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Abstract

Dealing with the distribution shift is a significant challenge
when building offline reinforcement learning (RL) models
that can generalize from a static dataset to out-of-distribution
(OOD) scenarios. Previous approaches have employed pes-
simism or conservatism strategies. More recently, data-driven
work has taken a distributional perspective, treating offline
data as a domain adaptation problem. However, these meth-
ods use heuristic techniques to simulate distribution shifts,
resulting in a limited diversity of artificially created distri-
bution gaps. In this paper, we propose a novel perspective:
offline datasets inherently contain multiple latent distribu-
tions, with behavior data from diverse policies potentially fol-
lowing different distributions and data from the same policy
across various time phases also exhibiting distribution vari-
ance. We introduce the Latent Distribution Representation
Learning (LAD) framework, which aims to characterize the
multiple latent distributions within offline data and reduce
the distribution gaps between any pair of them. LAD con-
sists of a min-max adversarial process: it first identifies the
“worst-case” distributions to enlarge the diversity of distribu-
tion gaps and then reduces these gaps to learn invariant repre-
sentations for generalization. We derive a generalization error
bound to support LAD theoretically and verify its effective-
ness through extensive experiments.

1 Introduction
Offline reinforcement learning (RL) (Levine et al. 2020) en-
ables the execution of safe and efficient learning utilizing
pre-collected static datasets without the need for further in-
teraction with the environment. Compared with its online
counterpart (Sutton and Barto 2018), offline RL offers an at-
tractive potential for saving resources and mitigating risks.
The distribution shift represents one of the core challenges
in offline RL, with out-of-distribution (OOD) (Fujimoto,
Meger, and Precup 2019) data being not only grossly overes-
timated but also exacerbated through bootstrapping (Kumar
et al. 2019), which can precipitate a catastrophic decline in
performance. Rich experience has been accumulated in ad-
dressing the distribution shift issue, with strategies contain-
ing the implementation of policy constraints (Fakoor et al.
2021; Fujimoto and Gu 2021; Wu et al. 2022; Ran et al.
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2023; Li et al. 2023), the adoption of conservative Q val-
ues (Kumar et al. 2020; Kostrikov et al. 2021; Ma, Jayara-
man, and Bastani 2021; Wang, Hunt, and Zhou 2022; Lyu
et al. 2022), and the utilization of uncertainty estimation
techniques (An et al. 2021; Bai et al. 2022; Wu et al. 2021).

Unlike the aforementioned methods that employ pes-
simism or conservatism, the alternative research (Qi et al.
2022; Wang et al. 2024) introduces a new way of thinking,
conceptualizing offline data-driven decision-making as do-
main adaptation (Ben-David et al. 2010; Zhao et al. 2019).
The primary goal is to ensure accurate predictions for the
value of optimized decisions − the “target domain” − when
training only on the provided dataset− the “source domain”.
IOM (Qi et al. 2022) addresses distribution shift by enforc-
ing invariance between the learned representations of the
training dataset and optimized decisions. Coincidentally, the
recent ADS (Wang et al. 2024) framework employs dataset
splitting to create simulations of distribution shifts, an en-
deavor grounded in the concept of domain adaptation. This
framework is modeled as a min-max optimization challenge,
which takes inspiration from meta-learning, and it enforces
the model to achieve generalization over the distribution
shifts simulated from the train/validation subsets splitting of
the dataset. This novel approach, added to the line of offline
RL algorithms, brings a fresh perspective to the field. How-
ever, the existing techniques still rely on heuristic designs
for simulating distribution shifts. The diversity inherent in
the distribution gaps they produce and the potential to ex-
tract richer information from the original offline datasets are
issues deserving of deeper investigation.

