazes for image
dehazing. To demonstrate the benefits of depth estimations, depth
estimations and dehazed results are further explored for the detection
task on hazy images in a manner of spatial attention. Our approach
integrates hazy image generation and depth-guided image dehazing
process into an end-to-end model. Only depth-guided image dehazing
process is applied in the inference phase. The details are depicted in
the following section.

3.1. Hazy image generation

We generate hazy images from clear images as [2], which avoids
expensive or unprocurable collections of hazy-clean image pairs. Ac-
cording to the atmospheric scattering model, hazy images can be
generated with global atmospheric light 𝐴 and the transmission map
𝑡(𝑥) as illustrated in Eq. (1), which is related to the depth information.

𝐼(𝑥) = 𝐽 (𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)), (1)

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥). (2)

The transmission map 𝑡(𝑥) attenuates exponentially with the scene
depth 𝑑(𝑥), where 𝛽 is the scattering coefficient of the atmosphere and
𝑥 indicates the position in the scene. This formulation aligns with the
observed phenomenon where hazy density increases with distance from
the observer.

Benefiting from the significant process in the area of single image
depth estimation, a pre-trained single depth estimation model [23]
or [24] has been explored to provide depth information from clear
images. Global atmospheric light A and scattering coefficient 𝛽 are
randomly produced for hazy image generations using the depth esti-
mation from clear images. The pre-trained depth estimation model for
hazy image generation is frozen during the training. The hazy image
generation is quite efficient and is abandoned during inference.
3 
3.2. The architectures for the depth-guided image dehazing

The architecture for image dehazing consists of the self-supervised
depth estimation block, the depth-guided hybrid attention Transformer
blocks, the self-attention Transformer blocks, and the restoration block.
The correlations between depth and hazy images are exploited in
the proposed depth-guided hybrid attention Transformer blocks which
adaptively integrate cross-attentions and self-attentions to effectively
model hazy densities and capture global context information for better
feature representations.

For the generated hazy images, self-supervised depth estimations
are performed firstly using the same deep architectures as the depth
estimation model for clear images such as [23] or [24]. There is a
lock in Fig. 2 to indicate that the pre-trained model is fixed. With
the supervision of depth estimations from clear images as illustrated
in Eq. (3), the estimations can be successfully adapted to hazy images
during the learning of dehazing process. 𝐿1 loss is applied in the Eq. (3)
as follows,

𝐿𝑑𝑒𝑝𝑡ℎ(𝑑(𝑥), 𝑑(𝑥)) = |𝑑(𝑥) − 𝑑(𝑥)|, (3)

where 𝑑(𝑥) and 𝑑(𝑥) are the depth estimations of hazy-free and hazy
image pairs by depth estimation models pre-trained and trained by
self-supervised learning respectively.

Afterwards, as shown in Figs. 2 and 3, the estimated depth is
then fed into the depth-guided hybrid attention Transformer blocks to
explore depth guidance for dehazing process. The depth-guided hybrid
attention Transformer blocks firstly fuse the depth and hazy images
with an adaptive mixup operation [25] as Eq. (4),

𝑀𝑖𝑥(𝑑(𝑥), 𝐼(𝑥)) = 𝜎(𝜃) ∗ 𝑑(𝑥) + (1 − 𝜎(𝜃)) ∗ 𝐼(𝑥), (4)

where the learnable parameter 𝜃 controls the preliminary fusions of
depth estimations 𝑑(𝑥) of hazy images and the hazy image 𝐼(𝑥).

