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In Value-based and Actor-Critic reinforcement learning (RL) methods, both inaccuracy and 
instability of value estimation will detrimentally affect their performance. Some typical RL 
methods, such as Maxmin Q-learning and QMD3, are plagued by the underestimation problem 
while failing to trade off the estimation bias and variance jointly. We propose the Reinforced 
Operation (RO) to address these shortcomings, which selects the closest median among multiple 
Q-function. RO is applicable to any model-free RL method. Theoretically, we introduce the Mean 
Square Error (MSE) to jointly analyze the estimation bias and variance of value estimation 
methods. We also demonstrate the superiority of RO in MSE reduction and give an upper 
bound for the estimation bias of value estimation methods with arbitrary distribution to guide 
the calculation of the estimation bias of value estimation methods. Based on RO, we propose 
the variants of Q-learning and TD3, Reinforced Q-learning (RQ) and Reinforced Delayed Deep 
Deterministic policy gradient (RD3), respectively, to tackle different tasks. We empirically 
demonstrate that our method can reduce estimation error and achieve superior performance on 
discrete and continuous benchmark tasks.

1. Introduction

One of the cornerstones of optimal policy acquisition in reinforcement learning (RL) is the accurate estimation of the state-

action value function (Q-function). An inaccurate estimate of state-action value yields estimation bias, whether overestimated or 
underestimated, inducing the agent to produce wrong actions, slowing down training, and leading to inferior results [1]. Also, the 
inaccurate estimation can affect the extension of RL to robot [2,3], optimal control [4,5], and other domains. Q-learning [6] is 
widespread for discrete tasks, owing to its simple and readily accepted way of updating the Q-function using the highest state-action 
value the agent believes it can gain from subsequent state. Unfortunately, this maximization operation leads to overestimation bias, 
especially when using function approximators. In practice, most real-world problems involve high-dimensional inputs, which demand 
expressive and flexible nonlinear function approximators [7]. By employing nonlinear function approximators, the initial workload 
of RL is significantly decreased. Deep Q-Network (DQN) [8,9] performs well in most arcade learning environments (ALE) due to 
the incorporation of a powerful nonlinear approximation technique Deep Neural Network [10,11] on Q-learning. Due to inaccurate 
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function estimation or maximization operation, DQN also suffers from the overestimation mentioned above, which seriously affects 
the quality of the learned policy [12–14].

Recent studies have proposed diverse solutions to alleviate the overestimation issue in state-action value estimation. Techniques 
such as bias-correction and regularizing terms enhance accuracy [15,16]. Weighted Q-learning [17] and Softmax Q-learning [18]

achieve more precise estimations using Gaussian approximation and the Softmax Bellman operator, respectively. Ensemble DQN and 
Averaged-DQN (ADQN) [19] address overestimation bias through averaging, reducing estimation variance. However, they fail to 
fully eliminate the overestimation bias, as the combination of overestimated Q-functions still has a positive bias, especially under 
the infinite action-value function setting. Double Q-learning [20] and Double DQN [21] address this problem with a decoupling 
operation, but this can lead to underestimation bias and is not suitable for Actor-Critic methods. Weighted Double Q-learning [22]

uses two independent estimators for more accurate action value approximation, addressing both overestimation and underestimation 
biases. Despite these advancements, a gap remains in guiding agents to effectively determine or control estimation bias and variance, 
both key factors in estimation error.

Actor-Critic approaches suffer from the same overestimation issue, like DDPG [23], which inherently adopts the maximization 
operation. Following the DDPG work, the overestimation bias is reduced by additional modifications and extensions to the basic 
algorithm. Fujimoto et al. [24] introduce the minimization operation, alias the clipping operation, to reduce the overestimation bias 
by selecting the minimum from a pair of Q-function, and proposes the corresponding TD3 algorithm. Maxmin Q-learning (MQL) [25]

and REDQ [26] also employ the minimization operation. However, the underestimation bias brought by the minimization operation 
also adversely affects the policy quality, and there is a lack of theoretical guarantee on how to jointly control the estimation bias and 
variance.

Some works aim to balance the underestimation and the overestimation bias. Jiang et al. [27] introduce a technique that involves 
selecting high-value action candidates to estimate the maximum expected action value, effectively mitigating underestimation bias 
in their approach. PRAG [28] enhances critic learning through the strategic periodic integration of action gradients, optimizing 
target values and navigating around local optima. GD3 [29] introduces an innovative generalized-activated weighting mechanism, 
leveraging non-decreasing functions, also known as activation functions, as weights to refine value estimation and substantially 
reduce bias. TADD [30] balances underestimation and overestimation biases via a weighting operation. QMQ and QMD3 [31] address 
underestimation bias and boost estimation stability through the quasi-median operation (QMO). DARC [32] brings innovation to 
RL by employing double actors to reduce estimation biases in DDPG and TD3, improving value estimation and exploration, and 
stabilizing value estimates via critic network regularization. Nevertheless, these techniques necessitate extra hyperparameters for 
control magnitude adjustment and may not be universally applicable. Persistent underestimation bias leads to significant estimation 
errors, compromising agent interaction efficiency.

A series of works on the Q-function aim to find the accurate state-action value, leading to an efficient Q-function update. Existing 
studies still suffer from a significant underestimation bias and do not provide a comprehensive joint analysis of estimation bias and 
estimation variance, both components of estimation error. Thus, this paper is motivated to develop an accurate estimation method 
and give a joint analysis of estimation bias and estimation variance. The following are summaries of the paper’s contributions:

• We design the Reinforced Operation (RO), an operation applicable for any model-free RL method, which can reduce estimation 
error, while the state-action value obtained by RO is robust to outliers.