With the goal of building models that can generalize
across unknown distributions, this paper steers a differ-
ent course from prior studies by introducing an innovative
perspective: offline datasets inherently contain multiple la-
tent distributions, with behavior data from diverse policies
potentially following different distributions and data from
the same policy across various time phases also exhibit-
ing distribution variance (Figure 1). The former scenario
emerges in particular cases, such as situations where the of-
fline dataset arises from sampling various policies. On the
other hand, the latter corresponds to the dynamically chang-
ing scenarios within time series, where such dynamic distri-
butions exhibit diversity (Lu et al. 2023). We start by exam-
ining the connection between latent distributions and OOD
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Figure 1: Abstract representation of our perspective: offline datasets inherently contain multiple latent distribution.

generalization. Following this examination, we introduce
a framework, Latent Distribution Representation Learning
(LAD), which subtly utilizes these latent distributions. The
goal of LAD is to characterize naturally existing latent distri-
butions in offline datasets and then learn generalizable mod-
els by reducing the distribution gaps between any pair of
them. To be specific, the LAD framework works through
an iterative min-max adversarial game: initially, it identi-
fies and characterize the multiple latent distributions that
have the maximum gap; subsequently, it bridges the gap
between these distributions, thereby learning invariant rep-
resentations that enhance the model’s ability to generalize.
To validate the effectiveness of our proposed LAD frame-
work, we offer theoretical insights accompanied by an ex-
tensive array of experiments. LAD can enhance the back-
bone agent’s performance across various continuous control
tasks on the D4RL dataset, outperforming several state-of-
the-art offline RL algorithms. Additionally, we provide pa-
rameter analysis and ablation studies, along with visual evi-
dence of LAD’s successful representation of latent distribu-
tions, which together robustly attest to the efficacy of LAD.

In summary, our contribution is four-fold:

• We introduce a novel data-driven perspective to address
the distribution shift issue in offline RL: simulating OOD
generalization scenarios with a higher diversity of distri-
bution gaps, achieved by characterizing the multiple la-
tent distributions inherently present in offline data.

• We propose the Latent Distribution Representation
Learning (LAD) framework, which consists of an it-
erative min-max adversarial game. LAD first identifies
latent distribution representations in scenarios with the
maximum distribution gap. It then works to reduce these
gaps, thus learning invariant representations crucial for
generalization.

• We derive a generalization error bound for multiple dis-
tribution scenarios and provide theoretical insights to an-
alyze the effectiveness of LAD.

• By applying LAD to commonly used algorithms, we sig-
nificantly enhance their performance and competitive-
ness. Importantly, LAD’s successful characterization of
latent distributions validates our proposition that promot-
ing the model to generalize across distribution gaps with
maximum diversity is essential for offline learning.

2 Preliminaries
An infinite-horizon discounted Markov Decision Process
(MDP) is denoted as (S,A, P, r, γ), where S and A are
finite state and action spaces, P (s′|s, a) : S × A ×
S 7→ [0, 1] is the state transition probability function,
r(s, a) : S × A 7→ [0, Rmax] is the reward function,
and γ ∈ (0, 1) is the discount factor. RL aims to find
an optimal policy π(·|s) that maximizes the expected cu-
mulative discounted reward J(π) := Eπ[Σ∞t=0γ

tr(st, at)].
A major approach, Q-learning, which learns a Q-function
Qπ(s, a) := Eπ [

∑∞
t=0 γ

tr (st, at) | s0 = s, a0 = a] to ob-
tain the optimal policy. For a policy π, the Bellman oper-
ator for iteratively updating the Q-function as T Q(s, a) =
Es′∼P (·|s,a)[r(s, a) + γEa′∼π(·|s′)Q(s′, a′)].

In offline RL, where real-world online interaction is not
practicable, the agent must learn a policy based on a static
dataset D = {(s, a, r, s′)} that was previously generated
from an unknown behavior policy µ(·|s). We assume that
(s, a) is generated i.i.d. from the data distribution µ in the
training process. The learned policy, however, whose action
a′ ∼ π(·|s′) utilized during the Bellman backup might lie
outside the support of µ. Such a distribution shift between
π and µ leads to extrapolation errors due to the arbitrarily
wrong estimation upon a′. Offline RL aims to obtain an op-
timal policy by leveraging solely the static dataset under the
influence of distribution shift.

3 Our Method
In this section, we first examine the connection between la-
tent distributions and OOD generalization. Then, we pro-
pose the Latent Distribution Representation Learning (LAD)
framework, which subtly utilizes latent distributions and
thus learns generalizable models. Finally, we theoretically
derive a generalization error bound for multiple distribution
scenarios and provide theoretical insight to understand our
method.