Then the fused depth-hazy modality is fed into the hybrid attention
Transformer blocks to acquire the correlations between depth and hazy
image. In specific, the attentions are calculated as:

𝐴𝑡𝑡𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑛
)𝑉 , (5)

where 𝑄, 𝐾, and 𝑉 are the query, keys, and values as in the original
self-attention calculations, and 𝑛 is the dimensionality of heads. In this
hybrid attention calculation, 𝑄 is the head for the preliminarily fused
depth-hazy modality, 𝐾 and 𝑉 are the heads for hazy images. As patch
embedding applies convolution and normalization, the patch embed-
ding for the preliminary fusion results is simplified to be separable.
Integrating Eq. (4) into Eq. (5), it arrives,

𝐴𝑡𝑡𝑛(𝑄,𝐾, 𝑉 ) ≈𝜎(𝜃) ∗ 𝐴𝑡𝑡𝑛(𝑄𝑑 , 𝐾, 𝑉 )
(6)
+ (1 − 𝜎(𝜃)) ∗ 𝐴𝑡𝑡𝑛(𝑄𝐼 , 𝐾, 𝑉 ),
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Fig. 3. The architecture of the applied Hybrid Attention Transformer block.
where 𝑄𝑑 and 𝑄𝐼 could be considered as the corresponding heads for
depth estimation 𝑑(𝑥) of hazy images and the hazy image 𝐼(𝑥). Then
the former term of Eq. (6) denotes the cross-attention calculations for
cross-modality fusions that exploits the correlations between depth esti-
mations and hazy input, and the latter term indicates the self-attention
calculations which model the long-range correlations and capture the
global context for the dehazing task. As 𝜃 is a learnable parameter, the
integration of cross-attention and self-attention calculations is adaptive,
which could easily enjoy the merits of both cross-attention and self-
attention. In fact, the attention calculates the similarities between
query and key. The preliminary adaptive mixup fusion has reduced the
discrepancy between depth estimations and hazy images which makes
capturing the correlations between depth and hazy images easier for the
following attention calculations. As shown in Fig. 1, the preliminary
fusion results of depth and hazy images have provided more texture
details than the depth alone. The hybrid attention map has successfully
described the variations of hazy density and semantic information
which are essential for good dehazing performances. In Fig. 1, the
attention values are larger in the area of sky than in the road area,
as sky is more distant and with a larger hazy densities. On the other
hand, some structures like buildings are brighter which indicates the
hybrid attentions have successfully captured the semantic information.

The preliminary fusions of depth and hazy images by adaptive
mixup operations play an important role in our proposed depth-guided
hybrid attention Transformer blocks. Without the preliminary fusions
of depth and hazy images, the hybrid attention mechanism degrades
to the conventional cross-attention mechanism. As demonstrated in
Table 2 of the ablation study part in the experiments, although depth-
guidance via the conventional cross-attention mechanisms still benefits
the dehazing results, performances degrade compared with our pro-
posed depth-guided hybrid attention mechanisms. Adaptive integration
of cross-attention and self-attention has facilitated exploiting the depth-
guidance for dehazing tasks. Attention mechanisms are important for
the cross-modality fusions. Only applying preliminary fusions without
the following Transformer blocks but with a plain stacking convolu-
tional neural network fails to converge the training. As shown in Fig. 3,
we apply a conventional calculation of the transformers as:

𝑦𝑖 = 𝑀𝐴(𝐹𝑒𝑎𝑄𝑖 , 𝐹 𝑒𝑎𝐾𝑖 , 𝐹 𝑒𝑎𝑉𝑖 ) + 𝐹𝑒𝑎𝑉𝑖 , (7)

where 𝐹𝑒𝑎𝑄𝑖 , 𝐹𝑒𝑎𝐾𝑖 , 𝐹𝑒𝑎𝑉𝑖 are the input feature maps of query, key and
value the 𝑖𝑡ℎ Transformer blocks for the multi-head attention operation
𝑀𝐴, of which the attention is calculated as Eq. (5). 𝑦𝑖 is the output
features for the multi-head attention calculation, which is passed to the
feed-forward neural network for the calculation 𝐹𝐹𝐹𝑁 similar to [16]
as

