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Abstract

The ubiquitous and unavoidable label noise brings great chal-
lenges to the generalization performance of learning methods.
Label noise correction aims to detect and correct label noise
in the data, which is one of the most potential methods to ad-
dress this challenge. Current methodologies for noise filtering
that utilize primitive features primarily concentrate on iden-
tifying noise, which often limits their capacity to adaptively
learn features crucial for specific tasks, thereby resulting in
a higher rate of noise identification within the noise recogni-
tion process. On the other hand, deep neural networks, en-
dowed with robust feature extraction capabilities, typically
exhibit lower noise identification, as they are prone to fit-
ting noise patterns during the recognition process, potentially
undermining their overall efficacy. Moreover, Fuzzy Learn-
ing Machine (FLM) excels not only in feature extraction but
also in noise tolerance, adeptly navigating data uncertain-
ties. FLM enhances label accuracy by calculating the mem-
bership degrees of samples across categories and determin-
ing their fuzzy memberships. The introduction of a two-stage
FLM-based framework, which employs a secondary learn-
ing mechanism for precise noise filtering and correction, has
shown substantial improvements in noise correction across
various large-scale noisy datasets, thereby significantly en-
hancing sample quality and boosting the generalization capa-
bilities of classifiers.

Introduction

Classification is one of the most critical issues in the field
of machine learning. Numerous studies have shown that
the generalization performance of training classifiers heav-
ily depends on the quality of labels in the training samples
(Bi and Jeske 2010), and that high-quality labels represent
accurate and meaningful annotations, which helps to create
robust and reliable models. With the rapid development of
Al technology, there is a growing demand for high-quality
labelled data in many application domains, such as medi-
cal imaging, autonomous driving, and security surveillance
(Esteva et al. 2017; Kermany, Goldbaum et al. 2018; Grig-
orescu, Trasnea et al. 2020). However, in the real world, data
is growing explosively in terms of variety and quantity, us-
ing automated tools and ‘crowdsourcing’ labeling has grad-
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ually become the mainstream method for obtaining large-
scale labels. However, these low-cost labeling methods in-
evitably produce erroneous labels, known as label noise
(Breve, Zhao, and Quiles 2015).

The quality of a data set can usually be characterized by
two information sources: (1) attributes, and (2) class labels.
Depending on the data mining, data noise for supervised
learning is mainly categorized into two types: attribute noise
and class noise (Zhu and Wu 2004). Attribute noise refers to
data where the observed features are in error from the true
features, and class noise refers to data where the observed in-
stance markings are inconsistent with the true markings, e.g.
in medical diagnosis problems, the inconsistency in expert
labeling can lead to erroneous labeling of case data (Khosh-
goftaar and Van Hulse 2005). Both attribute noise and class
noise affect the generalization performance of the model, but
it has been shown that class noise has a more severe im-
pact compared to attribute noise due to the uniqueness of
the labels (Frénay and Verleysen 2013). Therefore, filtering
and handling label noise is crucial for building efficient and
accurate machine learning models. Properly managing la-
bel noise not only improves data quality but also enhances
model accuracy, ensuring the reliability and robustness of
the model in practical applications.

The issue of label noise in classification tasks can be
addressed from both the model level and the data level.
At the model level, solutions typically involve construct-
ing robust loss functions (Ghosh, Kumar, and Sastry 2017)
and introducing regularization (Tanno, Saeedi et al. 2019)
to reduce the impact of label noise. However, robust mod-
els cannot achieve complete robustness. Data level process-
ing is mainly to improve data quality by labeling noise fil-
tering. Existing noise filtering methods based on raw fea-
tures primarily focus on noise filtering and struggle to adap-
tively learn task-relevant features, making them ineffective
for managing noise in large-scale datasets. Deep neural net-
works, while powerful in feature extraction, display a low
tolerance for label noise, leading to susceptibility to disrup-
tions. This study focuses on correcting label noise, aiming to
refine labels post noise filtering, thus enhancing data quality
and elevating model generalization capabilities.