• Theoretically, we innovatively introduce the Mean Square Error (MSE) to integrally analyze the estimation bias and estimation 
variance of different operations. Further, we investigate the upper bound of estimation bias of value estimation methods without 
any distribution assumption.

• Based on the proposed RO, we construct Reinforced Q-learning (RQ) and Reinforced Delayed Deep Deterministic policy gradient 
(RD3) to cope with discrete and continuous action tasks, respectively.

• We evaluate our algorithm on six toy discrete action tasks and eight MuJoCo continuous action tasks across ten random seeds. 
Extensive experiments demonstrate that our methods outperform the most advanced ones.

2. Preliminaries

We formalize the usual RL framework as a Markov Decision Process (MDP), ( , , p, p0, r, 𝛾), where  and  represent the 
state and action space, p:  × ×  → [0,1] is the transition distribution, along with p0, representing the initial state distribution, 
r ∶  × × →ℝ is the reward, and 𝛾 ∈ [0,1] is the discount factor. At time 𝑡, with a given 𝑠𝑡 ∈  , the agent takes 𝑎𝑡 ∈ and then 
transitions to the 𝑠𝑡+1 according to its policy 𝜋𝜙(𝑠𝑡|𝑎𝑡) with parameter 𝜙, receiving 𝑟𝑡. Finding an optimal policy 𝜋𝜙 that maximizes 
𝑅𝑡 =

∑𝑇

𝑡′=𝑡 𝛾
𝑡′−𝑡𝑟𝑡′ starting from 𝑠0 is the eventual purpose of RL.

Given 𝑠0, 𝑎0 and 𝜋, the critic or Q-function is

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋
[

𝑇∑
𝑡=0

𝛾𝑡𝑟𝑡|𝑠 = 𝑠0, 𝑎 = 𝑎0] .
2

The optimal 𝑄𝜋(𝑠, 𝑎) is 𝑄∗(𝑠, 𝑎) = max𝜋𝑄
𝜋(𝑠, 𝑎), and the optimal policy 𝜋 is 𝜋∗(𝑠) ∈ argmax𝑎𝑄

∗(𝑠, 𝑎).
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2.1. Value-based methods

For the Value-based methods, such as Q-learning and MQL, the temporal difference [33] can be applied to learn 𝑄𝜋(𝑠, 𝑎). And 
the Bellman equation [34] establishes a recursive connection between (𝑠, 𝑎) and (𝑠′, 𝑎′):

𝑄𝜋(𝑠, 𝑎) = 𝑟+ 𝛾𝔼𝑠′,𝑎′
[
𝑄𝜋(𝑠′, 𝑎′)

]
, 𝑎′ ∼ 𝜋(𝑠′).

The loss function of a differentiated function approximator with parameter 𝜃 is

𝐿(𝜃) = 𝔼𝑠,𝑎,𝑟,𝑠′∼
[
(𝑦−𝑄𝜃(𝑠, 𝑎))2

]
, (1)

where 𝑦𝑄𝐿 = 𝑟 + 𝛾max𝑎′∈𝑄𝜃(𝑠′, 𝑎′) and 𝑦𝑀𝑄𝐿 = 𝑟 + 𝛾max𝑎′∈𝑄𝑚𝑖𝑛
𝜃

(𝑠′, 𝑎′) in Q-learning and MQL, respectively, 𝑄𝑚𝑖𝑛
𝜃

indicates the 
selection of the minimum value from 𝑄𝜃𝑖

(𝑠, 𝑎) for 𝑖 = 1, ⋯ , 𝑛. And  is the replay buffer.

2.2. Actor-Critic methods

The Value-based RL methods will no longer work for the continuous control settings, while the Actor-Critic RL methods can 
handle these tasks. DDPG [23], as a typical Actor-Critic RL method, achieves relatively fast learning of sub-optimal policy owing to 
its deterministic policy gradient [35]. DDPG uses a deep neural network parameterized by 𝜙, acting as an output policy actor, and 
the update rule is

∇𝜙𝐽 (𝜙) = 𝔼𝑠∼𝑝𝜋
[
∇𝑎𝑄𝜋

𝜃
(𝑠, 𝑎)|𝑎=𝜋𝜙(𝑠)∇𝜙𝜋𝜙(𝑠)] .

𝜃 is updated the same as Equation (1), with different that 𝑎 = 𝜋𝜙(𝑠) and 𝑦𝐷𝐷𝑃𝐺 = 𝑟 + 𝛾𝑄′
𝜃′
(𝑠′, 𝜋𝜙′ (𝑠′)), where 𝜃′ and 𝜙′ denote the 

parameter of the target networks.

TD3 [24] is a variant of DDPG that utilizes two critics with parameters 𝜃1 and 𝜃2, respectively. The actor parameter 𝜙 of TD3 is 
updated by

∇𝜙𝐽 (𝜙) = 𝔼𝑠∼𝑝𝜋
[
∇𝑎𝑄𝜋

𝜃1
(𝑠, 𝑎)|𝑎=𝜋𝜙(𝑠)∇𝜙𝜋𝜙(𝑠)] . (2)

For 𝑖 = 1, 2, 𝜃𝑖 is updated in the following way:

𝐿(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′∼
[
(𝑦−𝑄𝜃𝑖

(𝑠, 𝜋𝜙(𝑠)))2
]
, (3)

where 𝑦𝑇𝐷3 = 𝑟 + 𝛾min
𝑖=1,2

𝑄′
𝜃′
𝑖

(𝑠′, 𝜋𝜙′ ), and min
𝑖=1,2

𝑄′
𝜃𝑖

represents the minimization operation, also known as clipping operation.

