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Abstract

Graph contrastive learning (GCL) has become a hot topic
in the field of graph representation learning. In contrast to
traditional supervised learning relying on a large number
of labels, GCL exploits augmentation strategies to gener-
ate multiple views and positive/negative pairs, both of which
greatly influence the performance. Unfortunately, commonly
used random augmentations may disturb the underlying se-
mantics of graphs. Moreover, traditional GNNs, a type of
widely employed encoders in GCL, are inevitably confronted
with over-smoothing and over-squashing problems. To ad-
dress these issues, we propose GNN-Transformer Coopera-
tive Architecture for Trustworthy Graph Contrastive Learn-
ing (GTCA), which inherits the advantages of both GNN and
Transformer, incorporating graph topology to obtain compre-
hensive graph representations. Theoretical analysis verifies
the trustworthiness of the proposed method. Extensive ex-
periments on benchmark datasets demonstrate state-of-the-art
empirical performance.

Code — https://github.com/a-hou/GTCA

Introduction
Compared with traditional supervised learning, self-
supervised learning eliminates the dependence on labels. As
one of the most representative methods of self-supervised
learning, contrastive learning has been widely applied in the
graph domain, i.e., Graph Contrastive Learning (GCL). GCL
utilizes multiple views and positive/negative pairs for node/-
graph representations (Zhu et al. 2020; Peng et al. 2020;
Zhu, Sun, and Koniusz 2021; Yin et al. 2022; Liu et al.
2023), the performance of which are influenced by augmen-
tation strategies, graph encoders and loss functions.

Different from computer vision domain where augmented
images obtained with cropping, rotation, and other strate-
gies usually retain the same semantic as the original images
(Shorten and Khoshgoftaar 2019), graph augmentation will
disturb the underlying semantics of graphs, which may af-
fect the performance on downstream tasks (Li et al. 2022).
Figure 1 (a) shows that even after randomly cropping or
changing the color of an image, the underlying semantic still
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Figure 1: Augmentations on image (a) keep the semantic
information, while augmentations on graphs (b) change the
underlying semantic information.

remains the same, which we can still easily recognize. Fig-
ure 1 (b) presents that removal of an atom or edge from the
molecules may change their structures, resulting in different
compounds. In order to address this issue, a number of aug-
mentation strategies on graphs spring up. GCA (Zhu et al.
2021) introduces learnable adaptive augmentation strategies
with the structural and attribute characteristics of graphs for
GCL. GCS (Wei et al. 2023) employs gradient-based strate-
gies to differentiate between semantics and environment
within graphs. It perturbs the environment while maintain-
ing the semantics to obtain positive pairs, and perturbs the
semantics while preserving the environment to obtain nega-
tive pairs. However, effective augmentation strategies must
achieve a balance between the preservation of graph struc-
tural information and the generation of meaningful views
(Suresh et al. 2021). Poorly designed augmentations may re-
sult in redundant or irrelevant information generation, lead-
ing to inferior performance.

Most of the existing GCL methods exploit GNNs as graph
encoders (Veličković et al. 2019; Hassani and Khasahmadi
2020; Mo et al. 2022; Lee, Lee, and Park 2022; Shen et al.
2023). GNNs iteratively propagate, transform, and aggre-
gate representations from topological neighbors to progres-
sively update node features (Kipf and Welling 2017; Hamil-
ton, Ying, and Leskovec 2017; Zhang et al. 2022a). With
multi-layer stacking, these local features are progressively
integrated to form a comprehensive perception of the en-



tire graph structure. While this mechanism is particularly
effective in handling local dependencies, especially in cap-
turing both direct and indirect relation between nodes, it
fails to capture complex global structures and long-range
dependencies within graphs (Xu et al. 2019; Garg, Jegelka,
and Jaakkola 2020). In contrast, Graph Transformers (GTs)
are capable of effectively capturing global dependencies
between nodes with self-attention mechanisms (Veličković
et al. 2018; Yun et al. 2019; Kreuzer et al. 2021). GTs can
handle long-range dependencies within graphs, rather than
being confined to local neighborhoods. By calculating at-
tention scores between nodes, GTs update node representa-
tions with all other nodes in the graph, thereby effectively in-
tegrating global information. This mechanism enables GTs
to model complex interactions and long-term dependencies
between nodes. Therefore, they are more flexible and accu-
rate in handling dependencies between distant nodes (Yun
et al. 2019), which is ignored by existing GCL methods
in choosing graph encoders to learn node/graph represen-
tations. However, the quadratic complexity of GTs limits
the scalability. Currently, some works introduce linear at-
tention mechanisms to improve scalability for large-scale
graphs (Wu et al. 2022, 2024; Liang, Chen, and Liang 2024).