Fuzzy Learning Machine (FLM) (Cui and Liang 2022)
integrates the advantages of deep neural networks in feature
extraction and the advantages of fuzzy set theory in han-



dling uncertainty, making it a potent method for handling la-
bel noise. In this paper, we fully leverage the potentiality of
FLM to handle label noise. We utilizes deep neural networks
to extract features pertinent to label noise filtering, and em-
ploys fuzzy permissible loss to mitigate the risk of neural
networks overfitting label noise. A computational method is
proposed to assess the fuzzy membership of samples to their
labels, and a two-stage FLM-based noise correction frame-
work is developed to identify and correct label noise.

The main contributions of this paper are as follows:

(1) Utilizing exemplar theory, this method develops a
technique for calculating the fuzzy membership degree of
samples with respect to their own labels, thereby assessing
the cleanliness of sample labels. This method facilitates pre-
liminary noise filtering.

(2) We have developed a label noise correction framework
based on the two-stage FLM. In the First-Learning-Stage,
the model is trained on all samples to obtain exemplar sets
for each concept. Subsequently, based on the fuzzy member-
ship degrees of each sample, we differentiate between high-
confidence and low-confidence sample sets, facilitating the
initial screening of noisy samples. During the Re-Learning-
Stage, the model is retrained using the high-confidence sam-
ple set, utilizing the exemplar set to predict the latent la-
bels of samples. The filtering and correction of label noise
are achieved by comparing the predicted labels with the ob-
served labels, ensuring that the noise filtering and correction
processes are more accurate and stable.

(3) Experiments on various datasets demonstrate that the
proposed method not only successfully identifies and recti-
fies noise compared to existing label noise filtering methods
but also significantly improves data quality and generaliza-
tion capabilities of the model.

Notations and Related Works
Problem Formalization

This article focuses on classification problems with label
noise. For a classification problem, let X', Y,and ¢ : X — Y
be the input space, class label space, and unknown classifi-
cation function, respectively. For the convenience of discus-

sion, we denote ) as {1,2,--- | |V|}.
Given a noisy training set D = {(x;,y;) | v; € X,y; €
V,i=1,2,...,n}, where n is the number of training sam-

ples, z; is the i-th training sample and y; is the observed
class label of x;. In the label noise scenario, the class labels
of some training samples are incorrect, i.e., I(x;,y;) € D,
such that y; # o(x;). Let Dyoise = {(zi,¥:)|(zi,y:) €
D,y; # ¢(x;)} be the set of training samples with incorrect

class labels. Furthermore, the noise rate (NR) of the training

. Diois
set is defined as %.

Given noisy training set D, the goal of label noise filtering
is to find the D,uise, and the goal of label noise correction

is to find the D, ;s and the true class labels of samples in
Dnoise~

Label Noise Learning

Model-level methods to label noise learning can be catego-
rized into two main strategies: designing robust models and

developing robust loss functions.

(1) Robust model structures. Lee et al. (Lee, Yun et al.
2019) enhanced decision boundaries’ robustness by intro-
ducing a generative classifier in the hidden feature space of
a pre-trained deep model. They used a minimum covariance
determinant estimator to accurately estimate the parameters
of the generative classifier, thereby achieving more reliable
classification under noisy conditions. Tanno et al. (Tanno,
Saeedi et al. 2019) addressed the challenge of robust regu-
larization by jointly estimating annotator noise and true la-
beling distributions from noisy datasets. They introduced a
regularization term to the cross-entropy loss function, effec-
tively mitigating the impact of overfitting caused by label
noise.

(2) Robust loss functions. A loss function is deemed noise-
resistant if it enables the model to achieve consistent pre-
dictions on both clean data and data contaminated with la-
bel noise. Ghosh et al. (Ghosh, Kumar, and Sastry 2017)
demonstrated through both theoretical derivation and empir-
ical experiments that loss functions with symmetric prop-
erties exhibit greater resistance to noise. They found that
Mean Absolute Error (MAE) loss is particularly robust to
noise, whereas the commonly used cross entropy loss is
more susceptible to the detrimental effects of noise. Wang et
al. (Wang, Ma et al. 2019) investigated the inherent issues of
cross entropy loss, specifically its tendency to overfit easily-
acquired categories while making it difficult to learn hard-
to-acquire categories. Drawing inspiration from symmetric
Kullback-Leibler divergence, they proposed the symmetric
cross entropy loss, which aims to address these challenges.

