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Abstract
Dynamic graph representation learning aims to capture the evolu-
tion of graph structures and obtain accurate node embeddings, a
crucial task in graph machine learning. The Hawkes point process,
a mathematical framework effective for modeling the influence of
historical events on future occurrences, has been validated as a pow-
erful tool for capturing the dynamics of graph evolution in dynamic
graph representation learning. However, existing dynamic graph
representation learningmethods based on theHawkes point process
primarily model excitation at the individual node level, failing to
adequately account for structural influences during graph evolution.
This limitation restricts their ability to comprehensively capture
network evolution patterns. To address this limitation, we propose
a Hawkes Point Process-enhanced Dynamic Graph Neural Network
(HP-DGNN) model. This model leverages the Hawkes point process
to model both individual node histories and structural histories,
capturing their respective influences on future node interactions.
By integrating individual and structural influences in computing
Hawkes conditional intensity, the model comprehensively captures
the impacts of both layers on future node interactions. We eval-
uate our proposed model on two downstream tasks of dynamic
graph representation learning: dynamic link prediction and future
node degree prediction. Compared to 12 state-of-the-art methods,
our model consistently demonstrates superior performance, un-
derscoring its effectiveness in capturing the complexities of graph
evolution.
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1 Introduction
In the real world, networks like social, e-commerce, and trans-
portation networks are complex and dynamic, with connections
between nodes evolving over time, leading to changes in both net-
work topology and node structures [25]. Effective dynamic graph
representations are key to capturing temporal changes [32], essen-
tial for predicting links, node behavior, and graph evolution, while
also enhancing recommendation precision in social networks [13],
e-commerce, and optimizing traffic systems.

Currently, two important approaches to dynamic graph repre-
sentation learning include discrete and continuous methods [12].
Discrete methods convert dynamic graphs into snapshots at fixed in-
tervals, applying static graph representation learning techniques at
each timestamp. For example, TDGE [37] and CNR [23] use matrix
decomposition to obtain node representations, while GAE [14] and
VGAE [14] utilize encoding-decoding frameworks. Techniques like
DeepWalk [27] and Node2vec [7] generate node sequences through
random walks for representations, with DRS-SpikeNet [42] and
SpikeNet [19] focusing on efficient network evolution detection.
However, these snapshot-based approaches often lead to informa-
tion loss and fail to capture node states in real-time, prompting a
shift toward continuous representation learning [38].

Continuous dynamic graph representation learning uses event
sequences to capture structural and attribute changes in the net-
work at any time, resulting in finer-grained node representations
[34]. For instance, CTDNE [9] aggregates node walk sequences
to obtain representation, while GraphSAGE+T [8] and TGAT [35]
leverage Graph Neural Networks (GNNs) to aggregate neighbor-
hood information for representation. Furthermore, approaches like
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xGCN [29] and TGNs [28] combine the strengths of GNNs and
Recurrent Neural Networks (RNNs) to effectively capture temporal
dynamics. In contrast, methods like DGCN [6] employ an enhanced
Graph Convolutional Networks (GCNs), and [43] employs the Dual
Feature Interaction-based GCNs to capture node features and ob-
tain node embeddings. Self-supervised graph contrastive learning
methods, such as DySubc [3] andMNCS [17], are also used to obtain
representations. There are some methods that DyGFormer [40] and
S2GAE [31] use the encoder-decoder approach to obtain dynamic
representations. However, robust node representations need to in-
corporate not only immediate states but also historical information,
as nodes’ historical interaction events reveal behavioral patterns
that significantly impact future evolution.

To better capture the dynamics of interactions between nodes,
some models introduce the Hawkes point process [30] to model the
temporal evolution of node interactions. For example,the HTNE
[44] and TREND [33] models acquire node representations through
the excitation effects of historical events, simulating the “chain reac-
tion” effect in the evolution of dynamic networks. However, existing
Hawkes point process-based models often focus on node-level anal-
ysis, neglecting the critical role of local topology in predicting future
behavior. In dynamic networks, changes in local structures like ego
networks—formed by users and their connections, customers and
their purchases, or vehicles and traffic signals—profoundly impact
node interactions.
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Figure 1: Dynamic evolution of user ego networks in a social
network.

Figure 1 illustrates the evolution of collaboration in a co-author
network, where edges represent relationships. Researchers A and B,
initially unconnected, gradually form a link through the integration
of their local networks. As A collaborates more with B’s partners P
and M, A’s network evolves, leading to future interactions between
A and B. The evolution underscores the significant influence of
topological changes in predicting node behavior.

To efficiently model the critical role of historical topology in
network evolution and enhance dynamic node representations, we
propose a Hawkes Point Process-enhanced dynamic graph neural
network (HP-DGNN). This model captures the excitation effects of
both individual and structural histories on future interactions by
integrating their influences within the Hawkes point process, offer-
ing a comprehensive approach to predicting future node behavior.
The main contributions include:

• We propose a Hawkes Point Process-enhanced dynamic
graph neural network model that can simultaneously model
the excitation effects of individual and structural historical
behaviors on future behaviors.

• We design a method to compute Hawkes point process exci-
tation, with adaptive fusion parameters, to effectively embed
this mechanism within the graph neural network framework
by integrating individual and structural influences.