TADD [30] alleviates the underestimation bias of TD3 by introducing the hyperparameter 𝛽:

𝑦𝑇𝐴𝐷𝐷 = 𝑟+ 𝛾(𝛽min
𝑖=1,2

𝑄′
𝜃′
𝑖

(𝑠′, 𝜋𝜙′ ) + (1 − 𝛽)𝑄′′),

where 𝑄′′ = 1
2 (𝑄

′
𝜃′3
(𝑠′, 𝜋𝜙′ ) +𝑄′

𝜃′4
(𝑠′, 𝜋𝜙′ )) denotes the averaging operation.

QMD3 [31] updates the critic by selecting the state-action value which is smaller than as well as closest to the median. The target 
value of QMD3 is

𝑦𝑄𝑀𝐷3 = 𝑟+ 𝛾𝑄𝑄𝑀𝑂

𝜃′
(𝑠′, 𝜋𝜙′ ),

where 𝑄𝑄𝑀𝑂

𝜃′
(𝑠′, 𝜋𝜙′ ) is the selection of 𝑄(⌊ 𝑛2 ⌋)(𝑛 > 3) from given critics.

2.3. Estimation MSE in RL

Estimation bias is the deviation of the mathematical expectation of the estimated values from the true value 𝑄𝑡𝑟𝑢𝑒. Suppose there 
are 𝑛 estimates 𝑄̂𝑖, let 𝑍𝑖 = 𝑄̂𝑖 −𝑄𝑡𝑟𝑢𝑒 be the individual estimation bias.

The estimation bias arises from two factors. One is the approximator, such as a neural network, is inaccurate. The other is the 
maximization or minimization operation. When there is no estimation bias, that is, 𝐸[𝑍𝑖] = 0, one should also be required that the 
estimation variance of state-action value is as small as possible. If the estimation bias exists, we should consider the estimation bias 
and the estimation variance jointly. Thus we introduce the MSE to measure the goodness of the estimated value. The MSE is

𝑀𝑆𝐸 =𝐸[𝑄̂𝑖 −𝑄𝑡𝑟𝑢𝑒]2

=𝐸[(𝑄̂𝑖 −𝐸[𝑄̂𝑖]) + (𝐸[𝑄̂𝑖] −𝑄𝑡𝑟𝑢𝑒)]2

= 𝑉 𝑎𝑟[𝑄̂𝑖] + (𝐸[𝑍𝑖])2, (4)

where 𝑉 𝑎𝑟[𝑄̂𝑖] denotes the estimation variance, and (𝐸[𝑍𝑖])2 denotes the square of the estimation bias.

It is easy to see that MSE is a direct measure of estimation error that combines estimation bias and estimation variance. Unbiased 
3

and stable estimation of the state-action value helps reduce MSE.
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Algorithm 1 RQ algorithm.

1: Initialize 𝑄𝜃1
, ⋯ , 𝑄𝜃𝑛

, and 𝑠0
2: Initialize 
3: while interacting with the Environment do

4: 𝑄𝑅𝑂
𝜃

(𝑠, 𝑎) ← RO
𝑖=1,⋯,𝑛

𝑄𝜃𝑖
(𝑠, 𝑎)

5: Select 𝑎 based on 𝑄𝑅𝑂
𝜃

(𝑠, 𝑎) using 𝜖-greedy

6: Take 𝑎, and store (𝑠, 𝑎, 𝑟, 𝑠′) in 
7: for 𝑡 = 1 to 𝑇 do

8: Sample a mini-batch (𝑠, 𝑎, 𝑟, 𝑠′) from 
9: 𝑦 ← 𝑟 + 𝛾max𝑎′∈𝑄𝑅𝑂

𝜃
(𝑠′ , 𝑎′)

10: 𝑄𝑖(𝑠, 𝑎) ←𝑄𝑖(𝑠, 𝑎) + 𝛼[𝑦 −𝑄𝑖(𝑠, 𝑎)]
11: end for

12: 𝑠 ← 𝑠′

13: end while

3. The proposed method

In this section, we first design an operation that can be applied to any model-free RL method, namely Reinforced Operation 
(RO), which can effectively alleviate the underestimation problem. Then, to handle different types of tasks, based on the RO, we 
propose novel modified versions of DQN and TD3, Reinforced Q-learning (RQ) and Reinforced Delayed Deep Deterministic policy 
gradient (RD3), respectively. In addition, we innovatively introduce MSE to analyze the estimation bias and estimation variance 
synthetically. We also theoretically demonstrate the superiority of RQ and RD3 in controlling the estimation error. Further, we 
theoretically investigate the upper bound of estimation bias of value estimation methods with the arbitrary distribution.

3.1. Reinforced Operation

Typically, the averaging or weighting operation is applied to several state-action values to produce a more precise target value, 
but the overestimation issue persists [24,25]. The minimization operation is proposed to counteract the overestimation problem, but 
this operation leads to the underestimation problem and is vulnerable to outliers [31]. The QMO operation is outlier independent 
and further alleviates the underestimation, but it still suffers from the underestimation problem and underutilizes the multiple Q-

function. To address the limitations of the above methods, we endeavor to design an estimation method that has low MSE, insensitive 
to outliers, and is capable of making full use of multiple Q-function. Then, we propose a new method called Reinforced Operation 
(RO).

Suppose that 𝑄1, 𝑄2, ⋯ , 𝑄𝑛 are 𝑛(𝑛 > 1) state-action values. The corresponding order state-action values are the 𝑄(𝑖) ranked in 
non-decreasing order. The smallest state-action value is 𝑄(1), the second smallest is 𝑄(2), ⋯, and, finally, the largest is denoted by 
𝑄(𝑛). The target value obtained by RO is

𝑄𝑅𝑂 =

{
(𝑄(⌊ 𝑛2 ⌋) +𝑄(⌈ 𝑛2 ⌉))∕2, 𝑛 = 3,5,7,⋯

𝑄( 𝑛2 )
, 𝑛 = 2,4,6,⋯ .