3.1 Motivation
The distribution shift in offline RL refers to the disparity
in the state-action visitation frequency between the learned
policy and the dataset. An abstract illustration of the visi-
tation frequency for In-Distribution (InD) data and Out-of-
Distribution (OOD) data is depicted in Figure 1(a). In the
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Figure 2: Illustration of the LAD framework. Details (a) corresponds to the Optimization in step 2 and (b) corresponds to the
Fine-tune in the iterative process.

latest work, ADS (Wang et al. 2024), the offline datasets
are segmented to create simulated distribution shifts by es-
tablishing training/validation subsets that embody distribu-
tion gaps. Carrying forward the analysis of data distributions
from ADS, we concentrate on a more innovative and realis-
tic perspective: the offline datasets inherently contain mul-
tiple latent distributions, denoted as P(x, y) =

∑
Pi(x, y)

(Pi is the i-th latent distribution, x is the input, and y =
r + γmaxa′ Q(s′, a′) is the output of target Q-network).
For instance, some datasets, such as the medium-expert in
the D4RL (Fu et al. 2020), have data collected from various
policies, as depicted in Figure 1(b), where each distinct pol-
icy corresponds to behavior data from a different distribu-
tion. Furthermore, the same policy can exhibit different be-
haviors across various time phases, thus resulting in distinct
data distributions (such as the medium-replay in the D4RL),
as shown in Figure 1(c). Well-studied offline datasets can
generally satisfy one or both of the aforementioned scenar-
ios and are equally applicable to unknown data distributions.
This factor also highlights the challenge of building models
capable of generalizing knowledge to OOD data.

Leveraging the processing of data distributions to simu-
late distribution shifts, ADS (Wang et al. 2024) conducts an
adversarial search to identify the splitting that exhibits the
most significant distribution gap, subsequently employing
meta-learning techniques to develop a generalizable model.
In contrast, our approach involves characterizing the multi-
ple latent distributions present within the dataset and seeking
to minimize the “worst-case” scenario: an adversarial search
targeting instances where the distribution gaps between any
Pi and Pj are maximized. The advantage is that it fosters a
model capable of handling a more diverse array of distribu-
tion gaps, thereby yielding a more comprehensive and robust
model with enhanced generalization capabilities.

3.2 The LAD Framework
In this section, we introduce the LAD framework, whose
core is to characterize multiple latent distributions followed
by reducing the gaps between these distributions. Figure 2
describes the principal procedures of LAD, containing a data
pre-processing phase (Step 1) and an iterative process: it ini-
tially identifies the “worst-case” distribution scenarios from
the provided dataset (Step 2) and subsequently works to re-
duce the distribution gaps between each pair of them (Step
3).

Step 1 Pre-processing Directly characterizing latent dis-
tributions from an extensive array of raw offline datasets is
inefficient. A practical approach is to handle a large batch
of samples in each epoch (such as M samples) (Wang et al.
2024), and then, we focus on characterizing the latent dis-
tributions for just these M samples. Motivated by earlier
studies (Sun, Zhou, and Li 2020; Wang et al. 2024), in our
approach to create varied data distributions, we employ a
Gaussian Mixture Model (GMM) (Bishop 2006) to cluster
the state-action pairs, which yields K initial latent distribu-
tions1.

Step 2 Latent Distribution Characterization This step
aims to characterize the latent distributions and learn rep-
resentations that maximize the distribution gaps, thereby
enlarging diversity. For this process, we define a feature
extractor F (s, a), a specific distribution learner L(s, a), a
classifier C(2)(s, a) for the latent distribution, and a Q-
network Q(2)(s, a). In Step 1, we employ GMM to initi-
ate the K latent distributions. This method is inherently a
self-supervised approach to pseudo-labeling, effectively as-
signing an initial latent distribution l (l ∈ [1, 2, ...,K]) to

1K is a hyperparameter which we test in Section 5.2



each sample. With the representation serving as the output
of F (s, a), we first determine the centroid of the current la-
tent distribution:

σ̃k =

∑
(s,a)∈D ηk(C(2)(L(F (s, a))))L(F (s, a))∑

(s,a)∈D ηk(C(2)(L(F (s, a))))
, (1)

where σ̃k is the initial centroid of the kth latent distribution
and ηk is the kth element of the logit soft-max output. Based
on the current centroid σ̃k, we use a distance function d to
label the latent distribution through the nearest centroid clas-
sifier:

l̃(s, a) = arg min
k
d(L(F (s, a), σ̃k). (2)

We then compute the accurate centroids:

σk =

∑
(s,a)∈D I(l̃(s, a) = k)L(F (s, a))∑

(s,a)∈D I(l̃(s, a) = k)
, (3)

where I is the indicator function that returns 1 if and only if
its argument is valid. The difference between Equation (3)
and Equation (1) lies in the fact that the centroid σ̃k, as
computed by the latter, is subject to the influence of ηk,
whereas Equation (3) provides a more accurate determina-
tion of the centroid (reflecting the divergence between the
soft-max function and the output [0,1]). As a result, we can
attain the updated latent distribution labels:

l(s, a) = arg min
k
d(L(F (s, a), σk). (4)

Once we attach the updated latent distributions {li}Mi=1 for
the M -selected samples, our subsequent task is to learn the
representation that exhibits the maximal gaps within these
distributions. Drawing inspiration from Ganin et al. (2016),
we adopt an adversarial training approach, employing the
following loss function:

LLAT + LGRL-RL = E(s,a)∈D`
(
C(2)(L(F (s, a))), l

)
+ `
(
Q(2)(GRL(L(F (s, a)))), y

)
.

(5)

where ` is the cross-entropy loss and GRL is the gradi-
ent reverse layer (Ganin et al. 2016) facilitating adversar-
ial training through reversing gradients. We use the loss
LLAT + LGRL-RL to optimize the network Q(2), C(2), and L,
except for the feature extractor F . Training the specific dis-
tribution learner L results in a representation that, while it
achieves separability of the latent distribution, fails to cor-
rect prediction − this constitutes the worst-case scenario.
We offer visualization results (Section 5.4) of features with
distribution separation extracted by the distribution learner.
The parameters of the feature extractor F , which remain
constant, are sustained for copy in forthcoming processes,
while the distribution learner L enters a fresh iteration.

Step 3 Invariant Representation Learning In the final
phase, we use invariant representation learning to develop
generalizable models, ensuring effective learning even in
the worst-case scenarios. We define a bottleneck B(3)(s, a),

a new latent distribution classifier C(3)(s, a), and a Q-
network Q(3)(s, a). We still use adversarial training:

LRL + LGRL-LAT = E(s,a)∈D`
(
Q(3)B((F (s, a))), y

)
+ `
(
C(3)(GRL(B(F (s, a)))), l

)
.

(6)

In contradistinction to Equation (5), we utilize the gradient
reverse layer to update the latent distribution classifier loss
LGRL-LAT. This approach equips the learned model with the
capability to address distributional gaps, thereby enhancing
its generalizability. We set Q-network Q(3) as the principal
critic within our RL algorithm, serving the purpose of actor
training.

Fine-tune the feature extractor. We emphasize that the
feature extractor F undergoes updates exclusively during
the fine-tuning phase. The purpose of this step is to ex-
tract the finer-grained knowledge information embedded in
the latent distribution and perform feature updating to ob-
tain a fine-grained representation. This implies that the sam-
ples from the current latent distribution obtain a new repre-
sentation from the updated feature extractor. We introduce
a Q-network Q(TUNE), a replica of Q(3), to participate in
the feature fine-tuning process. Concurrently, we refine the
target Q-function following the current latent distribution:
y′ = y + δ · l. Here, l ∈ [1, 2, ...,K], signifies the pseudo-
label assigned to the latent distribution, a result derived from
Step 2. The corresponding fine-tuning loss is:

LTUNE = E(s,a)∈D`
(
Q(TUNE)(F (s, a)), y′

)
. (7)

To ensure the stability of the training process, it is also
essential that the parameters of Q(2) in Step 2 are copied
from the updated Q(3) in each subsequent iteration. More
details on the iteration and training of the LAD framework
can be found in Appendix A.