𝐹𝐹𝐹𝑁 (𝑦𝑖) = 𝐹𝑀1(𝐺𝐸𝐿𝑈 (𝑐𝑜𝑛𝑣𝑑 (𝐹𝑀2(𝑁𝑜𝑟𝑚(𝑦𝑖))))) + 𝑦𝑖. (8)

𝐹𝑀1 and 𝐹𝑀2 are different mapping realized by Multi-Layer Percep-
tron network, 𝑐𝑜𝑛𝑣𝑑 is the depth-wise convolution, 𝐺𝐸𝐿𝑈 is Gaussian
error linear units, 𝑁𝑜𝑟𝑚 is the Layer Normalization for Add&Norm
operations.
4 
In the following self-attention calculations, Q, K and V are the
heads of calculated feature embedding. The self-attention Transformer
blocks have the same architectures as the previous hybrid attentive
Transformer blocks. The self-attention calculations could further model
the long-range correlations and capture the global context for the
dehazing task, which could also benefit modeling the uneven density
of the hazy images.

Finally, several up-sample convolution layers and nonlinear activa-
tions are applied to restore the dehazed results. The whole architecture
for the depth-guided image dehazing performs an end-to-end learning
with aid of the hazy image generation part. 𝐿1 loss, perceptual loss 𝐿𝑝
and contrastive loss 𝐿𝐶𝑅 are utilized during training as Eq. (9),

𝐿𝑑𝑒ℎ𝑎𝑧𝑒 = 𝜆𝑟𝐿1(𝐽 , 𝐽 ) + 𝜆𝑝𝐿𝑝(𝐽 , 𝐽 ) + 𝜆𝑐𝑟𝐿𝐶𝑅(𝐽 , 𝐽 , 𝐼) (9)

where 𝐽 , 𝐽 , 𝐼 and 𝜆 are dehazed restorations, clear images, generated
hazy images and multiplier parameters respectively. In the implemen-
tations, 𝜆𝑟, 𝜆𝑝 and 𝜆𝑐𝑟 take the values 1, 0.04 and 1 respectively. The
hyperparameters in Eq. (9) are chosen empirically. Specifically, the
contrastive loss 𝐿𝐶𝑅 aims to make the restorations away from the
generated hazy images and towards the clear images as Eq. (10),

𝐿𝐶𝑅(𝐽 , 𝐽 , 𝐼) =
∑

𝑘
𝜔𝑘 ⋅

𝐷(𝑓𝑘(𝐽 ), 𝑓𝑘(𝐽 ))
𝐷(𝑓𝑘(𝐼), 𝑓𝑘(𝐽 ))

. (10)

Following [2], we apply the contrastive loss to the intermediate
features from the fixed pre-trained model e.g., VGG features, where 𝑓𝑘
denotes the 𝑘th layer feature obtained from the pre-trained model, 𝐷
denotes the metric to quantify the differences, and 𝜔𝑘 corresponding to
the weight.

3.3. The depth guidance for detection on hazy images

Image dehazing methods not only aims to enhance visual quality but
also play a crucial role in improving the performance of high-level tasks
under hazy conditions, such as object detection, which is one of the
most common high-level task in real applications. The depth provides
positional information in 3D world which may benefit the following
detection task on hazy images. As shown in Fig. 2, a simple spatial
attention is applied for the fusions of the depth and dehazed images by
our method for detection. Dehazed images are multiplied by the spatial
attention weights calculated from depth estimations as Eq. (11), which
are further handled by the YOLOv3 models.