And The RO critic is defined as

𝑄𝑅𝑂(𝑠, 𝑎) = RO
𝑖=1,⋯,𝑛

𝑄𝜃𝑖
(𝑠, 𝑎),

where RO
𝑖=1,⋯,𝑛

means taking RO on 𝑄𝜃𝑖
(𝑠, 𝑎).

In particular, when 𝑛 = 2, RO degenerates to minimization operation, which means choosing 𝑄(1). And when 𝑛 = 4, 6, 8, ⋯, RO 
degenerates to QMO, all of which are the optimal target value calculation methods under the current 𝑛. Although QMO and RO share 
similarities, QMO can easily cause significant underestimation bias when 𝑛 = 3, 5, 7, ⋯, which in turn causes large estimation error. 
Moreover, QMO only selects one Q-value, which underutilizes the Q-function. In contrast, RO can be applied to any number of Q-

function and can reduce estimation error. Compared to other methods, RO utilizes the ranking information of all 𝑄𝑖 and cherry-picks 
quasi-median and median that are interference-free from outliers. And RO can be applied to any standard model-free RL method. In 
Section 3.3, we will analyze the effectiveness of RO in reducing estimation error.

To exploit the RO specifically, we develop the Reinforced Q-learning (RQ) and the Reinforced Delayed Deep Deterministic policy 
gradient (RD3) to handle different types of tasks based on Q-learning and TD3, respectively, as shown in Algorithm 1 and 2. In our 
experiments, RQ straightforwardly uses the tricks of DQN [9] to better match DQN. We described the update process of RD3 in Fig. 1

to explain the generality of our method. Moreover, to fully understand the difference between the method in this paper and other 
methods, we visualize several forward propagation processes of the Value-based methods MQL and RQ, and the Actor-Critic methods 
TADD and RD3 in Fig. 2.

3.2. Convergence of Reinforced Q-learning

This section demonstrates that RQ can converge to 𝑄∗(𝑠, 𝑎) in the finite MDP setting, as Theorem 1. Suppose there are five value 
4

estimates 𝑄𝐴, 𝑄𝐵, 𝑄𝐶, 𝑄𝐷, 𝑄𝐸 if 𝑛 = 5. We set the optimal action 𝑎∗ of next state is
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Fig. 1. The structure of the RD3. The target value is selected by the RO, and then multiple TD Errors are calculated with the state-action values output by multiple 
critics. Every critic is updated by the corresponding TD Error.

Fig. 2. Diagram of forward propagation processes of MQL (a), RQ (b), TADD (c), and RD3 (d). “-”, “W”, “M”, “R” denote the subtraction, weighting, minimization 
and reinforced operation, respectively.

Algorithm 2 RD3 algorithm.

1: Initialize 𝑄𝜃1
, ⋯ , 𝑄𝜃𝑛

, 𝜋𝜙 , 𝜃′1 ← 𝜃1, ⋯ , 𝜃′
𝑛
← 𝜃𝑛 , and 𝜙′ ← 𝜙

2: Initialize 
3: for 𝑡 = 1 to 𝑇 do

4: Select 𝑎 ∼ 𝜋𝜙(𝑠) + 𝜖, 𝜖 ∼ (0, 𝜎), store (𝑠, 𝑎, 𝑟, 𝑠′) in , and sample a mini-batch (𝑠, 𝑎, 𝑟, 𝑠′) from 
5: 𝑎′ ← 𝜋𝜙′ (𝑠′)+clip(𝜖, −𝑐, 𝑐), 𝜖 ∼ (0, 𝜎)
6: 𝑦 ← 𝑟 + 𝛾 𝑄𝑅𝑂

𝜃′
(𝑠′ , 𝜋𝜙′ (𝑠′))

7: Update 𝜃𝑖 by Equation (3)

8: if 𝑡 mod 𝑑 then

9: Update 𝜙 by Equation (2)

10: 𝜃′
𝑖
← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′

𝑖
, 𝜙′

𝑖
← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′

𝑖

11: end if

12: end for

𝑎∗ = argmax
𝑎

𝑄𝐴(𝑠′, 𝑎).

At each time step, execute optimal action 𝑎∗ at next state, then we have

𝑦 = 𝑟+ 𝛾RO(𝑄𝐴,𝑄𝐵,𝑄𝐶,𝑄𝐷,𝑄𝐸 ).

The update formulas of 𝑄𝐴, 𝑄𝐵, 𝑄𝐶, 𝑄𝐷, 𝑄𝐸 are as follows:
5

𝑄𝐴(𝑠, 𝑎) =𝑄𝐴(𝑠, 𝑎) + 𝛼𝑡(𝑦−𝑄𝐴(𝑠, 𝑎)),
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𝑄𝐵(𝑠, 𝑎) =𝑄𝐵(𝑠, 𝑎) + 𝛼𝑡(𝑦−𝑄𝐵(𝑠, 𝑎)),

𝑄𝐶 (𝑠, 𝑎) =𝑄𝐶 (𝑠, 𝑎) + 𝛼𝑡(𝑦−𝑄𝐶 (𝑠, 𝑎)),

𝑄𝐷(𝑠, 𝑎) =𝑄𝐷(𝑠, 𝑎) + 𝛼𝑡(𝑦−𝑄𝐷(𝑠, 𝑎)),

𝑄𝐸 (𝑠, 𝑎) =𝑄𝐸 (𝑠, 𝑎) + 𝛼𝑡(𝑦−𝑄𝐸 (𝑠, 𝑎)),

where 𝛼𝑡 denotes the learning rate. Next, we give Lemma 1 to help us prove that RQ can converge to 𝑄∗(𝑠, 𝑎) under the updating 
method above.