3.3 Theoretical Analysis
To facilitate a more profound grasp of our method, we derive
a generalization error bound applicable to scenarios involv-
ing multiple distributions. Drawing on the principles of do-
main adaptation, we conceptualize the generalization chal-
lenge in offline RL as the crucial task of minimizing the
model’s generalization error when trained on a source do-
main P and then evaluated on an unseen target domainQ. A
specific premise is that the source domain P is a collection
of multiple distributions {Pi}Ki=1. Our theory aims to elu-
cidate the relationship between the generalization error εQ
and the mitigation of the distribution gaps between any two
Pi and Pj , facilitating an assessment of the efficacy of our
LAD framework.
Theorem 3.1. LetH be a family of functions mapping from
X to [0, 1], Q and the collection {Pi}Ki=1 be distributions
over X . Given a set of distributions O, for ∀M ∈ O and
∀h ∈ H, we have,

εQ(h) ≤
∑
i

εPi(h) +
1

2
min
M∈O

dH(M,Q)

+
1

2
max
i,j

dH(Pi,Pj) + λ?,

(8)



DATASET TD3BC TD3BC
+ADS

TD3BC
+LAD MCQ MCQ

+ADS
MCQ
+LAD

HALFCHEETAH-M 48.2 ± 0.5 49.0 ± 2.7 50.2 ± 1.3 62.5 ± 3.1 63.2 ± 2.7 66.4 ± 3.4
HOPPER-M 60.8 ± 3.4 73.7 ± 13.0 69.8 ± 3.7 78.4 ± 4.3 103.0 ± 1.5 103.6 ± 2.5
WALKER2D-M 84.4 ± 2.1 85.0 ± 1.1 87.1 ± 1.8 91.0 ± 1.1 94.5 ± 2.9 94.9 ± 2.1

HALFCHEETAH-MR 45.0 ± 0.5 46.1 ± 2.9 49.0 ± 1.5 56.2 ± 2.7 59.4 ± 3.1 61.0 ± 1.7
HOPPER-MR 67.3 ± 13.2 100.3 ± 2.2 89.2 ± 11.3 101.6 ± 1.0 105.0 ± 0.9 105.8 ± 1.8
WALKER2D-MR 83.4 ± 7.0 91.3 ± 0.9 93.6 ± 1.8 91.3 ± 1.8 96.1 ± 0.6 98.1 ± 2.3

HALFCHEETAH-ME 90.7 ± 2.7 96.6 ± 3.1 97.7 ± 2.4 80.1 ± 3.8 78.9 ± 0.5 101.5 ± 1.2
HOPPER-ME 91.4 ± 11.3 114.0 ± 1.9 112.0 ± 4.3 87.8 ± 2.0 105.8 ± 0.2 112.7 ± 2.0
WALKER2D-ME 110.2 ± 0.3 114.0 ± 1.1 114.5 ± 1.5 114.2 ± 0.9 108.3 ± 1.0 116.6 ± 1.3

Table 1: Results of different algorithms and the ones equipped with ADS, LAD. We bold the highest score.

where εQ(h) = Ex∼Q|h(x) − h∗(x)| and h∗ is an ideal
function, dH(P,Q) is the H-divergence2, which measures
differences in distribution, λ?3 is the error of an ideal joint
hypothesis for P , Q.

We provide the proof of Theorem 3.1 in Appendix B and
proceed to elucidate how our LAD framework implicitly
minimizes the rest of the terms in Equation (8), with the
exception of the constant λ?. The first term

∑
i εPi(h) cor-

responds to training samples across all distributions within
the source domain P , the typical RL learning process that
can be minimized with the loss LRL in Equation (6). For the
second item, 1

2 minM∈O dH(M,Q), the inaccessibility of
the target domain Q prompts us to incorporate an interme-
diary variant M ∈ O. To minimize dH(M,Q), therefore,
directly associated with enlarging the range of O. Given
the existence of a relationship such that dH(

∑
i Pi,M) ≤

maxi,j dH(Pi,Pj), it is reasonable that we prioritize the
maximization of dH(Pi,Pj) under this circumstance −
in essence, seeking the “worst-case” scenario among the
multiple latent distributions during Step 2. The third item
1
2 maxi,j dH(Pi,Pj) measures the maximum gaps among
source domains, which corresponds to Step 3 in LAD. The
final term λ? is frequently overlooked, as it is typically neg-
ligible in practice. To summarize our discussion, the LAD
framework is related to minimizing the upper bound in
Equation (8).