Existing GCL methods mostly use InfoNCE as their loss
functions (Zhu et al. 2020; Zhang et al. 2022b, 2023), where
each anchor point has only one positive pair. Therefore,
when calculating the loss, nodes from the same class as the
anchor point are pushed away. This may lead to ignorance of
the potential information from similar nodes when handling
node feature similarity tasks (Shen et al. 2023). While this
design effectively encourages the model to distinguish be-
tween positive and negative pairs, it may lead to insufficient
aggregation of nodes from the same class, thereby affecting
the ability to represent graph data and capture graph struc-
tures.

In order to address the issues above, we propose a novel
method called GNN-Transformer Cooperative Architec-
ture for Trustworthy Graph Contrastive Learning (GTCA).
GTCA utilizes GCN and NodeFormer, a linear GT as graph
encoders to generate node representation views without ran-
dom augmentation strategies. In addition, it utilizes topolog-
ical property of graphs to generate topology structure view.
Furthermore, we design a novel loss function to exploit the
intersection of the node representation views and topology
structure view as positive pairs. The contributions are sum-
marized follows:

• We utilize both GCN and NodeFormer as graph encoders
to capture comprehensive perception of graphs, which
has not been well explored in the field of GCL to our
best knowledge.

• We generate topology structure view with topologi-
cal property of graphs. Therefore, we introduce an
augmentation-free strategy for GCL, which can enhance
efficiency and avoid the potential risks of disturbing the
underlying semantics of graphs.

• We design a novel contrastive loss function with multi-
ple positive pairs for each node. Theoretical analysis and
experimental results demonstrate the effectiveness of the

GTCA method.

Related Work
Graph Contrastive Learning. Current GCL methods can
be categorized into three mainstream paradigms: DGI
framework (Veličković et al. 2019), InfoNCE frame-
work (Oord, Li, and Vinyals 2018) and BGRL frame-
work (Thakoor et al. 2022).

DGI aggregates the features of all nodes in the graph to
obtain a global feature, then maximizes the mutual infor-
mation between the global feature and the node features
to learn node representations. Based on this framework,
MVGRL (Hassani and Khasahmadi 2020) further advances
the development of unsupervised graph contrastive learn-
ing through the adoption of graph diffusion and subgraph
sampling methods. In spite of the competitive performance,
global features in these methods may be insufficient to retain
node-level embedding information.

GRACE (Zhu et al. 2020) first utilizes the InfoNCE loss
to maximize the mutual information between positive pairs
under two augmented views, while minimizing the mutual
information between negative pairs to learn node represen-
tations. This principle is widely used in both node classi-
fication (Zhu et al. 2021; Zhang et al. 2023; Shen et al.
2023) and graph classification (You et al. 2020; Hassani and
Khasahmadi 2020; Wei et al. 2023) tasks. While these meth-
ods achieve significant success, they still suffer from sam-
pling bias issues.

BGRL uses the BYOL (Grill et al. 2020) method to re-
move negative pairs, thereby reducing computational com-
plexity. However, it relies on graph augmentation to obtain
positive pairs, which may disturb the underlying seman-
tics of the graph. AFGRL (Lee, Lee, and Park 2022) ex-
tends BGRL (Thakoor et al. 2022) with an augmentation-
free strategy and utilizes k-means for positive pair sampling.
However, the randomness of k-means may influence the per-
formance of down-stream tasks.
Graph Augmentation. The existing graph augmentation
strategies include node dropping (You et al. 2020), edge
perturbation (Qiu et al. 2020; Zhang et al. 2023), attribute
masking (Zhu et al. 2021; Zhang et al. 2022b) and subgraph
extraction (Hassani and Khasahmadi 2020). GRACE (Zhu
et al. 2020) employs random edge perturbation and node
feature masking to generate two views. GCA (Zhu et al.
2021) proposes an adaptive augmentation strategy which in-
tegrates both structural and attribute information. Similarly,
GCS (Wei et al. 2023) utilizes the structural and semantic in-
formation to achieve adaptive graph augmentation. Further-
more, CI-GCL (Tan et al. 2024) proposes a community in-
variant GCL framework to maintain graph community struc-
ture. Despite the considerable success, bias is introduced due
to the disturbance of the semantic.