Lemma 1. Consider a stochastic process (𝜁𝑡, △𝑡, 𝐹𝑡)(𝑡 = 0, 1, 2, ⋯), where 𝜁𝑡, △𝑡, 𝐹𝑡 ∶𝑋→ℝ satisfy the equation:

△𝑡+1(𝑥𝑡) = (1 − 𝜁𝑡(𝑥𝑡))△𝑡 (𝑥𝑡) + 𝜁𝑡(𝑥𝑡)𝐹𝑡(𝑥𝑡).

Let 𝑃𝑡 be a sequence of increasing 𝜎-fields such that 𝜁0 and △0 are 𝑃0-measurable, and 𝜁𝑡, △𝑡, and 𝐹𝑡−1 are 𝑃𝑡-measurable. Assume 
that the following hold:

1. The set 𝑋 is finite.

2. 𝜁𝑡(𝑥𝑡) ∈ [0, 1], 
∑
𝑡 𝜁𝑡(𝑥𝑡) =∞, 

∑
𝑡(𝜁𝑡(𝑥𝑡))2 <∞ with probability 1 and 𝜁(𝑥) = 0, ∀𝑥 ≠ 𝑥𝑡.

3. ‖‖𝐸[𝐹𝑡|𝑃𝑡]‖‖ ≤ 𝜅 ‖‖△𝑡
‖‖+ 𝑐𝑡, where 𝜅 ∈ [0, 1), and 𝑐𝑡 converges to 0 with probability 1.

4. 𝑉 𝑎𝑟[𝐹𝑡(𝑥𝑡)|𝑃𝑡] ≤𝐾(1 + 𝜅 ‖‖△𝑡
‖‖)2, where 𝐾 is a constant, ‖⋅‖ represents the maximum norm.

Then △𝑡 can converge to 0 with probability 1.

Theorem 1. Given the following conditions:

1. With the finite setting of MDP, each state-action pair is sampled infinitely from the lookup table.

2. 𝛾 ∈ [0, 1).
3. Both 𝑄𝐴, 𝑄𝐵, 𝑄𝐶, 𝑄𝐷 and 𝑄𝐸 receive an infinite number of updates.

4. 𝛼 ∈ [0, 1], 
∑
𝑡 𝛼𝑡(𝑠, 𝑎) =∞, 

∑
𝑡(𝛼𝑡(𝑠, 𝑎))2 ≤∞ with probability 1, and 𝛼𝑡(𝑠, 𝑎) = 0, ∀(𝑠, 𝑎) ≠ (𝑠𝑡, 𝑎𝑡).

5. 𝑉 𝑎𝑟[𝑟(𝑠, 𝑎)] ≤∞, ∀𝑠, 𝑎.

Then, RQ will converge to 𝑄∗ with probability 1.

Proof. Set 𝑃𝑡 is

{𝑄𝐴
0 ,𝑄

𝐵
0 ,𝑄

𝐶
0 ,𝑄

𝐷
0 ,𝑄

𝐸
0 , 𝑠0, 𝑎0, 𝛼0, 𝑟1, 𝑠1,⋯ , 𝑠𝑡, 𝑎𝑡},

and 𝑋 = 𝑆 ×𝐴, △𝑡 =𝑄𝐴
𝑡
−𝑄∗, 𝜁𝑡 = 𝛼𝑡. Note that conditions 1 and 4 of the Lemma 1 hold by conditions 1 and 5 of the Theorem 1, 

respectively. Condition 2 of the Lemma 1 holds by the condition 4 of the Theorem 1 along with our selection of 𝜁𝑡 = 𝛼𝑡. For simplicity, 
we set 𝑄𝐴

𝑡
=𝑄𝐴

𝑡
(𝑠𝑡+1, 𝑎∗), and the other Q-functions are similar. Execute optimal action 𝑎∗ at next state, we have:

△𝑡+1 = (1 − 𝛼𝑡)(𝑄𝐴
𝑡
(𝑠𝑡, 𝑎𝑡) −𝑄∗(𝑠𝑡, 𝑎𝑡))

+ 𝛼𝑡(𝑟𝑡 + 𝛾RO(𝑄𝐴
𝑡
,𝑄𝐵

𝑡
,𝑄𝐶

𝑡
,𝑄𝐷

𝑡
,𝑄𝐸

𝑡
) −𝑄∗(𝑠𝑡, 𝑎𝑡))

= (1 − 𝛼𝑡)△𝑡 (𝑠𝑡, 𝑎𝑡) + 𝛼𝑡𝐹𝑡,

where 𝑎∗ = argmax
𝑎

𝑄𝐴(𝑠𝑡+1, 𝑎). And 𝐹𝑡 is defined as

𝐹𝑡 = 𝑟𝑡 + 𝛾RO(𝑄𝐴
𝑡
,𝑄𝐵

𝑡
,𝑄𝐶

𝑡
,𝑄𝐷

𝑡
,𝑄𝐸

𝑡
) −𝑄∗(𝑠𝑡, 𝑎𝑡)

= 𝑟𝑡 + 𝛾RO(𝑄𝐴
𝑡
,𝑄𝐵

𝑡
,𝑄𝐶

𝑡
,𝑄𝐷

𝑡
,𝑄𝐸

𝑡
) −𝑄∗(𝑠𝑡, 𝑎𝑡)