𝐹𝑠(𝑑, 𝐽 ) = 𝜎(𝑐𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑑), 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑑)))) ⋅ 𝐽 (11)

In Eq. (11), the depth estimations after average-pooling 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑑) and
max-pooling 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑑) are concatenated and fused with a convolu-
tion operation, then sigmoid activation 𝜎 is applied to reweight the
dehazed restoration 𝐽 to generate depth-guided feature representations
𝐹𝑠(𝑑, 𝐽 ). Then, this depth-guided feature representations are fed into a
very basic detection model YOLOv3 [26]. Benefiting from exploiting
the inner correlations of image dehazing and depth, the depth estima-
tions from hazy images could not only improve the dehazing process
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Fig. 4. Visual comparisons on the SOTS-indoor dataset.
but also facilitate the downstream detection task on hazy images. This
highlights the practical benefits of our image dehazing method beyond
visual enhancement, directly impacting the performance of high-level
computer vision applications like object detection. Note that in the
implementation, the pre-trained YOLOv3 detection model by MS COCO
dataset [27] is imported.

4. Experiments

Our proposed network is implemented by PyTorch 1.7.0, and ex-
periments can be conducted on two NVIDIA TITAN XP GPUs of 12𝐺𝐵
of memory. The models are trained using an Adam optimizer with
exponential decay rates 𝛽1 and 𝛽2 of 0.9 and 0.999, respectively.
The initial learning rates for training the depth estimation model and
dehazing model are 0.00001 and 0.0005 respectively. Batch size are set
to 8. The cosine annealing strategy is applied to adjust the learning rate.
We train the models on the training dataset used by [2] and the training
sets of RESIDE-6K [28] separately to investigate the influences of the
training data for our method. The same 2000 pictures with diverse
content utilized by [2] are adopted as the clear images for training.
RESIDE-6K is the training set used in [28], which contains 3000 indoor
image pairs from ITS and 3000 outdoor image pairs from OTS. ITS
and OTS are subsets of RESIDE dataset [29]. We only use the clear
images from the training data of RESIDE-6K for the training. The same
image pre-processing operations as [2] are applied, which randomly
crop the input to 256 × 256 and normalize the value to 0 ∼ 1. We
train the model using clear images from [2] for 200 epochs denoted
as Ours(using images [2]), while we train the model using the clear
images from RESIDE-6K for 300 epochs denoted as Ours(RESIDE-6K).
The applied losses are the weighted combinations of 𝐿1 loss, perceptual
loss and contrastive loss, which are commonly used in various image
enhancement tasks.

4.1. Depth-guided image dehazing

To demonstrate the generalization abilities of our model to different
datasets, five datasets, i.e., Synthetic Objective Testing Set (SOTS) [29],
Hybrid Subjective Testing Set (HSTS) [29], 4KID [30], Haze4K [31],
I-HAZE [32], and O-HAZE [33] are investigated.

Following [1], the SOTS and parts of HSTS are evaluated, which are
the subsets of the RESIDE v0 version. The SOTS consists of the ‘‘SOTS-
indoor’’ subset and the ‘‘SOTS-outdoor’’ subset, having 500 indoor
hazy images and 500 outdoor hazy images for testing respectively.
10 outdoor hazy-clean image pairs of HSTS are also tested. Haze4K
is a large-scale dehazing dataset that contains 4000 hazy-clean image
pairs [31]. There are some very similar images between Haze4K and
RESIDE datasets.
5 
To further evaluate the generalization ability of some supervised
dehazing methods, we choose I-HAZE, O-HAZE, 4KID and real hazy
images from RTTS of RESIDE dataset and Internet for comparisons.
Since I-HAZE is not used for training, we use all the data in it for
testing. 4KID is established by [30], which focuses on large-size 4K
(i.e., 3840 × 2160) synthetic hazy images. According to [30], 200
hazy images in the Haze4K dataset are randomly selected and tested.
To reduce the heavy computational burden in attention mechanisms,
we first resize the original image to quarter size (i.e., 1024 × 576)
by bilinear interpolation, then dehaze the image, and finally bilin-
early upsample the restorations to the original size. It is interesting
the performances of our model and the compared models could be
improved by this downsample and upsample operations, partly due
to the distortions that have been suppressed during the downsample
process. All the compared methods have applied the same operations
for fair comparisons.