• Extensive experiments demonstrate that the proposed model
surpasses state-of-the-art methods in dynamic graph rep-
resentation tasks, confirming its effectiveness in modeling
graph evolution.

2 Related Work
Dynamic graph representation learning methods can be broadly cat-
egorized into twomain approaches: discrete representation learning
methods and continuous representation learning methods [39].

Discrete representation learning methods divide dynamic graphs
into multiple fixed time interval snapshots, and then perform repre-
sentation learning on each snapshot independently. These methods
typically use techniques such as matrix factorization, random walk,
and encoder-decoder architectures to combine the representation
of snapshots into a comprehensive representation of the dynamic
graph [1]. For example, the CNR [23] obtains node representations
by decomposing the adjacency matrix of static graph snapshots
and incorporating temporal information. Models like, GAE [14],
and VGAE [14] utilize an encoder-decoder framework to encode
the topology and attributes of the network, respectively, and recon-
struct the original graph through a decoder. VGAE [14] introduces
variational inference, representing node representations as proba-
bility distributions, from which node representation are sampled.
Additionally, random walk-based methods like DeepWalk [27] and
Node2Vec [7] generate node sequences by simulating randomwalks
and use techniques like skip-gram to obtain node representations.
Node2Vec [7] enhances the flexibility of random walks by introduc-
ing a biased sampling strategy. To improve computational efficiency,
SpikeNet [19] replaces traditional recurrent neural networks with
spiking neural networks to obtain efficient node representations.
Despite the simplicity and effectiveness of discrete representation
methods, they have notable drawbacks. First, determining the opti-
mal time interval for the dynamic graph is crucial—intervals that
are too fine increase computational overhead, while coarse inter-
vals result in information loss. Second, static snapshot aggregation
can only reflect dynamic graph changes at a coarse level, making
it difficult to capture continuous temporal evolution. Furthermore,
these methods can only obtain node representations at fixed time
points, preventing dynamic adjustments at any arbitrary moment
[18].

Continuous representation learning methods model directly on
the original dynamic graph, preserving the temporal continuity
of the network, thereby obtaining precise node representations[4].
CTDNE [9] uses temporal random walks to simulate the optimized
framework of DeepWalk [27] within a time window to obtain node
representations. Methods like GraphSAGE+T [8] and TGAT [35]
leverage GNNs to aggregate neighborhood information, with TGAT
[35] introducing temporal information to assign different weights
to different neighbors [41]. EvolveGCN [25] combines the advan-
tages of GCNs and RNNs, extracting node features and dynamically
adjusting model parameters. TGNs [28] use a memory module to
store long-term features of nodes, capturing dynamic behaviors
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Figure 2: The architecture of the Hawkes Point Process-enhanced Dynamic Graph Neural Network.

in dynamic graphs. Additionally, there are some graph contrastive
learning models, the SUGRL [22]: a new graph contrastive represen-
tation learning method. Although deep learning models perform
well in modeling continuous evolution in dynamic graphs, they
often overlook dependencies between interactions. Whether there
is an incentive effect among interactions and its decay over time is
a topic worthy of in-depth study. Temporal point processes provide
a theoretical foundation for modeling such dependencies. In models
such as HTNE [44], MMDNE [20], and TREND [33], the Hawkes
point process is employed to model the excitation effects of events.
HTNE [44] utilizes the Hawkes point process to update the weights
of neighboring nodes, while MMDNE [20] applies it to model the
occurrence of edge events, capturing the micro-dynamics in net-
work evolution. TREND [33] combines the Hawkes point process
to capture both individual and dynamic features of links. However,
existing Hawkes point process-based models primarily focus on
node-level analysis, often neglecting the substantial impact of local
topology on predicting future behaviors.

3 HP-DGNN
3.1 Overview of HP-DGNN
The architecture of HP-DGNN, illustrated in Figure 2, leverages
the Hawkes point process to model dynamic graph, which includes
three primary modules: (1) Hawkes-enhanced Node Embedding, (2)
Local topological Embedding based on Hawkes point process, and
(3) Hawkes-enhanced Interaction Modeling.

In Fig. 2(a), the node features are integratedwith low-dimensional
time embeddings to construct the embeddings of historical node in-
teractions. Node embeddings are generated by applying the Hawkes
matrix, followed by multi-layer temporal GNN aggregation [10].
Ordinary Differential Equations (ODE) are subsequently solved
to produce node embedding vectors at arbitrary timestamps [26],
which are then fed into the base intensity module of the conditional
probability intensity in the Hawkes point process.

In Fig. 2(b), temporal random walks are employed to gener-
ate node sequences for each node. These sequences are initially
weighted according to the interaction times via the Hawkes point

process, after which the local structural embeddings of the nodes
are derived using a positional encoder. These embeddings are input
into the historical excitation intensity module of the conditional
probability intensity in the Hawkes point process.

In Fig. 2(c) demonstrates the integration of local topological
embeddings (derived in Fig. 2(b)) with node features (from Fig. 2(a))
to construct the conditional probability intensity in the Hawkes
point process. This model encodes node sequences to establish the
conditional probability intensity, thereby modeling the influence of
local structural evolution around nodes on their future interactions.