4 Related Work
With an increasing focus on the distribution shift challenges
within offline RL in the community, diverse solutions have
come to the forefront. In certain traditional conservative
studies, learned policies are constrained by the dataset’s sup-
port to limit the production of OOD actions, with techniques
including explicit policy constraints (Fakoor et al. 2021; Fu-
jimoto and Gu 2021; Wu et al. 2022; Li et al. 2023), the
penalization of value functions (Kumar et al. 2020; Ma, Ja-
yaraman, and Bastani 2021; Wang, Hunt, and Zhou 2022),
the application of uncertainty quantification (An et al. 2021;
Bai et al. 2022; Wu et al. 2021), and the use of imitation
learning as part of the approach (Chen et al. 2020; Kostrikov
et al. 2021).

2dH(P,Q) = 2 suph∈H |EP [h = 1]− EQ[h = 1]|
3λ? ≥ infh′∈H{εP(h′) + εQ(h′)}

Expanding on the foundation applied by prior investiga-
tions, subsequent works have focused on refining the ap-
proach to mitigate overly conservatism, thus promoting im-
proved generalization capabilities. MCQ (Lyu et al. 2022)
actively training OOD actions by constructing them pseudo
target values. STR (Mao et al. 2023) performs trust re-
gion policy optimization within the support of the behav-
ior policy, relaxing the implicit density constraint of Expo-
nentiated Advantage-Weighted Behavior Cloning (EAWBC)
methods to a support constraint. Some data-driven work
such as PRDC (Ran et al. 2023) find that regularizing the
policy towards the nearest state-action pair can be more ef-
fective and allows the learned policy to choose actions that
do not appear in the dataset along with the given state. Other
work (Qi et al. 2022; Wang et al. 2024) innovatively models
the OOD generalization problem for offline RL as domain
adaptation from a distribution perspective. More recently,
the ADS (Wang et al. 2024) framework simulates distribu-
tion shift by splitting the dataset into train/validation sub-
sets, adversarially searching for the divisions with the largest
distribution gaps, and then using meta-learning approach to
learn a generalizable model. Inspired by ADS, we start from
a novel perspective: characterizing multiple latent distribu-
tions that naturally exist in offline datasets and then training
generalizable model by bridging the distribution gap of the
“worst-case” distribution scenario. In contrast, our consid-
erations are more macroscopic and comprehensive, and our
method is able to characterize a greater diversity of distribu-
tion shifts, leading to better generalization.

For representation learning in offline RL, prior
work (Yang and Nachum 2021; Xiao et al. 2022; Geng et al.
2022; Ma et al. 2023) mainly focuses on the implications
of learned representations in TD-based methods. Yang
and Nachum (2021) finds that pre-training and fixing the
state representations can dramatically improve downstream
learning. Geng et al. (2022) demonstrates that regularizing
representation takes a more critical role in improving offline
RL methods than merely imposing pessimism. Ma et al.
(2023) provides an examination of the explicit representa-
tion distinction between in-sample and OOD state-action
pairs for offline RL. In contrast, our approach is orthogonal
to the above work. We introduce additional neural networks
for feature extraction, enabling the learning of spaces where
the latent distribution exhibits divisibility.