Data-level methods Two primary methods to address la-
bel noise at the data level are statistical methods and ma-
chine learning-based noise filtering methods.

(1) Statistical methods. Such methods calculate a statis-
tical measure for each sample to assess its noise intensity,
and then identify noisy samples based on a predetermined
threshold. For example, Xia et al. (Xia, Xiong et al. 2014)
proposed a filtering method based on Relative Density (RD),
which uses the relative density of samples to evaluate their
noise intensity, and proposed the Voting Mechanism Based
on Relative Density (vVRD) (Xia, Chen et al. 2021). Most
of these methods rely on learning from raw features, which
limits their ability to adaptively learn task-relevant features,
making them less effective in filtering label noise.

(2) Machine learning-based methods. These methods typ-
ically involves training a learner to filter noisy samples.
The process usually begins by training a model, and sam-
ples whose predictions from the learner are inconsistent with
their original labels are considered to be noisy.

Neighbor-based filtering methods often utilize K-Nearest
Neighbor (KNN) models, such as the Full Nearest Neigh-
bor filter (Barandela and Gasca 2000) and Mutual Nearest
Neighbor filter (Liu and Zhang 2012). These methods are
typically highly sensitive to the choice of the parameter k.

Numerous filtering methods based on ensemble learning
principles focus on filtering noise by evaluating the correct-
ness of predictions from multiple base classifiers in com-
bination. Examples include the Majority Vote Filter (MVF)



(Brodley and Friedl 1999), the Dynamic Integration Filter
(Sanchez et al. 2003), and Random Forest with High Con-
sistency (RF) (Sluban, Gamberger, and Lavra 2010). An-
other method is the Complete Random Forest (CRF) (Xia
et al. 2018), which evaluated the extent to which a sample
is surrounded by samples from the same class by construct-
ing fully randomized trees, thereby determining the noise
intensity of the sample. Xia et al. have also proposed meth-
ods such as the Adaptive Complete Random Forest filter
(Adap-mCRF) (Huang, Shao, and Peng 2022). This method
utilized an adaptive voting strategy, leveraging classification
accuracy from randomly partitioned test sets as an adap-
tive index. However, their filtering performance significantly
declines when the proportion of label noise is high. These
methods aim to construct more effective learners, potentially
filtering a larger number of noisy samples.

Deep learning-based methods. These methods focuses on
distinguishing clean samples from noisy ones during the
training process, selecting samples with minimal training
losses as clean to update the network parameters. Jiang et
al. (Jiang et al. 2018) proposed MentorNet, which involves
pre-training an auxiliary network to identify clean instances,
which then guides the training of the primary network. Men-
torNet effectively mitigates overfitting to corrupted labels.
However, it is prone to error accumulation over time. Han et
al. (Han, Yao et al. 2018) introduced the Co-teaching mech-
anism, which enhances model robustness by training two
neural networks concurrently. Each network alternates in se-
lecting samples deemed clean by the other for parameter up-
dates, thus mitigating the impact of noisy labels. Building
on this, Yu et al. (Yu et al. 2019) proposed Co-teaching+,
where each network independently evaluates small batches
of data, identifies instances with divergent predictions, and
then selects low-loss samples from these instances. Each
network back-propagates and updates parameters using the
low-loss data chosen by the peer network, thereby refining
the training process. Tan et al. (Tan et al. 2021) proposed Co-
learning, which leverages a single model with a shared back-
bone network, employing two distinct subnetworks for self-
supervised and supervised learning. One subnetwork uti-
lizes feature-related information for self-supervised learn-
ing through intrinsic similarity, while the other focuses on
supervised learning using labeling-related information. De-
spite the strong representational capabilities of deep neural
networks, but these networks often overfit to noise, typically
exhibiting, lower noise filtering, thereby reducing their ef-
fectiveness in handling labeled noise.