The overall loss function of HP-DGNN is composed of two parts:
node dynamic loss and interaction loss. The node dynamic loss is
calculated by predicting node dynamics using the node embeddings
obtained in Fig. 2(a) via a node dynamic predictor. The interaction
loss is derived based on the interaction probability intensity con-
structed in Fig. 2(c), capturing the impact of historical and local
structural changes on node interactions.

3.2 Hawkes-enhanced Node Embeddings
Historical Interaction Embedding. In a dynamic network, a
node’s state is shaped not only by its intrinsic attributes but also
by its temporal interactions with other nodes. These historical in-
teractions encode crucial information that significantly influences
both the node’s current and future states. To capture these tem-
poral dependencies more effectively, we aggregate the historical
interaction data of nodes rather than merely relying on standard
GNN aggregation of neighboring node information.

To enrich the historical interaction embeddings, we incorporate
temporal embeddings with the node embeddings. For the interac-
tion generated by node 𝑖 at time 𝑡 , the edge 𝑒 (𝑖, 𝑗,𝑡 ) ∈ 𝐸 is considered.
The timestamp 𝑡 generates a 𝑑-dimensional temporal embedding
ℎ𝑡 using a temporal encoding function, which is then concatenated
with the embedding ℎ 𝑗 of node 𝑗 to construct the edge embedding
ℎ𝑒 (𝑖,𝑗,𝑡 ) :

ℎ𝑡 =

√︂
1
𝑑
[cos(𝜔1𝑡), sin(𝜔1𝑡), . . . , cos(𝜔𝑑𝑡), sin(𝜔𝑑𝑡)] ,

ℎ𝑒 (𝑖,𝑗,𝑡 ) = ℎ 𝑗 ∥ ℎ𝑡 .
(1)
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This design effectively encodes temporal dynamics, allowing the
model to retain key historical interaction details that are crucial for
accurately modeling the temporal evolution of a node’s state.

HawkesWeight Coefficient. Temporal interactions exert vary-
ing degrees of influence on a node’s state, with the impact naturally
attenuating over time. To model this decay, we introduce a softmax
function to compute the Hawkes weight coefficient at the times-
tamp 𝑡 , which quantifies the temporal influence of past interactions.

𝛼𝑡 = softmax(𝛾 (𝑡 − 𝑡hist)), (2)
where 𝛾 is a learnable parameter, and 𝑡hist denotes the timestamp
of the historical interaction events. The softmax normalization en-
sures that the resulting time weight coefficient 𝛼𝑡 accurately reflects
the relative influence of historica interactions, thereby capturing
the temporal decay in a principled manner.

Hawkes-weighted Historical Interaction Embedding. The
final historical interaction embeddings for the node is computed as:

ℎ𝐻𝑎𝑤𝑘𝑒𝑠
𝑒 (𝑖,𝑗,𝑡 ) = 𝛼𝑡 · ℎ𝑒 (𝑖,𝑗,𝑡 ) , (3)

where𝛼𝑡 serves as the Hawkes weight coefficient at the timestamp 𝑡 ,
modulating the influence of the historical interaction ℎ𝑒 (𝑖,𝑗,𝑡 ) based
on the temporal context. This weighted embeddings effectively cap-
tures the decaying significance of historical interactions, ensuring a
more accurate modeling of temporal dynamics in node embeddings.

DGNN based on the Hawkes Point Process. The two-layers
Dynamic GraphNeural Network (DGNN) leveragesHawkes-weighted
historical interaction information to compute the node embeddings
ℎ𝑙𝑡 (𝑖):

ℎ𝑙𝑡 (𝑖) = 𝛿
©«ℎ𝑒 (𝑖,𝑗,𝑡 )𝑊 𝑙

self + 𝛼𝑡
©«

∑︁
(𝑖, 𝑗,𝑡 ) ∈𝐸

ℎ𝑒 (𝑖,𝑗,𝑡 )𝑊
𝑙−1
hist

ª®¬ª®¬ , (4)

where ℎ𝑒 (𝑖,𝑗,𝑡 ) is the 𝑑-dimensional historical interaction embed-
dings,𝑊 𝑙

self and𝑊
𝑙−1
hist are trainable parameters of the neural net-

work, 𝑙 indicates which layer of the neural network, and 𝛼𝑡 is the
temporal weighting factor of the 𝑡 .

Given that node interactions may remain stable over certain time
intervals—resulting in low discriminability when relying solely on
GNN-derived node embeddings—particularly in regions where node
interactions exhibit minimal change, we introduce an ODE solver
[11] to refine node embeddings across different timestamps, where
the ODE is differentiable:

ℎ̂ = ODE(𝑓 (·), ℎ, [𝑡0, 𝑡1]), (5)
here, 𝑓 (·) represents a known differential equation. For this study,
we use:

𝑑𝑦

𝑑𝑡
= −2𝑦 + sin 𝑡, (6)

where 𝑦 denotes the initial node embeddings, 𝑡 represents time, and
𝑦 is the dependent variable. ℎ̂ is the node embeddings obtained at
time 𝑡1 after processing through the ODE solver. The initial node
embeddings ℎ is derived from GNN aggregation at time 𝑡0, and
[𝑡0, 𝑡1] indicates the time interval over which the computation is
performed.