As our method is the self-supervised method, the following meth-
ods are compared quantitatively: traditional prior-based algorithms,
DCP [11], NLD [34], the SOTA zero-shot unsupervised dehazing net-
work YOLY [1] that requires iterative optimizations for input images,
the SOTA unsupervised dehazing network PSD [35] that performs end-
to-end inferences for hazy inputs, the self-supervised dehazing method
SSDN [36] and ZID [37]. In addition, recent unsupervised or self-
supervised methods are compared, including the SOTA self-supervised
dehazing method SLAD [2], recent dehazing method SLP [38] that
proposes Saturation Line Prior, the SOTA unpair dehazing method
CDD-GAN [39], Depth-Aware Unpaired Video Dehazing (DUVD) [18],
Visual-quality-driven unsupervised image dehazing (VQD) [19] and
SZDNet [40], a recent self-supervised learning based image dehaz-
ing method. Earlier fully supervised deep network AOD [41] is also
provided as a reference.

As the code and models of some methods above are not released,
some scores are unavailable in their public paper and absent in Ta-
ble 1. Our method consistently demonstrates either superior or com-
parable performance to these state-of-the-art methods, validating the
efficacy of our proposed self-supervised image dehazing framework
with self-supervised depth guidance.

Estimating depth information in a self-supervised learning mode
from hazy images is barely explored in the existing works, which
further provides depth guidance for the self-supervised image dehaz-
ing process. The experiments demonstrate the great benefits of our
self-supervised depth guidance for image dehazing process.

Our framework is adaptable and not restricted to a particular pre-
trained depth model. We validate this by incorporating two different
pre-trained depth estimation models, i.e., densely connected depth
estimation model [23] and light-weight pre-trained depth estimation
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Fig. 5. Visual comparisons on the SOTS-outdoor dataset.
Table 1
Performance Comparisons of different methods on the SOTS-indoor, SOTS-outdoor, HSTS, Haze4K, I-HAZE, O-HAZE, 4KID dataset.

SOTS-indoor SOTS-outdoor HSTS Haze4k I-HAZE O-HAZE 4KID Average value

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [11] 16.62 0.8197 17.16 0.8514 17.01 0.8030 14.01 0.7600 14.43 0.7520 16.78 0.6500 17.50 0.8756 16.21 0.7873
AOD [41] 19.06 0.8504 19.58 0.8711 19.68 0.8350 17.15 0.8300 15.34 0.7909 16.68 0.7578 14.02 0.8270 17.35 0.8231
NLD [34] 17.29 0.7489 13.06 0.7449 18.92 0.7411 15.27 0.6700 14.12 0.6540 15.58 0.5850 16.47 0.8018 15.81 0.7065
YOLY [1] 19.41 0.8327 22.41 0.9023 21.02 0.9050 15.75 0.5913 15.75 0.7853 16.35 0.7298 13.97 0.7786 17.80 0.7892
PSD [35] 12.45 0.6812 15.42 0.7624 19.37 0.8240 14.77 0.7114 13.78 0.7904 12.01 0.7799 12.78 0.7614 14.36 0.7586
SLAD [2] 20.49 0.8578 24.33 0.9323 25.05 0.9280 21.63 0.9164 16.40 0.8659 14.87 0.8284 18.48 0.8404 20.17 0.8813
SLP [38] 20.16 0.8579 19.68 0.8864 19.27 0.8308 18.95 0.8713 13.88 0.7703 16.53 0.8192 17.29 0.8658 17.98 0.8431
CDD-GAN [39] 24.61 0.9180 – – 22.16 0.9110 – – – – – – – – – –
VQD [19] – – 22.53 0.8750 22.25 0.8470 – – – – 16.75 0.6770 – – – –
SSDN [36] 19.56 0.8330 19.51 0.8270 19.84 0.8510 – – – – – – – – – –
SZDNet [40] – – – – – – – – 16.52 0.7186 15.83 0.6459 – – – –
ZID [37] 19.32 0.8225 20.27 0.8777 22.65 0.9011 18.96 0.8192 16.08 0.7787 17.33 0.7753 18.46 0.8601 19.01 0.8335
DUVD [18] 15.84 0.7829 21.71 0.8891 19.20 0.8516 20.14 0.8718 17.60 0.7657 19.72 0.7401 12.98 0.7874 18.17 0.8126