This paper focuses on the issues of label noise filtering
and correction. Current noise filtering methods suffer from
high computational complexity and inadequacies in han-
dling the burgeoning size and complexity of vast datasets.
Predominantly, methods that rely on raw feature recognition
fail to learn task-specific features adaptively, impairing their
efficacy in accurate noise detection. Despite the profound
feature extraction capabilities of deep neural networks, their
low tolerance for label noise makes them vulnerable to its in-
terference. Thus, we utilize FLM as an effective instrument
for the filtering and correction of label noise.

Fuzzy Learning Machine

Fuzzy Learning Machine (FLM) (Cui and Liang 2022),
serves as an effective machine learning method, fundamen-
tally focusing on the insightful understanding of human con-
cept cognition. By capturing the inherent fuzziness in con-
cept cognition and utilizing the knowledge of fuzzy set the-
ory, it reformulates the classification problem into a problem
of solving for fuzzy similarity, specifically:

Givena (X, Y, p)-classification problem, (1) let X’ x X be
the new input space, (2) let [0, 1] be the new output space,
(3) let pf : X x X — [0,1] be the new target function,
where ¢ is the fuzzy equivalence relation (FER) on X, and
V(zi, 1) € X x X, ((xi,2;)) be the degree that x; and
x; belong to the same concept. This process can be formally
described as: {* = argminL (D, f) + pR(f) s.t. f € {g |

f

g is an FER on X'}, where L is the loss function that mea-
sures how well the model £* fits the training data set D, R is
the regularization term, and p > 0 is the tradeoff parameter.

FLM includes three components: (1) fuzzy similarity rela-
tion network, (2) fuzziness permissible loss, and (3) stochas-
tic gradient descent based optimizer.

First, FLM employs a multi-layer neural network with
nonlinear activation function as the feature extraction mod-
ule. This setup is formally described as follows:

Va € RY, h(z;0) € R, (1)

where R is the non-negative real numbers, dj, is the di-
mension of the latent space, and © is the set of learnable
parameters.This endows FLM with robust feature extraction
capabilities, enabling it to effectively capture the essential
characteristics of the samples.

Second, the cosine similarity is used as the skeleton of the
binary fuzzy relation network, i.e.

_ by
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where f(z:,2;:0) = g(h(z:;©), h(z;; ©)), Vs, z; € RY,
be the composite of h and g.

Third, FLM employs the fuzziness permissible loss (FPL)
to complete the learning process. For a pair of training sam-
ples (z;,y;) and (x},y;), let t;; = f(x;,x;; ©) denotes the
fuzzy similarity between samples x; and ;. The fuzziness
permissible loss is constructed as follows:

max{t;; — a,0}, ify; #y,
Lot v u) = P ’
a,8(tijs Yis Yj) {max{ﬁ — 5,0}, ify; =vy;’ 3)

Vhi,hj € R™, g(hi, hy) 2

where « and 3 are fuzzy parameters with « € [0,0.5) and
B € (0.5, 1] which control the fuzziness of the concept. Ac-
cording to this formula, the similarity between samples be-
longing to the same class should exceed /3, while for samples
from different classes, their similarity should be less than a.

Compared with commonly used classification losses, e.g.,
cross entropy loss, the FPL has unique advantages in dealing
with label noise. First, the FPL effectively models the uncer-
tainty of the class label to which the sample belongs, which
makes it to tolerate label noise effectively. Second, the FPL
is defined on sample pairs, which makes it not only considers
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Figure 1: The overall design of FLM-LNC

the matching relationship between samples and class labels,
but also takes into account the inherent similarity between
samples. When the class labels of the samples are incorrect,
the model can utilize the inherent similarity between sam-
ples to reduce the harmful effects caused by incorrect class
labels.

Based on the above observations, we design a noise filter-
ing and correction framework based on FLM.

Methodology

Overall framework FLM, as a machine learning method
known for its superior feature extraction and fuzziness tol-
erance capabilities, is applied to the problem of label noise
filtering and correction. We use FLM for label noise filter-
ing called FLM-LNF, and use FLM for label noise correction
called FLM-LNC.