3.3 Local Topological Embedding based on
Hawkes Point Process

This section presents the derivation of local topological embeddings
for nodes, which is accomplished through a time-biased random
walk over neighboring nodes, followed by encoding the sampled
sequences and aggregating them via attentionmechanisms to obtain
the final node embeddings.

Time-biased RandomWalk. For a node 𝑖 ∈ 𝑉 involved in an
interaction event 𝑒 = (𝑖, 𝑗, 𝑡) ∈ 𝐸, where 𝑁𝑡 (𝑖) and 𝑁𝑡 ( 𝑗) denote
the neighborhoods of nodes 𝑖 and 𝑗 at time 𝑡 , a time-biased random
walk is conducted over these neighborhoods as formulated below
[11] :

Pr𝑡 (𝑎) =
exp(𝛼 (𝑡𝑎 − 𝑡))∑

𝑎′∈𝑁𝑡 (𝑖 ) exp(𝛼 (𝑡𝑎′ − 𝑡)) , (7)

Pr𝑠 (𝑎) =
exp(−𝛽/𝑑𝑎)∑

𝑎′∈𝑁𝑡 ( 𝑗 ) exp(−𝛽/𝑑𝑎′ )
, (8)

here, 𝛼 and 𝛽 are hyperparameters, 𝑡𝑎 represents the timestamp of
node 𝑎’s interaction with its neighbors, and 𝑑𝑎 indicates the degree
of node 𝑎 at time 𝑡 .

Node Sampling Sequence [27]. Let Seq𝑡 (𝑖) = {seq1, seq2, . . . , seq𝑚}
and Seq𝑡 ( 𝑗) = {seq1, seq2, . . . , seq𝑚} represent the sampled se-
quences for nodes 𝑖 and 𝑗 , respectively. Each sequence element
seq𝑛 = {(𝑖, 𝑗, 𝑘)} is such that 𝑗, 𝑘 ∈ 𝑉 and 𝑛 < 𝑚, ensuring that the
interaction between (𝑖, 𝑗) occurs after that between ( 𝑗, 𝑘).

Hawkes Weighting Coefficient. The influence of interactions
varies with time, and this temporal impact is quantified using a
Hawkes weighting coefficient computed as follows:

𝛼𝑡 = softmax(𝛿 (𝑡 − 𝑡hist)), (9)
where 𝛿 is a learnable parameter, and 𝑡hist is the timestamp of
historical interactions.

Sequence Encoding and Weighting. For each sampled se-
quence seq𝑛 = {(𝑖, 𝑗, 𝑘), ...}, the sequence embedding is computed
by:

ℎ𝑡seq𝑛 = linear(𝛼𝑡𝑖 ∗ ℎ
𝑙
𝑡 (𝑖), 𝛼𝑡𝑗 ∗ ℎ

𝑙
𝑡 ( 𝑗), 𝛼𝑡𝑘 ∗ ℎ𝑙𝑡 (𝑘)), (10)

where 𝛼𝑡
𝑖
, 𝛼𝑡

𝑗
, and 𝛼𝑡

𝑘
are the Hawkes weights corresponding to

nodes 𝑖 , 𝑗 , and 𝑘 at time 𝑡 , and ℎ𝑙𝑡 (𝑖), ℎ𝑙𝑡 ( 𝑗), and ℎ𝑙𝑡 (𝑘) are their
respective embeddings at time 𝑡 .

Node Local Topological Representation. The sequence em-
beddings are then aggregated using a neural network to produce
the final local topological embeddings:

𝑆𝑡 (𝑖) = 𝑓 (ℎ (𝑡1 )seq1 , . . . , ℎ
(𝑡𝑛 )
seq𝑛 , . . . , ℎ

(𝑡𝑚 )
seq𝑚 ), 𝑡1 < 𝑡𝑛 < 𝑡𝑚 < 𝑡 (11)

where 𝑆𝑡 (𝑖) and 𝑆𝑡 ( 𝑗) represent the temporal random walk encod-
ings for nodes 𝑖 and 𝑗 , respectively, serving as their local topological
embeddings.

3.4 Hawkes-Enhanced Interaction Modeling
In this section, we detail the construction of the conditional inten-
sity function for interaction occurrences, which is subsequently
used as the probability of interaction. We also introduce the full
loss function designed to optimize the model.
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Conditional Probability Intensity. The conditional probabil-
ity intensity in the Hawkes process quantifies the probability of an
interaction occurring:

𝜆(𝑡) = 𝜇 +
∑︁
𝑖

𝜔 (𝑡 − 𝑡𝑖 ), (12)

where 𝜇 is the base intensity of interaction occurrence, and
∑
𝑖

captures the impact of historical interactions occurring at times
𝑡𝑖 before 𝑡 . The function 𝜔 (𝑡 − 𝑡𝑖 ) models the influence of each
historical interaction, expressed as:

𝜔 (𝑡 − 𝑡𝑖 ) = 𝛼 exp(−𝛽 (𝑡 − 𝑡𝑖 )), (13)
here, 𝛼 denotes the weight of each interaction’s influence, while
𝛽 represents the decay rate, illustrating that the influence of past
interactions diminishes over time.