Method
In this section, we provide a detailed description of GTCA,
including graph encoders, node sampling and contrastive
loss function. Figure 2 shows the model architecture of
GTCA.
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Figure 2: The architecture of GTCA. Given a graph, the GNN encoder fθ and Transformer encoder gφ generate node embed-
dings Hθ and Hφ. We apply two node embeddings to obtain k-NNs of vi, i.e., Bθ

i , Bφ
i , intersects which with the topological

k-NNs Ti to obtain positive and negative pairs for node vi separately, i.e., Pi and Ni. Finally, we employ the contrastive loss to
achieve that the anchor nodes close to positive pairs and far from negative pairs.

Preliminaries
Let G = (V, E) denote a graph, where V = {v1, · · · , vN},
E ⊆ V × V represent the node set and the edge set respec-
tively. We denote the feature matrix and the adjacency ma-
trix as X ∈ RN×F and A ∈ {0, 1}N×N , where xi ∈ RF

is the feature of vi, and Aij = 1 if (vi, vj) ∈ E . We
aim to learn a GNN encoder fθ(X,A) ∈ RN×D and a
Transformer encoder gφ(X,A) ∈ RN×D. They take the
node features and structures as input, and generate node em-
beddings in low dimensionality, i.e., D ≪ F . We denote
Hθ = fθ(X,A) as GNN node representations and Hφ =
gφ(X,A) as Transformer node representations, where hθ

i
is GNN embedding of node vi, and hφ

i is the Transformer
embedding of node vi .

Graph Encoders
We employ GCN (Kipf and Welling 2017) as an encoder to
capture the local structural information of the nodes. GCN
utilizes a series of graph convolution layers to aggregate in-
formation from the neighbors. We update each layer accord-
ing to the following equation:

H(l+1) = σ
(
ÂH(l) W (l)

)
(1)

where H(l) denotes the feature matrix at layer l, H(0) = X ,
Â is the normalized adjacency matrix with self-loops, W (l)

represents the learnable weight matrix for layer l, and σ is

a non-linear activation function, i.e., ReLU. We apply a 2-
layer GCN to obtain Hθ.

Meanwhile, we utilize the NodeFormer (Wu et al. 2022)
as the Transformer encoder with the following equation:

h
(l+1)
i ≈

N∑
j=1

ϕ(qi/
√
τ)⊤ϕ(kj/

√
τ)egj/τ∑N

w=1 ϕ(qi/
√
τ)⊤ϕ(kw/

√
τ)egw/τ

·vj (2)

where ϕ(·) denotes a kernel function and qi = W
(l)
Q h

(l)
i ,

kj = W
(l)
K h

(l)
j and vj = W

(l)
V h

(l)
j . We can obtain Hφ

with NodeFormer.
Contrastive learning is an important tool for multi-view

learning. Inspired by (Huang et al. 2021), we present our
finding with respect to multi-view learning.
Theorem 1. Let G = (V, E) be a graph dataset of N
nodes drawn i.i.d. according to an unknown distribution D.
Let M,N be two distinct subsets of [K], where K is the
number of multiple views. Assume empirical risk minimizers
(ĥM, ĝM) and (ĥN , ĝN ), training with the M and N views
separately. Then, for all 1 > δ > 0, with probability at least
1− δ

2 :

r
(
ĥM ◦ ĝM

)
− r

(
ĥN ◦ ĝN

)
≤

γG(M,N ) + 8LRN (H ◦ GM) +
4C√
N

+ 2C

√
2 ln(2/δ)

N
(3)



where

γG(M,N ) ≜ η(ĝM)− η(ĝN ) □ (4)

Remark. First, γG(M,N ) of (4) trades off the quality be-
tween latent representations learning from M and N views
with respect to the graph dataset G. Theorem 1 bounds the
difference of population risk training with two different sub-
sets of views with γG(M,N ), which validates our intu-
ition that more views is superior. Second, for the commonly
used function classes, Radamacher complexity for a node of
size N , RN (F) is generally bounded by

√
C(F)/N , where

C(F) represents the intrinsic property of function class F .