+ 𝛾𝑄𝐴
𝑡
(𝑠𝑡+1, 𝑎∗) − 𝛾𝑄𝐴

𝑡
(𝑠𝑡+1, 𝑎∗)

= 𝐹𝑄
𝑡
+ 𝑐𝑡,

where 𝑐𝑡 = 𝛾RO(𝑄𝐴
𝑡
, 𝑄𝐵

𝑡
, 𝑄𝐶

𝑡
, 𝑄𝐷

𝑡
, 𝑄𝐸

𝑡
) − 𝛾𝑄𝐴

𝑡
(𝑠𝑡+1, 𝑎∗), and 𝐹𝑄

𝑡
= 𝑟𝑡 + 𝛾𝑄𝐴

𝑡
(𝑠𝑡+1, 𝑎∗) −𝑄∗(𝑠𝑡, 𝑎𝑡). It is clear that 𝐸[𝐹𝑄

𝑡
|𝑃𝑡] ≤ 𝛾 ‖‖△𝑡

‖‖, 
then condition 3 of the Lemma 1 holds if 𝑐𝑡 converges to 0 with probability 1.

Let 𝑦 = 𝑟𝑡 + 𝛾RO(𝑄𝐴
𝑡
, 𝑄𝐵

𝑡
, 𝑄𝐶

𝑡
, 𝑄𝐷

𝑡
, 𝑄𝐸

𝑡
), and let △𝐵𝐴

𝑡
=𝑄𝐵

𝑡
(𝑠𝑡, 𝑎𝑡) −𝑄𝐴

𝑡
(𝑠𝑡, 𝑎𝑡), △𝐶𝐴

𝑡
=𝑄𝐶

𝑡
(𝑠𝑡, 𝑎𝑡) −𝑄𝐴

𝑡
(𝑠𝑡, 𝑎𝑡), △𝐷𝐴

𝑡
=𝑄𝐷

𝑡
(𝑠𝑡, 𝑎𝑡) −

𝑄𝐴
𝑡
(𝑠𝑡, 𝑎𝑡), △𝐸𝐴

𝑡
=𝑄𝐸

𝑡
(𝑠𝑡, 𝑎𝑡) −𝑄𝐴

𝑡
(𝑠𝑡, 𝑎𝑡), then 𝑐𝑡 converges to 0 if △𝐵𝐴

𝑡
, △𝐶𝐴

𝑡
, △𝐷𝐴

𝑡
, and △𝐸𝐴

𝑡
converge to 0. The update of △𝐵𝐴

𝑡

is the sum of 𝑄𝐴 and 𝑄𝐵 at time 𝑡:

𝐵𝐴 𝐵𝐴 𝐵 𝐴 𝐵𝐴
6

△
𝑡+1 =△

𝑡
+ 𝛼𝑡(𝑦−𝑄𝑡

(𝑠𝑡, 𝑎𝑡) − (𝑦−𝑄
𝑡
(𝑠𝑡, 𝑎𝑡))) = (1 − 𝛼𝑡)△𝑡

.
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The update of △𝐶𝐴
𝑡

is the sum of 𝑄𝐴 and 𝑄𝐶 at time 𝑡:

△𝐶𝐴
𝑡+1 = (1 − 𝛼𝑡)△𝐶𝐴

𝑡
.

△𝐷𝐴
𝑡

and △𝐸𝐴
𝑡

are updated in a similar way:

△𝐷𝐴
𝑡+1 = (1 − 𝛼𝑡)△𝐷𝐴

𝑡
,

△𝐸𝐴
𝑡+1 = (1 − 𝛼𝑡)△𝐸𝐴

𝑡
.

Clearly, △𝐵𝐴
𝑡
, △𝐶𝐴

𝑡
, △𝐷𝐴

𝑡
, and △𝐸𝐴

𝑡
will converge to 0, which means that we satisfy condition 3 of the Lemma 1. So 

𝑄𝐴
𝑡
(𝑠𝑡, 𝑎𝑡) will converge to 𝑄∗

𝑡
(𝑠𝑡, 𝑎𝑡). Let △𝑡 = 𝑄𝐵

𝑡
− 𝑄∗, △𝑡 = 𝑄𝐶

𝑡
− 𝑄∗, △𝑡 = 𝑄𝐷

𝑡
− 𝑄∗, and △𝑡 = 𝑄𝐸

𝑡
− 𝑄∗, we can derive 

𝑄𝐵
𝑡
(𝑠𝑡, 𝑎𝑡), 𝑄𝐶

𝑡
(𝑠𝑡, 𝑎𝑡), 𝑄𝐷

𝑡
(𝑠𝑡, 𝑎𝑡) can converge 𝑄∗

𝑡
(𝑠𝑡, 𝑎𝑡). For other numbers of Q-functions, we just repeat the above arguments. Thus, 

we prove the Theorem 1, then the RQ can converge to 𝑄∗(𝑠, 𝑎). □

Next, we theoretically analyze the MSE of RO and other operations to demonstrate the superiority of RO.

3.3. Estimation MSE reduction via Reinforced Operation

In this section, we first investigate the underestimation issue resulting from using the existing operations, such as minimization 
operation [24–26], weighting operation [30], and quasi-median operation [31]. We show the negative impact of these operations 
and then justify the effectiveness of RO in reducing the MSE of estimated values.