Hawkes point Process for Dynamic Graphs. In dynamic
graphs, the interaction probability 𝑝 between nodes 𝑖 and 𝑗 at time
𝑡 is influenced by both the base intensity 𝜇

(𝑖, 𝑗 )
𝑏𝑎𝑠𝑒

and the historical

interaction influence 𝜇 (𝑖, 𝑗 )
ℎ𝑖𝑠𝑡

prior to 𝑡 [36]:

𝜆(𝑖, 𝑗 ) (𝑡) = 𝜇
(𝑖, 𝑗 )
𝑏𝑎𝑠𝑒

+ 𝜔𝑡
ℎ
𝜇
(𝑖, 𝑗 )
ℎ𝑖𝑠𝑡

, (14)

where 𝜔𝑡
ℎ
adjusts the weight between historical influence and base

intensity.
Base Intensity.

𝜇
(𝑖, 𝑗 )
𝑏𝑎𝑠𝑒

= sigmoid
(
𝐹𝐶𝐿𝑒

((
ℎ𝑙𝑡 (𝑖), ℎ𝑙𝑡 ( 𝑗)

)2
, 𝜃𝑒

))
, (15)

here, ℎ𝑙𝑡 (𝑖) and ℎ𝑙𝑡 ( 𝑗) are the feature vectors of nodes 𝑖 and 𝑗 at time
𝑡 . The fully connected layer 𝐹𝐶𝐿𝑒 projects the difference of these
feature vectors into the interaction intensity, represented by the
base intensity. The trainable parameters of the layer are denoted
by 𝜃𝑒 .

Historical Incentive Effect. The influence of historical interac-
tions is modulated by their temporal incentive effect. We calculate
the historical incentive by weighting different historical times based
on the dissimilarity between local embeddings:

𝜏𝑡 = softmax(−𝜔 (𝑡 − 𝑡 ′)), (16)
where 𝑡 − 𝑡 ′ represents the time difference between the current and
historical interactions, and 𝜔 is a hyperparameter controlling the
temporal decay. The local embeddings of the node is then weighted
as (11).

The historical incentive effect is then computed as:

𝜇
(𝑖, 𝑗 )
ℎ𝑖𝑠𝑡

= sigmoid(𝐹𝐶𝐿𝑒 ((𝑆𝑡 (𝑖), 𝑆𝑡 ( 𝑗))2, 𝜃𝑠 )), (17)

where 𝑆𝑡 (𝑖) and 𝑆𝑡 ( 𝑗) are the local structural embeddings of nodes
𝑖 and 𝑗 at time 𝑡 , respectively. The fully connected layer 𝐹𝐶𝐿𝑒 and
parameter vector 𝜃𝑠 are used to compute the historical incentive.

3.5 Loss Function
In this section, we will introduce the composition of the model’s
loss function.

NodeDynamic Loss. By inputting the node embeddings vectors
into the node dynamic estimator, the loss 𝑙𝑜𝑠𝑠𝑑 is obtained [33].

loss𝑑 = 𝑓 (ℎ𝑙𝑡 (𝑖)), (18)
where ℎ𝑙𝑡 (𝑖) represents the node embeddings.

Interaction Loss. For a time series sample 𝐺 , the Hawkes loss
function is defined as:

loss𝜃 = − log(𝜆(𝑖, 𝑗 ) (𝑡)) −𝑄E𝑘∈𝑃𝑛 log(1 − 𝜆(𝑖,𝑜 ) (𝑡)), (19)

where 𝜃 = (𝛼, 𝛽, 𝜃𝑡 , 𝜃𝑠 , 𝜔, 𝜔ℎ) represents the model parameters,
𝑄 is the number of negative samples, and 𝑝𝑛 is the node degree
distribution, defined as 𝑝𝑛 ∝ deg(𝑣)

3
4 , to ensure robust performance

across varying node degrees.
Overall Loss. The global loss consists of the dynamic loss of

nodes and the interaction loss. The 𝜇 represents the proportion of
dynamic node loss, which is artificially set.

loss = loss𝜃 + 𝜇loss𝑑 . (20)

In summary, by calculating the conditional intensity of interac-
tions using both node representations and expanded embeddings,
the model minimizes loss and optimizes its parameters. The training
process for this model is detailed in Algorithm 1.

Algorithm 1: The training process for HP-DGNN
Input: A temporal graph 𝐺 : 𝐺 = {𝑉 , 𝐸,𝑇 , 𝑋 }; feature

dimensions 𝑑 ; the learning rate 𝜂; sequence coding
method 𝑓 and encoding step size 𝜔

Output: Optimized parameters 𝜃 = (𝛼, 𝛽, 𝜃𝑡 , 𝜃𝑠 , 𝜔, 𝜔ℎ)
1 Initialize: Set Spatial-bias = 0.5 and Time-bias = 10−6; the

weight of node degree loss: nocedf (different datasets have
different settings);

2 for each 𝑐𝑖 = (𝑖, 𝑗, 𝑡) ∈ 𝐸 do
3 for each 𝑝𝑖 ∈ 𝑁𝑖 and 𝑝 𝑗 ∈ 𝑁 𝑗 do
4 Select Node 𝑣𝑚 ; // Eq. (7) and (8)