Third, (3) can be written as γG(M,N ) +O(
√

1
N ) in order

terms. This indicates that as the number of node increases,
the performance with different views mainly depends on its
latent representation quality.

Node Sampling
We compute the cosine similarity matrix of Hθ and Hφ sep-
arately to obtain the k-NN sets. Specifically, we obtain the
k-NN node set Bθ

i of node vi with the cosine similarity be-
tween hθ

i and Hθ. Similarly, we obtain the k-NN node set
Bφ
i for node vi with the cosine similarity between hφ

i and
Hφ. Furthermore, we compute the topological k-NN ma-
trix via nodes sorting according to the number of hops from
other nodes to node vi in ascending order, resulting in the
topological k-NN set Ti for node vi. Finally, we obtain the
positive set Pi for node vi from the intersection of Bθ

i , Bφ
i ,

and Ti:

Pi = Bθ
i ∩ Bφ

i ∩ Ti (5)
Meanwhile, we treat all other nodes as negative pairs.

Ni = V \ (Pi ∪ {vi}) (6)

Compared with existing augmentation-based contrastive
learning models, GTCA has several advantages. First,
GTCA discards random or heuristic augmentation strategies
which may disturb the graph structure. Second, in contrast
to existing GCL methods that utilize shared-weight GNNs,
GTCA uses GNN and Transformer encoders to learn diverse
graph feature representations.

Contrastive Loss Function
According to (Oord, Li, and Vinyals 2018), the InfoNCE is
a lower bound of the true Mutual Information (MI). Recent
GCL methods use InfoNCE as the loss function (Zhu et al.
2020; Zhang et al. 2023; Guo et al. 2023; Yu et al. 2024).
Figure 3 gives an example of the InfoNCE loss. For a given
anchor node, InfoNCE uses only one node to generate a pos-
itive pair and utilizes all the other nodes to generate negative
pairs. This may lead to ignorance of the potential informa-
tion of similar nodes.

To address this issue, we design a novel contrastive loss
function. Let hθ

i and hφ
i denote the ℓ2-normalized GCN and

NodeFormer embeddings of vi respectively. Select hθ
i as the

anchor node, its positives come from three sources: (1) its
NodeFormer embedding hφ

i ; (2) GCN embeddings {hθ
j |

Figure 3: The red nodes denote the positive pair and the blue
dotted lines with arrows are negative pairs of the anchor.

vj ∈ Pi}; (3) NodeFormer embeddings {hφ
j | vj ∈ Pi}.

That is, the total number of positive pairs associated with
node vi is 2|Pi|+1. Ultimately, the contrastive loss function
is as follows:

ℓ(hθ
i ) = − log

es(h
θ
i ,h

φ
i

)/τ+
∑

j∈Pi
(e

s(hθ
i ,hθ

j )/τ
+e

s(hθ
i ,h

φ
j

)/τ
)

es(h
θ
i
,h

φ
i

)/τ+
∑

j ̸=i(e
s(hθ

i
,hθ

j
)/τ

+e
s(hθ

i
,h

φ
j

)/τ
)

(7)
where s(·, ·) is the cosine similarity and τ is a temperature
parameter. For a given query node vi ∈ V , we compute the
cosine similarity as follows:

s(hθ
i ,h

φ
i ) =

hθ
i · h

φ
i

∥hθ
i ∥∥h

φ
i ∥

,∀vj ∈ V (8)

The last two terms of the denominator of Equation (7) are
decomposed as:

∑
j ̸=i e

s(hθ
i ,h

θ
j )/τ =

∑
j∈Pi

es(h
θ
i ,h

θ
j )/τ +

∑
j∈Ni

es(h
θ
i ,h

θ
j )/τ

(9)