The label noise correction framework based on the two-
stage FLM is illustrated in Figure 1. The two-stage learning
framework is divided into two stages: the First-Learning-
Stage and the Re-Learning-Stage. In the First-Learning-
Stage, training the model is conducted using all samples,
which produces a preliminary model capable of distin-
guishing between high-confidence and low-confidence sam-
ples. By filtering out the low-confidence samples, the Re-
Learning-Stage operates in a cleaner data environment, ef-
fectively filtering and correctly correcting label noise.

First-Learning-Stage During the First-Learning-Stage,
we initially construct FLM. Throughout the training process,
we iteratively update model parameters by minimizing the
fuzziness permissible loss on D, capturing the latent repre-
sentations of all samples. The formalization of this process

is as follows:

O —argmin Y Los(frnzy:0).uy,).
(zi,y:),(zj,y;)€D
“4)

After several iterations and training epochs, ©* becomes lo-
cal optimum of the model f(-,;©) .

Next, we complete the representation of concepts based
on exemplar theory.

Vk € Y, let X, = {x; | (x5,y:) € D,y; = k}. And
Vo, € X, let u(x;, Xi) = ‘X71k| ZjeXk [z, z;0%). Let
Ui = {p(zi, Xi)|z; € Xi}. Then, the exemplar set of class
k is defined as

. x| x € X, p(z, Xi) is the top-ni®

P= {] . } .G
argest value in Uy,

where nj¢ is a manually specified parameter.

After the exemplar set of each class has been established,
it is employed to calculate the fuzzy membership degree of
each sample, in order to calculate the probability that the
sample (z;, y;) belongs to its own category. The fuzzy mem-
bership degree of the sample (z;, y;) is defined as follows:

ex x;, B
Pclean (mh yz) = P (M ( yl))* ) (6)
> orey exp (1 (i, E3))
where Vk € Y, u(z;, Ef) = |E71k| szeE;; [ (i, 25, 0%).
Based on the fuzzy membership degrees of each sample, a
high-confidence subset Dy of the training set D can be
selected as follows:

(z,9) | (z,9) € D, Paean(7,y) is
Dhigh = . , (D
the top y * n largest element in U,




where U, = {Puean(®i,y:) | (zi,y:) € D}, and v is the
manually specified threshold.

This filtering method relies on the model’s assessment
of the fuzzy membership degree of each sample. Samples
with a fuzzy membership degree that exceeds the predefined
fuzzy threshold ~ are classified as high-confidence samples.
This method not only effectively filters out the noise from
the data, but also provides a cleaner data environment for
subsequent learning processes.

Re-Learning-Stage To provide a cleaner data environ-
ment for the subsequent learning process, we enter the Re-
Learning-Stage. During this stage, we retrain the model
f(-,-;©) using the high-confidence sample set Dyjgh. The
formalization of this process is as follows:

O™ = arg min Z Lo g(f(xi,zj;0),y:,v;).
© (%4,94),(%;,Y;) € Dnign
)

To accelerate convergence, the local optimal solution ©* of
formula (4) can be used as the initial point. Let ©** be the
local optimum obtained after retraining, we update the ex-
emplar set of each class on D using the retrained model
f(-,-;©**). Subsequently, we leverage the exemplar set of
each class to infer the labels of samples on D. The predic-
tion process is outlined as follows:

g =arg maz u(z, EY), VreX, 9)

key

where p1 (z, E*) = \Til ijeE:* f(z,zj;0%).

For any sample (z;,y;) € D, whenever the predicted la-
bel ¢; differs from the observed label y;, i.e., J; # y; , we
consider the sample to be a noisy sample. Additionally, g;
becomes the corrected label for the sample z;.

Through the secondary learning stage, we ultimately ob-
tain the noisy data set D,isc and the corrected label y for
each noise sample.

The two-stage framework not only significantly mitigates
noise interference within the training data but also ensures
that the model is developed on a foundation of precise and
superior-quality data, thereby substantially enhancing the
model’s generalization capabilities. This strategy capitalizes
on the strength of FLM to furnish a robust method for ele-
vating data quality.