5 Append 𝑣𝑚 to 𝑆𝑒𝑞(𝑖) ; // Append to sequence

6 Append 𝑣𝑚 to 𝑆𝑒𝑞( 𝑗)
7 𝑆𝑡 (𝑖) = 𝑓 (𝑆𝑒𝑞(𝑖), 𝑆𝑒𝑞( 𝑗)) ; // Eq. (11)

8 Get the embeddings of nodes 𝑖 and 𝑗 ;

9 𝜆(𝑖, 𝑗 ) (𝑡) = 𝑓𝜃 (ℎ𝑙𝑡 (𝑖), ℎ𝑙𝑡 ( 𝑗), 𝑆𝑡 (𝑖), 𝑆𝑡 ( 𝑗)) ; // The event

intensity of 𝑐𝑖 = (𝑖, 𝑗, 𝑡) ∈ 𝐸

10 loss𝜃 = − log(𝜆(𝑖, 𝑗 ) (𝑡)) −𝑄E(log(1 − 𝜆(𝑖,𝑜 ) (𝑡))) ;
// Eq. (19)

11 loss𝑑 ; // Eq. (18)

12 The overall loss: 𝑙𝑜𝑠𝑠; // Eq. (20)

13 Update 𝜃 = (𝛼, 𝛽, 𝜃𝑡 , 𝜃𝑠 , 𝜔, 𝜔ℎ)

4 Experiments and Results
4.1 Experimental Setup
Datasets. We evaluated the generalization capability of our pro-
posed model on three real-world datasets, as summarized in Table 1.
The "Proportion of New Nodes" indicates the percentage of testing
events involving nodes that were not observed during the training
phase.
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Table 1: Datasets Overview

Dataset CollegeMsg cit-Hepth Wikipedia

Edges 59,835 21,315 157,474
Nodes 1,899 7,577 8,227
Node Features – 128 172
Multiple Edges Yes No Yes
Proportion of New Nodes 22.79% 100% 7.26%

• CollegeMsg [24]:This dataset records privatemessage exchanges
between users within an online social network. Each event repre-
sents a message sent between two users. Users could search for
others on the platform and send messages based on their profile
information. The dataset includes edge timestamps, with nodes
indexed starting from zero.

• cit-Hepth [16]: This dataset contains citation relationships in
the domain of high-energy physics, specifically from the arXiv
HEP-TH collection. Each edge represents a citation between two
papers. The paper content was embedded into a feature space
using word2vec [21].

• Wikipedia [15]:This dataset tracks user edit histories onWikipedia
pages. Each event denotes a user’s edit on a Wikipedia page
within a specific month. The text features are represented as
172-dimensional LIWC [5] features, while edit frequency serves
as a measure of node activity.

Comparison Methods. We benchmark our proposed method
against the following state-of-the-art models:
• DeepWalk [27]: An embedding method utilizing random walks
combined with the Skip-gram model to derive node representa-
tions from sequences of nodes.

• Node2vec [7]: An extension of DeepWalk that introduces flex-
ible parameters to guide the random walk strategy, effectively
capturing a diverse range of node features.

• VGAE [14]: A variational graph autoencoder that represents
graph structures probabilistically, learning latent node represen-
tations through a variational approach.

• GAE [14]: A GCN method that encodes node features into low-
dimensional embeddings using an encoder-decoder architecture.

• GraphSAGE [8]: A framework that samples and aggregates
neighborhood information to produce embeddings for target
nodes, designed to generalize across different graphs.

• CTDNE [9]: Employs a time-aware random walk approach to
capture the dynamic characteristics of networks by incorporating
temporal contexts.

• EvolveGCN [25]: A dynamic GCN model that utilizes RNN to
update GCN parameters, adapting to temporal changes within
the graph.

• GraphSAGE+T [8]: Enhances the GraphSAGE framework by
integrating temporal information, enabling the model to better
capture time-evolving dynamics.

• TGAT [35]: A temporal graph attention network that uses time
encoding and attention mechanisms to model time-dependent
relationships in dynamic graphs.

• HTNE [44]: A Hawkes process-based model that quantifies the
influence of temporal neighborhood sequences on nodes, effec-
tively modeling historical interactions through event excitation.

• MMDNE [20]: An embedding approach that combines macro
and micro perspectives to dynamically update node representa-
tions, capturing temporal structural changes.

• TREND [33]: Integrates the Hawkes process with graph neural
networks to model dynamic interactions and excitation features
between nodes.

Downstream Tasks. We evaluate our proposed method using
two downstream tasks in dynamic graph representation learning:
Dynamic Link Prediction and Node Degree Prediction.
• Dynamic Link Prediction [33]: This task is to predict whether
a link will form in the future. Given a dataset, divide it according
to a specific timestamp. Interactions before time t are the training
set 𝑡 train, and interactions after time 𝑡 train are the test set. Given
an edge (𝑖, 𝑗, 𝑡) where 𝑡 > 𝑡 train, use HP-DGNN to generate
node representations, and input these node representations into a
downstream logistic classifier to determine whether it is positive
or negative, in order to judge whether two nodes will form a link.
The task’s performance is assessed using Accuracy and F1-score
as evaluation metrics.