∑
j ̸=i e

s(hθ
i ,h

φ
j )/τ =

∑
j∈Pi

es(h
θ
i ,h

φ
j )/τ +

∑
j∈Ni

es(h
θ
i ,h

φ
j )/τ

(10)
The minimization of Equation (7) will pull positive pairs

closer and push negative pairs away. Since the two views
are symmetric, we define the loss for the feature embedding
hφ
i corresponding to node vi in the other view similarly to

Equation (7). Then, the final loss function is as follows:

L =
1

2N

N∑
i=1

[
ℓ(hθ

i ) + ℓ(hφ
i )
]

(11)

Proposition 1. Given a graph G = (V, E), encoders fθ, gφ
and a contrastive loss function L defined in Equation (11).
Bθ
i , Bφ

i , and Ti are k-NNs of node vi, i = 1, 2, · · · , N under
two node representation views and one topology structure
view. Equation (5) generates the most trustworthy positive
pairs for GCL.



Algorithm 1: GTCA
Input: The adjacency matrix A, the feature matrix X , and
the number of training epochs J
Output: Feature matrix H

1: for epoch in 1 to J do
2: Generate GNN embeddings Hθ and NodeFormer

embeddings Hφ with GNN encoder fθ , NodeFormer
encoder gφ, adjacency matrix A and feature matrix
X;

3: Generate GNN k-NN node set Bθ
i , Nodeformer k-NN

node set Bφ
i and topological k-NN set Ti with Hθ ,

Hφ and adjacency matrix A;
4: Calculate positive pairs Pi and negative pairs Ni, i =

1, · · · , N with Equation (5) and Equation (6);
5: Compute loss L with Equation (11);
6: Apply gradient descent to minimize L and update pa-

rameters;
7: end for
8: Calculate the final output feature matrix with Equa-

tion (12);
9: teturn H for downstream tasks;

Proof. It is obvious that the intersection set contains the
minimum number of positive pairs with specific Bθ

i , Bφ
i , and

Ti. The numerator of Equation (7) sums the exponential cal-
culation with respect to Pi, whereas the denominator sums
the exponential calculation with respect to both Pi and Ni.
Therefore, when calculating Pi with Equation (5), we get the
lower bound of the numerator, and also the upper bound of
the contrastive loss in Equation (7). When we minimize the
upper bound of the loss in Equation (11), trustworthy GCL
can be achieved.

At each training epoch, GTCA first generates two node
feature representation matrices Hθ and Hφ with GCN en-
coder fθ and NodeFormer encoder gφ, respectively. Then,
we calculate the positive and negative pairs with Equa-
tion (5) and Equation (6). Finally, we minimize the objective
in Equation (11) to update the parameters of fθ and gφ. We
obtain two trained feature matrices, H ′

θ and H ′
φ. The final

output feature matrix H is obtained with the normalized fea-
ture matrices H ′

θ and H ′
φ according to a weight parameter

λ:

H = λ ·H ′
θ + (1− λ) ·H ′

φ (12)

The final output feature matrix H , a linear combination of
H ′

θ and H ′
φ, is applied to downstream node classification

tasks. λ is a tunable weight parameter. Algorithm 1 summa-
rizes the overall procedure of GTCA.

Experiments
Datasets
To validate the effectiveness of the GTCA method, we per-
form extensive experiments on 5 benchmark datasets for
node classification including a commonly used citation net-
work, i.e., Cora (Sen et al. 2008), a reference network
constructed based on Wikipedia, i.e., Wiki-CS (Mernyei

and Cangea 2020), a co-authorship network, i.e., Coauthor-
CS (Shchur et al. 2018), and two product co-purchase net-
works, i.e., Amazon-Computers and Amazon-Photo (Shchur
et al. 2018). We list the detailed statistics of these datasets in
Table 1.

Datasets # Nodes # Edges # Features # Labels
Cora 2,708 5429 1,433 7

Wiki-CS 11,701 216,123 300 10
Coauthor-CS 18,333 81894 6,805 15

Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119081 745 8

Table 1: Statistics of the datasets.