Experiment

Experimental Settings

Datasets The experiments were conducted on three com-
monly used datasets, including MNIST, CIFAR-10, SVHN.
Among them, the MNIST dataset (Lecun et al. 1998) is a
classic handwritten digit dataset widely used in machine
learning and pattern recognition. The CIFAR-10 dataset
(Krizhevsky, Hinton et al. 2009) is a well-known image
dataset extensively used in the field of computer vision. It
contains 60,000 32x32 color images divided into 10 dif-
ferent categories. The SVHN (Street View House Numbers)
dataset (Netzer et al. 2011) is a publicly available large-scale
dataset for digit recognition. Unlike the handwritten digits
in the MNIST dataset, the digits in SVHN come from house
numbers in Google Street View images.

Comparison methods We compared proposed method
with mainstream filtering methods, including statistical
methods and machine learning-based methods. Statistical
methods include Relative Density Filter (RD) (Xia, Xiong
et al. 2014) and Voting Mechanism Based on Relative Den-
sity (VRD) (Xia, Chen et al. 2021). Machine learning-based
methods include Mutual Nearest Neighbor Filter (MNN)
(Liu and Zhang 2012), Majority Voting Filter (MVF) (Brod-
ley and Friedl 1999), Complete Random Forest Filter (CRF)
(Xia et al. 2018) and Adaptive Complete Random Forest Fil-
ter (Adap_mCRF) (Huang, Shao, and Peng 2022).

Noise addition methods and experimental framework
We perform extensive experiments on the MNIST, CIFAR-
10, and SVHN datasets to demonstrate the effectiveness of
our method. To validate the filtering performance of the pro-
posed method, we first added completely random noise at
proportions of 5%, 10%, 15%, and 20% to each training set.
Subsequently, we applied the proposed filtering method as
well as mainstream filtering methods to remove label noise
and compared various noise filtering metrics. Finally, we
trained classifiers using the denoised training sets and eval-
uated their generalization performance on the test sets. To
reduce the randomness of the experimental results, each sce-
nario with different random noise levels was tested 10 times,
and the average results were taken as the final experimental
outcomes.

True
Normal Noise

Predicted Normal TP FP
Predicted Noise FN TN

Table 1: The confusion matrix

Evaluation metrics To validate the effectiveness of the
proposed method, multiple evaluation metrics are used to
measure the method’s noise filtering capability and clas-
sification generalization ability. These metrics include Ac-
curacy (Acc), Noise filtering accuracy (NfAcc), Precision
(Pre), Recall (Re), F'1 score, and Classification Accuracy
(PreAcc). The definitions of these metrics are as follows:

Ace = TP+1T“J€L€];+FN (10)
NfAcc= 7FNT—|]—VTN (11)
Pre = TPT+7PFP (12)

fte = TPT+PFN (13)

F1 21P (14)