Ours(DenseDepth [23]) 22.91 0.8810 24.94 0.9356 25.30 0.9368 22.90 0.8975 16.90 0.8365 17.39 0.8264 18.91 0.8853 21.32 0.8855(using images [2])
Ours(LiteMonoDepth [24]) 20.62 0.8594 24.12 0.9324 24.36 0.9264 22.31 0.8958 16.19 0.7407 16.62 0.7794 17.80 0.8568 21.52 0.8794(using images [2])

Ours(Densedepth [23]) 25.39 0.8993 26.09 0.9431 24.83 0.9253 23.16 0.8856 16.54 0.8248 16.88 0.8209 18.51 0.8691 20.39 0.8576(RESIDE-6K)
Ours(LiteMonoDepth [24]) 22.00 0.8616 25.81 0.9383 25.62 0.9301 23.18 0.8968 16.24 0.7329 17.73 0.7781 18.16 0.8572 21.25 0.8564(RESIDE-6K)
model [24]. This results in two variations of models, denoted as
Ours(DenseDepth [23]) and Ours(LiteMonoDepth [24]) respectively,
which obtains comparable performances as Table 1. We anticipate
further improvements in performance with the adoption of larger and
more sophisticated depth estimation models. Note that our framework
is also adaptable to different training images. Specifically, we denote
our model trained using clear images from [2] as ‘‘Ours (using im-
ages [2])’’, and the model trained using clear images from RESIDE-6K
as ‘‘Ours (RESIDE-6K)’’. Besides Table 1, all the results are obtained
with the densely connected pre-trained depth estimation model [23].

From Table 1, Figs. 4, 5 and 7, our method compares favorably
against the state-of-the-art unsupervised or self-supervised methods,
even surpassing an early proposed fully supervised method AOD [41]
on SOTS-indoor and SOTS-outdoor datasets. In Fig. 4, some unsuper-
vised methods such as YOLY [1] and PSD [35] leave the haze in
the left corner remained, and the self-supervised method SLAD [2]
produces color shift distortions in the left corner. Our method success-
fully dehazes the images without obvious distortions. For the outdoor
images in Fig. 5, our method restores the color tunes more correctly
compared with other methods. There are some distortions in the road
by SLAD [2].
6 
The results of PSD [35] seem unreal especially for the building
parts. There are color shifts in the sky area in the dehazing results of
YOLY [1].

For the 4KID dataset, state-of-the-art supervised methods are addi-
tionally evaluated for the generalization ability of the model in Table
Table 1. On 4KID, our method achieves the best quantitative scores
and significantly outperforms the state-of-the-art self-supervised image
dehazing method SLAD [2]. Compared with other methods in Fig. 6,
our method restores more natural results with fewer artifacts or color
shifts, especially in the distant building and sky areas. Some fully
supervised methods [41–43] struggle to effectively dehaze images or
may generate severe artifacts when applied to test data sets that do not
perfectly align with their training datasets.

For the real hazy images in Fig. 7, although results of all the
dehazing methods are far from perfect, our results generate fewer
artifacts and color shifts, especially for the distant area like the sky,
benefitting from the depth guidance exploited by our model.

4.2. Ablation study

In this section, we perform ablation studies on SOTS test set to in-
vestigate the benefits of depth guidance, depth-guidance via the hybrid
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Fig. 6. Visual comparisons on the 4KID dataset.
Table 2
PSNR Comparing the different manners of providing depth-guidance.

w/o Depth Cross attention Hybrid attention CNN fusion

SOTS-indoor 18.96/0.8458 21.42/0.8722 22.91/0.8810 8.87/0.3442
SOTS-outdoor 24.45/0.9291 24.77/0.9355 24.94/0.9356 7.58/0.3181
4KID 16.54/0.8420 17.41/0.8701 18.91/0.8853 8.42/0.4211

attention Transformer blocks and contrastive loss to the dehazing task.
The models are trained using the training sets from [2].