Baselines

We compare GTCA with 12 state-of-the-art methods, in-
cluding 2 semi-supervised GNNs, i.e., GCN (Kipf and
Welling 2017) and GAT (Veličković et al. 2018), 2 semi-
supervised GCL methods, i.e., CGPN (Wan et al. 2021b)
and CG3 (Wan et al. 2021a), and 8 self-supervised GCL
methods, i.e., DGI (Veličković et al. 2019), GMI (Peng
et al. 2020), MVGRL (Hassani and Khasahmadi 2020),
GRACE (Zhu et al. 2020), GCA (Zhu et al. 2021),
SUGRL (Mo et al. 2022), AFGRL (Lee, Lee, and Park 2022)
and NCLA (Shen et al. 2023).

Experimental Settings

We employ the above methods for node classification. For
Cora dataset, we follow (Yang, Cohen, and Salakhudinov
2016) to randomly select 20 nodes per class for training,
500 nodes for validation, and the remaining nodes for test-
ing. For Wiki-CS, Coauthor-CS, Amazon-Computers and
Amazon-Photo datasets, we follow (Liu, Gao, and Ji 2020)
to randomly select 20 nodes per class for training, 30 nodes
per class for validation, and the remaining nodes for test-
ing. We perform 20 random splits of training, validation,
and testing on each dataset and report the average perfor-
mance of all algorithms across these splits. All experiments
are implemented in PyTorch and conducted on a server
with NVIDIA GeForce 3090 (24GB memory each). Table 2
shows the hyperparameter settings of GTCA on 5 datasets.

Datasets k E λ lr

Cora 520 440 0.7 0.005
Wiki-CS 500 400 0.8 0.001

Coauthor-CS 240 420 0.4 0.001
Amazon-Computers 550 512 0.8 0.001

Amazon-Photo 510 512 0.7 0.001

Table 2: Hyperparameter settings of GTCA on 5 datasets. lr
is the learning rate.



Methods Cora Wiki-CS Coauthor-CS Amazon-Computers Amazon-Photo
GCN 79.6±1.8 67.3±1.5 90.0±0.6 76.4±1.8 86.3±1.6
GAT 81.2±1.6 68.6±1.9 90.9±0.7 77.9±1.8 86.5±2.1

CGPN 74.0±1.7 66.1±2.1 83.5±1.4 74.7±1.3 84.1±1.5
CG3 80.6±1.6 68.0±1.5 90.6±1.0 77.8±1.7 89.4±1.9
DGI 82.1±1.3 69.1±1.4 92.0±0.5 78.8±1.1 83.5±1.2
GMI 79.4±1.2 67.8±1.8 88.5±0.8 76.1±1.2 86.7±1.5

MVGRL 82.4±1.5 69.2±1.2 91.5±0.6 78.7±1.7 89.7±1.2
GRACE 79.6±1.4 67.8±1.4 90.0±0.7 76.8±1.7 87.9±1.4

GCA 79.0±1.4 67.6±1.3 90.9±1.1 76.9±1.4 87.0±1.9
SUGRL 81.3±1.2 68.7±1.1 91.2±0.9 78.2±1.2 90.5±1.9
AFGRL 78.6±1.3 68.0±1.7 91.4±0.6 77.7±1.1 89.2±1.1
NCLA 82.2±1.6 70.3±1.7 91.5±0.7 79.8±1.5 90.2±1.3
GTCA 82.5±1.3 69.7±1.5 92.5±0.6 79.2±1.4 90.5±1.2

Table 3: Node classification accuracy (%) comparison on 5 datasets.

Node Classification Results

Table 3 shows node classification accuracy on 5 benchmark
graph datasets. On the whole, GTCA demonstrates superior
performance across all 5 datasets. GTCA ranks first on three
datasets and ranks second on the other two datasets.

The remarkable performance of GTCA can be at-
tributed to two key aspects. First, GTCA introduces an
augmentation-free strategy, which avoids the potential risk
of disturbing the underlying semantics of graphs. Second,
GTCA employs a novel sampling strategy to generate trust-
worthy positive pairs and negative pairs.