T TP+ FP+FN



NR  Methods MNIST CIFAR-10 SVHN
) Acc NfAcc Pre Re F1 | Acc NfAcc Pre Re F1 | Acc NfAcc Pre Re Fl
RD 498 5.1 949 498 642306 50 949 285 438|287 55 96.6 259 408
vRD 763 173 999 75.1 85.8|30.1 56 965 273 426|288 55 963 26.1 41.0
MNN 59.6 11.1 100.0 57.5 73.0|17.0 57 99.8 12.6 224|243 6.2 99.7 203 338
5% MVF 359 6.8 988 330 494|339 6.6 987 30.8 469|413 74 99.0 38.6 555
CRF 758 6.5 954 783 86.0|739 55 951 764 847|745 73 957 76.6 85.1
Adap.mCRF 67.9 135 100.0 662 79.6|56.8 6.5 96.1 569 714|544 5.0 950 54.8 69.5
FLM-LNF 99.2 864 100.0 99.1 99.6 |98.0 82.1 98.8 99.1 98.9 988 849 995 99.1 99.3
RD 49.7 102 89.9 49.6 63.2(332 100 89.8 29.1 434|342 11.1 92,5 292 443
vRD 76.4 295 99.7 740 849|325 11.0 927 272 420|315 11.0 922 259 405
MNN 58.1 193 999 535 69.7/20.7 112 994 119 212|271 120 993 19.1 320
10% MVF 355 127 97.0 29.2 449|363 12.8 97.1 30.1 46.0|42.8 142 97.8 37.3 54.0
CRF 740 131 90.8 79.1 84.6|71.2 11.0 903 76.2 827|725 136 91.1 77.0 834
Adap-mCRF 739 276 99.8 71.1 83.0|563 125 920 564 699|533 10.1 902 540 67.5
FLM-LNF 965 87.1 974 98.8 98.1/96.6 882 974 989 98.1983 929 988 99.2 99.0
RD 541 159 85.1 555 659347 150 84.8 28.3 41.7|34.6 162 87.9 26.6 40.7
vRD 762 385 993 725 838|350 163 88.6 269 413|337 158 88.1 25.6 39.7
MNN 57.0 258 99.8 495 662|244 165 99.0 11.2 20.130.1 17.6 988 179 30.3
15% MVF 39.3 189 956 30.0 45.6(389 18.8 954 295 451|442 203 964 356 52.0
CRF 71.6 192 864 79.0 82.6|68.5 162 854 76.0 804|703 193 86.2 773 81.5
Adap.mCRF 78.2 405 99.1 750 854|558 182 8777 559 683|542 152 850 56.0 675
FLM-LNF 99.1 94.8 100.0 99.0 99.5/949 903 956 98.6 97.1 975 947 979 99.1 98.5
RD 52.8 208 799 544 634|372 200 794 289 41.2(39.2 21.5 835 29.8 43.7
vRD 76.0 454 98.8 709 825|374 215 842 267 405|365 21.1 841 256 393
MNN 564 314 995 457 62.6|282 21.7 982 104 188|332 229 98.0 168 28.7
20% MVF 41.0 243 932 283 434415 245 93.6 289 44.1(449 256 945 33.1 49.0
CRF 703 262 81.3 81.6 81.4|66.1 21.6 805 76.0 782|681 253 81.6 77.6 79.5
Adap.mCRF 80.1 502 979 768 86.1|57.3 24.1 83.1 585 68.6|53.1 20.1 80.0 552 653
FLM-LNF 994 969 100.0 99.3 99.6 | 93.6 88.8 94.6 97.5 96.0 96.8 95.8 97.0 99.0 98.0
Table 2: Noise filtering experimental results (%)
to 0.7, and the batch-size was set to 2048. Iterative training
The number of samples correctly classified continued until there.was no significant change in the loss
PreAcc = value for 10 consecutive epochs.

Total number of samples

15)

Among them, TP (True Positive), FP (False Positive),

FN (False Negative) and TN (True Negative) are defined as

shown in Table 1. Among the six evaluation metrics, the first

five metrics are used to evaluate the method’s noise recogni-

tion performance, in which the higher values of Acc, NfAcc,

Pre, Re and F1 indicate that the method’s noise recognition

performance is better. The classification accuracy (PreAcc)

is used to measure the generalization performance of the
classifier.

Label Noise filtering Experiments

Setting In the experiments, four noise ratios were added
to the training sets of the MNIST, CIFAR-10, and SVHN
datasets. For the MNIST dataset, the FLM employed a 7-
layer convolutional neural network as the feature extraction
network. For the CIFAR-10 and SVHN datasets, ResNet-
18 (Fang, Yu et al. 2021) was used as the feature extraction
network. The fuzzy parameters were set to @ = 0.2 and
B = 0.8. The model was optimized using the Adam opti-
mizer with a learning rate of 0.001. The threshold y was set

Experimental results and analysis The results of the six
metrics of the noise recognition experiments of each method
under four noise ratios are shown in Table 2.