In Tables 2 and 3, the ablation study for providing depth guidance is
performed using our proposed model. When no depth is provided, the
depth-guided hybrid attention Transformer blocks are converted to the
traditional self-attention Transformer blocks. Without the preliminary
fusions of depth and hazy images, the hybrid attention mechanisms
degrade to the conventional cross-attention mechanisms. As shown in
Table 2, the performances gradually improve for the models with no
depth guidance, with depth-guided cross-attention, and with our hy-
brid attention, which demonstrates the importance of providing depth
guidance and our hybrid attention mechanisms. The performances
are largely impaired for all the datasets without the depth guidance.
This observation underscores the significance of incorporating depth
guidance and employing our hybrid attention mechanisms.

The preliminary fusions of depth and hazy images by adaptive
mixup operations play an important role in our proposed depth-guided
hybrid attention Transformer blocks. Although depth-guidance pro-
vided in this cross-attention mechanism brings improvements (+2.46 dB
on SOTS-indoor) for dehazing, the performances get worse (−1.49 dB)
compared with our proposed depth-guided hybrid attention mecha-
nisms. Adaptive integrations of cross-attentions and self-attentions have
facilitated exploiting the correlations between depth and dehazing
tasks. The attention-based cross-modality fusion appears to be essential
as only applying preliminary fusion without the subsequent Trans-
former blocks but with a plain stacking convolutional neural network
fails to get converged during training.

In Figs. 1 and 8, visual representations of a hazy image, our pre-
liminary fusion results, one typical channel of attention maps by our
hybrid attention mechanism, by cross attention without the preliminary
fusion, by self-attention mechanism without the depth guidance are
represented. These typical attention channels are selected with the
largest summations of absolute values in each channel of attention
maps. Redder colors in attention maps mean larger attention values.
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Table 3
The performance comparisons of our self-supervised learning framework with and
without depth guidance or Contrastive loss (denoted as CR loss).

Dataset depth w/o depth

CR w/o CR CR w/o CR

SOTS-outdoor 24.94/0.9356 22.25/0.9096 24.45/0.9291 21.69/0.9065
SOTS-indoor 22.91/0.8810 19.30/0.8260 18.96/0.8458 16.81/0.7955
4KID 18.91/0.8853 17.42/0.8903 16.54/0.8420 16.07/0.8785

Table 4
mAP comparisons of detection for different settings.

Method Train dataset Test dataset

VOC_Foggy_test RTTS

(a) YOLOv3 (clear images) VOC_norm 42.32 31.48
(b) YOLOv3 (hazy images) VOC_Foggy 57.63 31.79
(c) Dehaze+YOLOv3 VOC_Foggy 57.09 31.23
(d) Dehaze+depth+YOLOv3 VOC_Foggy 58.04 33.03

The typical channels of attention maps by our hybrid attention mecha-
nism have larger values in distant area such as in the sky and capture
richer information for semantic structures, which brings better visual
restorations. Self-attention mechanism seems to have fewer correlations
to the haze densities. Cross attention without the preliminary fusion
reveals fewer details of structures and textures as depth images often
lacks of details.

In Table 3, the benefits of contrastive loss are investigated, revealing
its significant impact on performance improvement, irrespective of the
presence of depth guidance. The restorations are pulled towards clear
images and pushed away from the hazy input, which assists feature
learning process and improves the results.