Let 𝑄(𝑖) denote the order state-action value arranged in non-decreasing order for 𝑄1, 𝑄2, ⋯ , 𝑄𝑛 that are independently and 
identically distributed in [𝜆 −𝜇, 𝜆 +𝜇](𝜇 ≫ 𝜆 > 0), 𝜆 is the overestimation bias of Q-function and 𝜇 denotes the range of positive bias 
[31]. 𝑍(𝑘) = 𝑄̂(𝑘) −𝑄𝑡𝑟𝑢𝑒 is the 𝑘-th estimation bias. In our analysis of the MSE across various methods, we introduce Theorem 2. 
This theorem underscores the effectiveness of RO in reducing underestimation bias, a crucial aspect of estimation error.

Theorem 2. Using 𝑍(⋅) to represent the estimation bias of a given method. Under the default parameter settings as outlined in the original 
document, we present the following comparative analysis of estimation biases among various methods:

𝑍(𝑀𝑄𝐿) ≤𝑍(𝑇𝐷3) =𝑍(𝑅𝐸𝐷𝑄) <𝑍(𝑇𝐴𝐷𝐷) <𝑍(𝑄𝑀𝑂)

≤𝑍(𝑅𝑂) ≤ 0 <𝑍(𝐷𝐷𝑃𝐺)

Proof. From [25,30,31], we have:

𝐸[𝑍(𝑘)] =
(2𝑘− 𝑛− 1)𝜇

𝑛+ 1
+ 𝜆. (5)

The estimation bias, marked by 𝜆 for both median and averaging operations, suggests an overestimation problem, adversely 
affecting the agent’s policy learning capabilities. Consequently, we establish that 𝑍(𝐷𝐷𝑃𝐺) = 𝜆.

Methods such as MQL, TD3, and REDQ primarily use a minimization strategy by choosing the smallest state-action value. Their 
estimation bias, quantified as −1

3𝜇+𝜆 < 0 for 𝑛 = 2, 𝑘 = 1, indicates a tendency towards underestimation. MQL increases the number 
of critics, and as the number of critics grows, 𝑍(𝑀𝑄𝐿) = 1−𝑛

𝑛+1𝜇 + 𝜆 < 0, which is evidently a monotonically decreasing function. 
The underestimation in MQL can worsen with an increase in 𝑛. Even at the minimum number of critics (𝑛 = 2), there’s a significant 
underestimation bias.

TADD, by adding an averaging operation to the minimization process, modifies the estimation bias to −19
60𝜇+

1
20𝜆 < 0, somewhat 

mitigating the underestimation bias. For 𝑛 > 3, the estimation bias of QMO is 𝑛𝜆+𝜆−𝜇
𝑛+1 for 𝑛 = 4, 6, 8, ⋯, and it becomes 𝑛𝜆+𝜆−2𝜇

𝑛+1 for 
𝑛 = 5, 7, 9, ⋯. QMO still encounters the underestimation problem with smaller 𝑛. For larger 𝑛, QMO alleviates underestimation but 
slows down policy learning.

The estimation bias of RO is 𝑛𝜆+𝜆−𝜇
𝑛+1 regardless of whether 𝑛 is odd or even. RO is more accurate than other methods in this 

regard. Based on the aforementioned analysis, we arrive at the following conclusion:

𝑍(𝑀𝑄𝐿) ≤𝑍(𝑇𝐷3) =𝑍(𝑅𝐸𝐷𝑄) <𝑍(𝑇𝐴𝐷𝐷) <𝑍(𝑄𝑀𝑂) (6)

≤𝑍(𝑅𝑂) ≤ 0 <𝑍(𝐷𝐷𝑃𝐺) □

Relative to other approaches, RO exhibits a lesser degree of underestimation bias, a trend that holds irrespective of the value of 
𝑛. Notably, as 𝑛 escalates, 𝑍(𝑅𝑂) gradually approaches zero, reflecting a trend towards more precise estimations.

The magnitude of the estimation bias is related to the experimental setting. Therefore, we use the normalized bias 𝑍𝑖∕𝑄𝑡𝑟𝑢𝑒 to 
eliminate the influence of the environment setting, and the 𝑄𝑡𝑟𝑢𝑒 denotes the discounted cumulative return according to the current 
policy computed by the Monte Carlo.

To verify the estimation accuracy of RO, we first design a bias random generation experiment to randomly generate 10,000 
7

points in the [𝜆 − 𝜇, 𝜆 + 𝜇] interval and then employ averaging operation (ADQN), minimization operation (TD3, MQL, REDQ), 
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Fig. 3. Visualization of distribution changes of different methods. 𝜆 = 0.1𝜇 > 0. The closer the concentration of the distribution is to 0, the more accurate estimation 
is, and the flatter the curve is, the more unstable the estimation is.

Fig. 4. Estimation bias curves on two different types of tasks. The bold lines depict the mean estimation bias over ten trials, and the darkened region stands for one 
standard deviation.

weighting operation (TADD), QMO (QMQ, QMD3) and RO (RQ, RD3) to obtain the corresponding normalized bias, as shown in 
Fig. 3. Specifically, the average operation has an overall left-skewed distribution with a large positive bias. The other four methods 
have an overall right-skewed distribution, in which the weighting and minimization operations have a larger negative bias, while 
QMO and RO have a smaller negative bias. It is noticed that the estimation bias of RO is the lowest, and the estimation is more stable 
than other methods. This also verifies the above analysis.

In Fig. 4, we measure the normalized bias of value estimation methods on the discrete action task Space Invaders-v0 and the 
continuous control task Ant-v3 when 𝑛 = 5. It can be found that the average operation (ADQN) has a large positive bias, and the 
minimization operation (MQL, TD3), decoupling operation (DDQN) and QMO (QMQ, QMD3) have a negative bias. The weighting 
operation mitigates the negative bias of the minimization operation, but still suffers from a certain negative bias. Our method is 
able to gain more precise estimates than competing methods, and it has a smaller estimation variance than those methods, which 
indicates that RQ and RD3 are resistant to random initial conditions. It is worth mentioning that the test on the real environment in 
Fig. 4 is consistent with the results of the large sample experiment in Fig. 3, which further validates our previous analysis and the 
superiority of our methods in this paper.