From the Acc and the NfAcc, it is evident that the noise
recognition capability of our method significantly surpasses
that of other methods across noise ratios ranging from 5% to
20%. Other methods tend to filter out noise samples more
aggressively, sometimes resulting in the removal of clean
samples and leading to over-filtering in severe cases. More-
over, our method’s recall rate is markedly higher than that of
other methods. This is attributed to our method’s ability to
retain genuine samples as much as possible, minimizing the
erroneous deletion of true samples. When comparing the av-
erage F1 scores, which reflect a balance between precision
and recall, our method consistently achieves significantly
higher F1 values than other methods, maintaining a stable
performance above 0.95. This underscores the comprehen-
sive effectiveness of our method. In summary, our method
shows a clear superiority in all five indicators under noise
ratios of 5%-20%, demonstrating strong noise recognition
capabilities. The relatively low performance of other meth-



Methods

Data Set NR

NOF RD vRD MNN MVF CRF Adap.mCRF FLM-LNF
5% 934 856 845 963 57.8 924 64.6 97.6
MNIST 10% 89.1 847 812 954 554 923 61.6 97.6
15% 849 814 67.6 96.1 55.7 915 58.6 97.5
20% 786 71.8 629 953 564  90.6 54.9 97.5
5% 614 292 592 491 48.0  52.0 61.5 66.1
10% 582 265 555 484 472 492 52.7 64.7
CIFAR-10 15% 539 240 527 47.1 46.0 455 49.6 63.0
20% 51.1 205 482  46.6 448  45.0 49.6 62.9
5% 88.0 29.6 863  76.7 713 765 84.7 88.0
SVHN 10% 858 469 83.0 735 712 70.5 81.4 90.7
15% 81.8 450 818 733 72.0  66.3 76.9 89.7
20% 763 427 786  67.1 70.5 61.0 61.5 89.3

Table 3: Generalization performance of classifiers (%) after noise filtering

ods indicates their disadvantages are more pronounced on
large-scale datasets.

Noise Correction Experiments

We filter noise by comparing the consistency between pre-
dicted and observed labels. The final predicted labels de-
rived from our two-stage filtering framework are utilized
as corrected labels. When the predicted label matches the
observed label, it is considered a correct correction. More-
over, we have experimentally validated the efficacy of the
two-stage FLM in rectifying label noise, demonstrating our
method’s effective correction capabilities. The noise correc-
tion accuracy of our method at various noise ratios is shown
in the following Table 4.

NR
Data Set  —sg—00— 150 20%
MNIST 654 726 972 98.0

CIFAR-I0 605 622 635 6338

SVAN 364 868 S7.6 $33

Table 4: Label noise correction accuracy (%)

Experiments on the Generalization Performance of
Classifiers

Setting The classifier used to evaluate the generalization
performance on the MNIST dataset employs a three-layer
neural network structure. This network includes two hidden
layers with 500 and 300 neurons, respectively, designed to
process the 784-dimensional input data and perform classi-
fication across 10 categories. For the CIFAR-10 and SVHN
datasets, the ResNet-18 architecture was utilized as the clas-
sifier to validate generalization performance.

Experimental results and analysis Table 3 presents the
classification accuracy results of training a classifier on
datasets filtered using various methods and then testing on
a clean dataset. A higher PreAcc indicates that the dataset

filtered by the method improves the classification ability of
the trained classifier. The data in the table demonstrate that
our method achieves better classification accuracy compared
to other methods in most cases and significantly outperforms
results obtained without any filtering. Additionally, the clas-
sification accuracy of other filtering methods on the CIFAR-
10 and SVHN datasets is slightly lower than the unfiltered
dataset, suggesting that these methods may have mistakenly
removed a substantial number of samples.

Conclusions

This paper proposes using Fuzzy Learning Machine (FLM)
for the task of label noise correction. By fully leveraging its
capabilities in feature representation and noise tolerance, the
FLM robustly represents concepts through exemplar sets,
thereby providing a method to assess the cleanliness of la-
bel for samples. Compared to existing methods, this method
is better equipped to handle large datasets and the chal-
lenges posed by insufficient representation capabilities in the
original sample space. It filters out noise that significantly
impacts classifiers more precisely, while minimizing infor-
mation loss, thus enhancing the generalization performance
of classifiers. Furthermore, the proposed two-stage learning
framework based on the FLM ensures outstanding robust-
ness. The numerous experiments show that the proposed
method not only has significant advantages in label noise fil-
tering, but also can correct incorrect labels effectively, mak-
ing it a promising method to address the challenge of label
noise.
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