DATASET BC IQL CQL SPOT POR PRDC STR DIFFUSION
-QL

CQL
+ADS

MCQ
+LAD

HALFCHEETAH-M 42.9 47.4 49.4 58.4 48.8 63.5 51.8 51.1 73.9 66.4
HOPPER-M 56.1 65.7 59.1 86.0 78.6 100.3 101.3 90.5 101.0 103.6
WALKER2D-M 76.6 81.1 83.6 86.4 81.1 85.2 85.9 87.0 91.3 94.9

HALFCHEETAH-MR 36.6 44.2 47.0 52.2 43.5 55.0 47.5 47.8 49.6 61.0
HOPPER-MR 19.3 94.8 98.6 100.2 98.9 100.1 100.0 101.3 102.4 105.8
WALKER2D-MR 24.8 77.3 71.3 91.6 76.6 92.0 85.7 95.5 93.7 98.1

HALFCHEETAH-ME 53.1 88.0 93.0 86.9 94.7 94.5 94.9 96.8 93.5 101.5
HOPPER-ME 52.7 106.2 90.0 111.4 99.3 109.2 111.9 111.1 113.3 112.7
WALKER2D-ME 102.5 108.3 109.8 112.0 109.1 111.2 110.2 110.1 112.1 116.6

AVERAGE ABOVE 51.6 79.2 80.4 85.9 80.1 90.1 87.7 87.9 92.3 95.6

Table 2: Average normalized scores of different methods on the benchmark. We bold the highest mean.

(a) Parameter K (b) Parameter δ (c) Ablation study

Figure 3: Results of parameter variations and ablation study.

5 Experiments
In this section, we conduct experiments to validate the effec-
tiveness of LAD in terms of performance, hyperparameter
robustness, ablation study, and visualization of latent distri-
bution characterization using the D4RL benchmark (Fu et al.
2020). For simply, we abbreviate the names of the datasets
from {MEDIUM, MEDIUM-REPLAY, MEDIUM-EXPERT} to {M,
MR, ME} in all the tables. Regarding the algorithms relevant
to our comparison, baseline results at the 1M gradient step
are procured either by re-running the official code or directly
extracting from the original papers. Our algorithm, in turn,
is tested across five random seeds, with the reported findings
reflecting the mean normalized results garnered from the last
ten evaluations.

5.1 Performance
Application to strong baseline algorithms. Our LAD,
a highly effective data-driven framework, can effec-
tively integrate with strong baseline algorithms. Inspired
by ADS (Wang et al. 2024), we combine LAD with
TD3BC (Fujimoto and Gu 2021) and MCQ (Lyu et al.
2022), then compare with the baselines and ADS. Table 1
shows that LAD boosts the performance of the baselines
and surpasses ADS in most cases. Furthermore, the results
reveal a noteworthy phenomenon: our method exhibits su-
perior performance on the -MR and -ME datasets. This en-
hanced performance can be attributed to the greater diver-
sity of the latent distribution, which arises when the dataset

contains a richer mix of samples. In this situation, our LAD
framework can make full use of the favorable diversity to
train models with better generalization, thereby yielding su-
perior performance. This result aligns with our expectations
and confirms the effectiveness of our approach. More results
equipped with CQL (Kumar et al. 2020) are shown in Ap-
pendix C.

Comparison with related methods. We opt for the rep-
resentative algorithm that demonstrates the most outstand-
ing performance, MCQ+LAD, and compare it against other
related classical algorithms as well as those designed to en-
hance generalizability, including BC, IQL (Kostrikov et al.
2021), CQL (Kumar et al. 2020), SPOT (Wu et al. 2022),
POR (Xu et al. 2022), PRDC (Ran et al. 2023), DIFFUION-
QL (Wang, Hunt, and Zhou 2022), and CQL+ADS (Wang
et al. 2024). Table 2 exhibits the outcomes of different meth-
ods within representative gym environments. The results in-
dicate that our method is not only competitive in the major-
ity of cases but also has a distinct advantage in the average
performance, providing reassurance of its effectiveness. Ad-
ditional evidence on other tasks is provided in Appendix C.

5.2 Hyperparameter Robustness
The key parameters that define our LAD framework include
the pre-processing sample size M , the initial latent distribu-
tion count K, and the fine-tuning parameter δ. Recognizing
that M affects the computational resources for adjusting the
latent distribution labels l, we assign a conservative value,
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Figure 4: The t-SNE visualization of latent distribution characterization by LAD.

such asM = 5000. An exhaustive list of parameters is listed
in Appendix C. Next, we primarily analysis K and δ.