Ablation Study

Table 4 presents the ablation study results of GTCA and its
variants without Ti and with different graph encoders includ-
ing GNNs fθ, fφ and NodeFormers gθ, gφ. We observe that
there is an obvious decline in performance without topology
structure view on 5 datasets. This indicates that topological
information is essential for enhancing node classification ac-
curacy. In terms of graph encoders, compared with GTCA,
the use of either GCN-GCN or NodeFormer-NodeFormer
results in inferior performance, which validates the reason-
ability of the module design. Meanwhile, we can observe
that GTCA gθ, gφ ranks recond on the Coauthor-CS dataset,
which has the largest number of nodes among the 5 datasets,
due to the fact that Transformer-based models can effec-
tively capture long-range dependencies.

Cora Wiki-CS Coauthor-
CS

Amazon-
Computers

Amazon-
Photo

GTCA w/o Ti 79.8 69.0 92.0 75.7 86.1
GTCA fθ, fφ 80.4 69.1 90.0 78.1 90.1
GTCA gθ, gφ 77.6 68.8 92.1 76.9 88.8
GTCA 82.5 69.7 92.5 79.2 90.5

Table 4: Node classification accuracy (%) of different com-
ponents on 5 datasets.

Graph Encoders Analysis
Figure 4 shows that with a single graph encoder, correct ra-
tio of positive pairs is lower than 40%. With both GCN and
NodeFormer as graph encoders, the correct ratio of positive
pairs varies from 30% to 60%. When GTCA exploits in-
tersection of the k-NN neighborhood of GCN, Nodeformer
node representation and topology structure views, the cor-
rect ratio of positive pairs exceeds 80%. This highlights the
soundness of the current graph encoder design.
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Figure 4: Correct ratio of positive pairs with various k values
on Cora and Amazon-Photo datasets.

Sensitivity Analysis
Figure 5 illustrates the node classification accuracy of
GTCA on Cora and Amazon-Photo datasets with various
hyperparameters, respectively. The optimal range of k is be-
tween 300 and 600. When k is too small, GTCA has inferior
performance due to a scarcity of positive pairs. Conversely, a
large k introduces too much redundant information. Thus, it
is necessary to search for a proper k. In addition, increasing
embedding dimension E improves classification accuracy.
Moreover, the hyperparameter λ is crucial for model perfor-
mance. Initially, an increase in λ improves node classifica-
tion accuracy. However, when λ exceeds 0.7, the accuracy
will decrease.

Embeddings Visualization
To provide a more intuitive presentation of the node embed-
dings, we utilize PCA (Abdi and Williams 2010) to visual-
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Figure 5: Accuracy vs. hyperparameters k, E and λ on Cora and Amazon-Photo datasets.

Figure 6: Visualization of DGI, NCLA and GTCA embeddings on Cora dataset with PCA.

ize the node embeddings of DGI in Figure 6 (a), NCLA in
Figure 6 (b) and GTCA in Figure 6 (c). Different colors rep-
resent different categories. Compared with DGI and NCLA,
GTCA can distinguish different classes of nodes much more
effectively.

Conclusion
Most of the existing GCL methods utilize graph augmen-
tation strategies, which may perturb the underlying seman-
tics of graphs. Furthermore, they utilize GNNs as graph en-
coders, which inevitably results in the occurrence of over-
smoothing and over-squashing issues. To address these is-
sues, we propose GNN-Transformer Cooperative Architec-
ture for Trustworthy Graph Contrastive Learning (GTCA).
GTCA uses GCN and NodeFormer as encoders to gener-
ate node representation views. In addition, it utilizes topo-
logical property of graphs to generate the topology structure

views. Theoretical analysis and experimental results demon-
strate the effectiveness of GTCA.

While GTCA has been proved effective, it still faces
challenges in terms of computational complexity. Specifi-
cally, its quadratic complexity poses a significant computa-
tional burden when handling large-scale graph data. In fu-
ture work, we aim to explore more efficient techniques, such
as parallel processing and distributed systems.
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E. L.; Munos, R.; Veličković, P.; and Valko, M. 2022. Large-
Scale Representation Learning on Graphs via Bootstrap-
ping. In Proceedings of International Conference on Learn-
ing Representations.
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