4.3. Depth-guided detection on hazy images

For detection tasks on hazy images, synthetic foggy images with de-
tection labels are generated from the detection dataset PSCAL VOC [44],
i.e., VOC_Foggy and a real-world foggy dataset RTTS [29] are applied
to demonstrate the benefits of depth guidance. We generate the hazes
with the applied hazy generation methods for the synthetic VOC_Foggy
dataset and trained the detection model, then the trained model is
directly applied on RTTS to investigate the real-world performances.

The benefits of introducing depth for detection tasks on hazy
images have been investigated in Table 4 compared with mAP (mean
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Fig. 7. Dehazing result on the real-world hazy images.
Fig. 8. Visual representations of a hazy image, our preliminary fusion results, one typical channel of attention maps by self-attention mechanism without the depth guidance, by
cross attention without the preliminary fusion, and by our hybrid attention mechanism are represented. These typical attention channels are selected with the largest summations
of absolute values in each channel of attention maps. Redder colors in attention maps mean larger attention values.
Average Precision). Pre-trained YOLOv3 detection models from the MS
COCO dataset [27] are trained on the PASCAL VOC dataset [44] with
several settings: (a) ground truth clear images, (b) synthetic hazy input
images, (c) dehazed images, (d) dehazed images and depth estimations,
8 
collaborating in the proposed attentive multiplication manner. In Fig. 9,
image dehazing and detection results for real-world hazy images from
the RTTS dataset are represented for comparisons. Hazy images, YOLOv3
detection results by the model trained on dehazed images without
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Fig. 9. Image dehazing and YOLOv3 detection results for real-world hazy images from the RTTS dataset. From left to right: hazy images, YOLOv3 detection results on the hazy
images, YOLOv3 detection results by models trained on dehazed images without depth, and by models trained on the dehazed images and estimated depth by our method.
depth and the proposed model trained on dehazed images plus the
estimated depth by our method. The images are arranged from left
to right in Fig. 9. For the real-world hazy images from RTTS, our
method could improve the visibility of the hazy images although some
failures exist. Even for the failure cases such as the second row in
Fig. 9, the detection process still benefits from the depth estimations.
Consequently, the model manages to detect cars in distant regions, even
when severe occlusions are present.

As shown in Table 4 and Fig. 9, the depth guidance has largely
improved the detection accuracies on both synthetic and real hazy
image. From Table 4, simply dehazing the images cannot guarantee the
detection accuracies to be improved. When the detection model, trained
on clear images, is applied to hazy images, it suffers a considerable
degradation due to substantial domain gaps. Comparatively, detection
on clear images achieves an mAP of 74.47, highlighting ample room for
improvement when dealing with hazy images. Nevertheless, the depth
guidance holds promise for detection. We investigate the performances
of the detection model trained and tested on the clear images, i.e., the
detection model is trained on VOC_norm dataset [44] and evaluated on
the VOC_norm_test dataset [44]. Comparatively, the detection model
trained and tested using clear images achieves an mAP of 74.47,
highlighting ample room for improvement when dealing with hazy
images.

5. Conclusions

We have proposed a self-supervised image dehazing framework
with self-supervised depth guidance to exploit the interactions between
depth and hazes for image dehazing tasks. The depth estimation from
clear image enables an effective hazy generation and self-supervised
depth estimations for hazy inputs. The proposed depth-guided hybrid
attentive Transformer blocks effectively explore the depth-guidance to
model hazy densities and capture global context information for better
feature representations. Our method compares favorable against the
9 
state-of-the-art unsupervised or self-supervised dehazing methods. The
self-supervised depth estimations not only improve the generalization
ability of the model to different dehazing datasets, but also benefit the
downstream detection tasks on the hazy images.

Our model applies Transformer blocks, of which computational
complexities grow quadratically with the sizes of the input images.
Larger sizes of input images for the Transformer blocks bring larger
receptive fields to better capture the global correlations. However, the
computational burden may prevent further expansion of the receptive
field, damaging the promotion of the performances. In the future, effi-
cient architecture design of Transformers could be explored to alleviate
the quadratical growth computational problem of Transformers.
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