The effect of the initial latent distribution count K.
The K is a noticeable and crucial parameter in our LAD
framework. Typically, the larger the value of K, the fewer
samples constituting each latent distribution, which can lead
to an increase in the discrepancy of data points within each
latent distribution, while the gaps between the latent distri-
butions decrease as their boundaries become less distinct.
We report the results of TD3BC+LAD on HALFCHEETAH-MR
across various K in Figure 3(a). Observations indicate that
the performance trend corresponding to the K aligns funda-
mentally with our preceding expectations. Consequently, we
choose K = 5 as an appropriate selection.

The effect of the fine-tuning parameter δ. The param-
eter δ denotes the extent of fine-tuning the feature extrac-
tor. Figure 3(b) illustrates the performance of TD3BC+LAD
on HALFCHEETAH-MR across various δ. The results show that
LAD is more robust to δ. A natural consideration is whether
omitting the use of the latent distribution information for
fine-tuning the feature extractor would lead to a decline in
performance. For this reason, we conduct an ablation study
for the fine-tuning process in the following subsection.

5.3 Ablation Study
We perform an ablation study over the components in our
method. First, we evaluate the significance of the latent dis-
tribution learner, which comes into play during Step 2. Fig-
ure 3(c) indicates that removing the distribution learner (w/o
L(s, a)) results in a degradation in performance. That is be-
cause the role of the latent distribution learner is to act as
an intermediate network that records the worst-case features
learned, and learning directly through the feature extrac-
tor is problematic. We then verify the importance of using
Equation (7) for fine-tuning during the iterations after Step
3 through ablation experiments. Using the original target y
in place of y′ in Equation (7) to update the feature network
could skew the representation towards a Q-predictive bias,
preventing the acquisition of the updated latent distribution
features. This ultimately leads to suboptimal performance
as depicted in Figure 3(c) (w/o Fine-tune). Hence, it is cru-
cial to fine-tune the feature extractor with fine-grained latent
distribution information. By doing so, we can align the rep-
resentation to prioritize features associated with the latent
distribution, thus facilitating a new round of iterations.

5.4 Visualization
To further verify the efficacy of LAD, we offer the t-
SNE (der Maaten and Hinton 2008) visualization, repre-
senting the latent distribution’s successful characterization
by LAD, as shown in Figure 4. The original dataset of
HALFCHEETAH-MR is displayed in Figure 4(a). Following
that, Figure 4(b) illustrates the data distribution after the
pre-processing phase, which presents an initial appearance
of a multiple latent distribution by clustering with GMM.
In Figure 4(c), we observe the data distribution character-
ized by LAD in Step 2, showcasing a maximization of dis-
tribution gaps. This visualization is derived from the feature
extraction enabled by the distribution learner L(s, a). Evi-
dently, LAD successfully identifies latent distributions with
a remarkable diversity, thereby bolstering generalization. In
Figure 4(d), we present the results of using the bottleneck
B(3)(s, a) in Step 3 to record the feature of inseparable la-
tent distribution. Compared to the above visualization re-
sults, our LAD successfully characterizes the diverse latent
distributions and effectively utilizes them, which supports
the efficacy of LAD.

6 Conclusion
In this paper, we introduce a novel data-driven perspec-
tive for improving the generalization in offline RL. The
principle is to characterize the multiple latent distributions
that inherently exist in offline data and enable models to
bridge distribution gaps, thereby enhancing generalization.
We present the Latent Distribution Representation Learning
(LAD) framework, which first identifies “worst-case” dis-
tributions to enlarge the diversity of distribution gaps and
then reduces these gaps to learn invariant representations.
We provide the theoretical insights behind LAD, demon-
strating its ability to implicitly minimize the upper bound on
the generalization error of offline RL in multi-distribution
scenarios. Our extensive experiments convincingly support
the efficacy of LAD. However, the iterative nature of our
method currently limits its scalability to large data in the pre-
processing phase. This limitation underscores the need for
further research. In our future work, we plan to explore the
use of the diffusion model for yielding diverse trajectories
and fully leverage our LAD framework. We believe that our
unique perspective on data distribution will stimulate further
community discussion and inspire new approaches to RL.
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