• Node Degree Prediction [33]: The mean absolute error(MAE)
between the number of new connections generated at future time
points and the predicted values. Compare the number of predicted
new connections obtained by inputting the node representations
generated by the model into the node dynamic predictor with
the actual number of connections, and calculate the MAE.

4.2 Parameter Settings
For the CollegeMsg and cit-Hepth datasets, the model’s embedding
dimension is configured to 32, while for the Wiki dataset, it is set
to 16. The neural network architecture comprises 3 layers. The
ODE solver employs the RK-4 method [2], with both the GNN
depth and the sampling depth set to 10. To ensure robustness and
generalizability of the experimental results, the experiments are
repeated multiple times across varying time windows, ranging from
1 to 10.

4.3 Experimental Comparison
Table 2 presents the performance comparison between the pro-
posed HP-DGNN model and several baseline models on the link
prediction task, evaluated across three datasets. The metrics used
for evaluation are accuracy and F1-score, with all values expressed
as percentages.

As illustrated in Table 2, the HP-DGNN model consistently
demonstrates superior performance in link prediction tasks across
all datasets. This performance advantage, particularly over other
temporal models such as HTNE, MMDNE, and TREND, can be at-
tributed to HP-DGNN’s comprehensive modeling approach, which
integrates node representations with local historical topological in-
formation. This method effectively captures the temporal evolution
of a node’s local topology, leading to more accurate predictions of
future links.

Among dynamic graphmodels, GraphSAGE shows improved pre-
dictive accuracy over static models like DeepWalk and Node2Vec by
incorporating temporal aspects. The HTNE model, which accounts
for the excitation effects of historical interactions, also shows strong
predictive capabilities for future links. MMDNE and TREND further
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Table 2: Performance of Different Models on Temporal Link Prediction Task.
The table data is presented as percentages, with the best result in each column bolded and the second-best underlined.

Model CollegeMsg cit-HepTh Wikipedia

Accuracy F1 Accuracy F1 Accuracy F1

DeepWalk 66.54% ± 5.36 67.86% ± 5.86 51.5% ± 50.90 50.39% ± 0.98 65.12% ± 0.94 64.25% ± 1.32
Node2Vec 65.82% ± 4.12 69.10% ± 3.50 62.68% ± 1.90 66.13% ± 2.15 75.52% ± 0.58 75.61% ± 0.52
VGAE 65.82% ± 5.68 68.73% ± 4.49 66.79% ± 2.58 67.27% ± 2.84 66.35% ± 1.48 68.04% ± 1.18
GAE 62.54% ± 5.11 66.97% ± 3.22 69.52% ± 1.10 70.28% ± 1.33 68.70% ± 1.34 69.74% ± 1.43
GraphSAGE 58.91% ± 3.67 60.45% ± 4.22 70.72% ± 1.96 71.27% ± 2.41 72.32% ± 1.25 73.39% ± 1.25
CTDNE 62.55% ± 3.67 65.56% ± 2.34 49.42% ± 1.86 44.23% ± 3.92 60.99% ± 1.26 62.71% ± 1.49
EvolveGCN 63.27% ± 4.42 65.44% ± 4.72 61.57% ± 1.53 62.42% ± 1.54 71.20% ± 0.88 73.43% ± 0.51
GraphSAGE+T 69.09% ± 4.91 69.41% ± 5.45 67.80% ± 1.27 69.12% ± 1.12 57.93% ± 0.93 63.41% ± 0.91
TGAT 58.18% ± 4.78 57.23% ± 7.57 78.02% ± 1.93 78.52% ± 1.61 76.45% ± 0.91 76.99% ± 1.16
HTNE 73.82% ± 5.36 74.24% ± 5.36 66.70% ± 1.80 67.47% ± 1.16 77.88% ± 1.56 78.09% ± 1.40
MMDNE 73.82% ± 5.36 74.10% ± 3.70 66.28% ± 3.87 66.70% ± 3.39 79.76% ± 0.89 79.87% ± 0.95
TREND 74.55% ± 1.95 75.64% ± 2.09 80.37% ± 2.08 81.13% ± 1.92 83.75% ± 1.19 83.86% ± 1.24
HP-DGNN 91.22% ± 0.33 91.1% ± 0.33 87.16% ± 0.17 87.47% ± 1.05 84.61% ± 1.57 84.64% ± 1.48

refine dynamic network modeling by combining both macro- and
micro-structural information. HP-DGNN surpasses these models by
holistically integrating both local historical topology and historical
interactions, utilizing the Hawkes point process to effectively track
changes in node relationships. This capability allows HP-DGNN to
more precisely predict shifts in interaction patterns, offering a more
reliable and comprehensive tool for dynamic network analysis.

Table 3: Performance comparison on the node degree predic-
tion task across different datasets. The results are reported as
mean absolute error (MAE). The best results are highlighted
in bold.

Model CollegeMsg cit-Hepth Wikipedia

CTDNE 10.0360 3.0173 7.3265
EvolveGCN 3.1964 2.5610 6.8651
GraphSAGE+T 21.9444 2.2421 5.9231
TGAT 2.6903 2.8094 7.7737
HTNE 12.3587 3.2781 6.8860
MMDNE 8.0555 2.7456 6.9552
TREND 2.3549 2.2066 5.9140
HP-DGNN 0.6506 2.7972 5.6319

In addition, we conducted comparative experiments on the node
degree prediction task, as shown in Table 3. The results indicate that
HP-DGNN outperforms other baseline models on the CollegeMsg
andWikipedia datasets, though it underperforms on cit-Hepth. This
discrepancy may be due to the distinct characteristics of the cit-
Hepth dataset, where connections are unevenly distributed, with
21,315 edges concentrated within just 78 timestamps. In contrast,
the CollegeMsg and Wikipedia datasets have more uniformly dis-
tributed edges, with 59,835 and 157,474 edges respectively, spanning
a longer timeframe. This disparity in edge distribution could have
influenced the model’s predictive performance on cit-Hepth.

Figure 3: Ablation study results: Performance comparison
across different model configurations on the cit-Hepth, Col-
legeMsg, and Wikipedia datasets. The full HP-DGNN model,
which integrates both neighbor and historical interaction
information.

4.4 Ablation Study
To evaluate the contribution of different components within our
model to the temporal link prediction task, we conducted an abla-
tion study. The study examined the performance under the follow-
ing configurations: (1) Using traditional GNNs for node embedding
without additional modules, (2) Integrating only the component:
Hawkes-enhanced node embeddings, (3) Integrating only the com-
ponent: local topological embedding based on Hawkes point pro-
cess, and (4) Incorporating historical interaction information to
construct the Hawkes conditional intensity function.

As illustrated in Fig. 3, the experimental results suggest that the
complete HP-DGNN model generally outperforms other configura-
tions on the CITE and Wikipedia datasets, demonstrating strong
performance. On the CollegeMsg dataset, the performance of the
complete HP-DGNN model is slightly lower than that of the model
with Hawkes-enhanced node representations. However, after incor-
porating the Hawkes-enhanced node representation module, the
model achieves the best performance. Further analysis indicates
that, in dynamic graph datasets, the presence of a large number
of timestamps tends to enhance the model’s performance (GNN +
InterAction), while excessive edge sparsity may lead to a decline in
performance (GNN + Hawkes). Overall, the complete HP-DGNN
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Figure 4: Parameter analysis results: (a) Node dynamic weight, (b) ODE encoding step size, and (c) Number of negative samples.

model performs well across the CITE, CollegeMsg, and Wikipedia
datasets. The interaction between these modules enables the model
to more effectively capture patterns in node evolution, leading to
improved predictive accuracy, stable performance, and competitive
potential.

4.5 Parameter Analysis
We examine three critical hyperparameters in the HP-DGNNmodel:
node dynamic weight, ODE encoding step size, and the number of
negative samples. This analysis provides insights into their influ-
ence on model performance in tasks such as link prediction and
node degree prediction.

Node Dynamic Weight: The node dynamic weight balances
the influence of historical interactions and immediate neighbors.
As shown in Fig. 4 (a), increasing this weight generally enhances
performance. For cit-Hepth, a weight of 1.5 is optimal, suggesting
a greater emphasis on dynamic history is beneficial. In contrast,
Wikipedia achieves the best results with a weight of 0.5, indicating
that less focus on history suits its temporal characteristics. Col-
legeMsg performs best with a balanced weight of 1.25. These results
highlight the need to adjust the node dynamic weight according to
the dataset’s specific temporal and structural properties.

ODE Encoding Step Size: The step size controls how the model
captures the evolution of node states. As shown in Fig. 4 (b), a
step size of 0.75 yields the best results for cit-Hepth, while 0.5
is optimal for CollegeMsg. An appropriate step size is crucial to
balance capturing temporal dynamics without losing resolution or
incurring overfitting.

Number of Negative Samples: According to the experimental
results. Fig. 4 (c), increasing the number of negative samples does
not improve the model’s performance. The model achieved con-
sistent results across different datasets, with optimal performance
observed when there was only one negative sample.

In summary, optimal settings for these hyperparameters depend
on the dataset’s characteristics. Proper tuning allows the HP-DGNN
model to effectively capture dynamic graph structures, leading to
improved performance in graph representation tasks.

5 Conclusion and Future Work
This paper introduces a novel Hawkes Point Process-Enhanced Dy-
namic Graph Neural Network, designed to address the limitations of
existing dynamic graph representation learning methods. By lever-
aging the Hawkes point process, HP-DGNN effectively models the
excitation effects of both individual node histories and structural
histories, offering a comprehensive framework that captures the
complex temporal patterns governing network evolution. Unlike
previous approaches that primarily focus on node-level dynamics,
our method integrates both individual and structural influences into
the computation of Hawkes conditional intensity, allowing for a
more holistic understanding of graph evolution. Through extensive
experiments on dynamic link prediction and future node degree
prediction tasks, HP-DGNN consistently outperforms 12 state-of-
the-art methods, demonstrating superior accuracy, generalization,
and robustness. The integration of local topological information
and historical interactions enables our model to capture the intri-
cate dependencies within dynamic graphs, highlighting its potential
as a powerful tool in graph machine learning. Future work will
explore the model’s applicability to multi-type nodes and edges,
long-range dependencies, and large-scale dynamic graphs, with the
aim of further enhancing the model’s applicability and efficiency.
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