Based on the above analysis, the RO operation is competitive with other methods regardless of the number of Q-functions. Further, 
the underestimation bias decreases as 𝑛 increases, which may help to reduce the estimation MSE. Furthermore, we theoretically 
investigate the MSE of RO in Theorem 3 and then compare the MSE of value estimation methods to illustrate the superiority of our 
method.

Theorem 3. When 𝑛 = 3, 5, 7, ⋯, the MSE of RO is

𝑀𝑆𝐸(𝑅𝑂) = 𝑛2 + 4𝑛+ 3
(𝑛+ 1)2(𝑛+ 2)

𝜇2 − 2𝜇𝜆
𝑛+ 1

+ 𝜆2, (7)

and when 𝑛 = 4, 6, 8, ⋯, the MSE of RO changed to

𝑀𝑆𝐸(𝑅𝑂) = 𝑛2 + 3𝑛+ 2
𝜇2 − 2𝜇𝜆 + 𝜆2. (8)
8

(𝑛+ 1)2(𝑛+ 2) 𝑛+ 1
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Proof. When 𝑛 = 4, 6, 8, ⋯, from [31], we know that

𝑉 𝑎𝑟(𝑅𝑂) = 𝑛2𝜇2 + 2𝑛𝜇2

(𝑛+ 1)2(𝑛+ 2)
.

From Equation (4) and Equation (5), we have:

𝑀𝑆𝐸(𝑅𝑂) = 𝑛2 + 2𝑛
(𝑛+ 1)2(𝑛+ 2)

𝜇2 + (− 1
𝑛+ 1

𝜇 + 𝜆)2

= 𝑛2 + 3𝑛+ 2
(𝑛+ 1)2(𝑛+ 2)

𝜇2 − 2𝜇𝜆
𝑛+ 1

+ 𝜆2.

When 𝑛 = 3, 5, 7, ⋯, the state-action value obtained after RO consists of two parts, 𝑄(⌊ 𝑛2 ⌋) and 𝑄(⌈ 𝑛2 ⌉), which are not independent 
of each other. Then the estimation bias is

1
2
(𝑄̂(⌊ 𝑛2 ⌋) + 𝑄̂(⌈ 𝑛2 ⌉)) −𝑄𝑡𝑟𝑢𝑒 = 1

2
𝑍(⌊ 𝑛2 ⌋) + 1

2
𝑍(⌈ 𝑛2 ⌉).

And the estimation variance is

1
4
𝑉 𝑎𝑟(𝑍(⌊ 𝑛2 ⌋)) + 1

4
𝑉 𝑎𝑟(𝑍(⌈ 𝑛2 ⌉)) + 1

2
𝐶𝑜𝑣(𝑍(⌊ 𝑛2 ⌋),𝑍(⌈ 𝑛2 ⌉)),

where 𝐶𝑜𝑣(⋅) is the covariance.

From [36], we know the probability distribution function (𝑝𝑑𝑓 ) of 𝑍(𝑘) is

𝑝(𝑘)(𝑧𝑖) =
𝑛!𝑝(𝑧𝑖)

(𝑘− 1)!(𝑛− 𝑘)!
(𝐹 (𝑧𝑖))𝑘−1(1 − 𝐹 (𝑧𝑖))𝑛−𝑘,

where 𝑝(𝑧𝑖) is 𝑝𝑑𝑓 of 𝑧𝑖, 𝐹 (𝑧𝑖) is the cumulative distribution function (𝑐𝑑𝑓 ). Specifically:

𝑝(𝑧𝑖) =

{
1
2𝜇 , 𝑧 ∈ [𝜆− 𝜇,𝜆+ 𝜇]
0, 𝑧 ∈ 𝑒𝑙𝑠𝑒,

𝐹 (𝑧𝑖) =
⎧⎪⎨⎪⎩

0, 𝑧𝑖 ∈ (−∞, 𝜆− 𝜇]
𝑧𝑖−𝜆+𝜇

2𝜇 , 𝑧𝑖 ∈ (𝜆− 𝜇,𝜆+ 𝜇]
1, 𝑧𝑖 ∈ (𝜆+ 𝜇,∞).

It is difficult to directly compute the variance of 12𝑍(⌊ 𝑛2 ⌋) + 1
2𝑍(⌈ 𝑛2 ⌉). To facilitate the calculation, we introduced a random variable 

𝑌𝑖 =
𝑍𝑖−𝜆+𝜇

2𝜇 which is independent of 𝑍𝑖 for 𝑖 = 1, ⋯ , 𝑛. It is easy to deduce that 𝑌𝑖 is identically uniformly distributed in [0, 1] for 
𝑖 = 1, ⋯ , 𝑛, the 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of 𝑌𝑖 are as follows:

𝑝(𝑦𝑖) =
{

1, 𝑦𝑖 ∈ [0,1]
0, 𝑦𝑖 ∈ 𝑒𝑙𝑠𝑒,

𝐹 (𝑦𝑖) =
⎧⎪⎨⎪⎩
0, 𝑦𝑖 ∈ (−∞,0]
𝑦𝑖, 𝑦𝑖 ∈ (0,1]
1, 𝑦𝑖 ∈ (1,∞).

From [31,36], we have:

𝐸[𝑌(𝑘)] =
𝑘

𝑛+ 1
, 𝑉 𝑎𝑟[𝑌(𝑘)] =

𝑘(𝑛− 𝑘+ 1)
(𝑛+ 1)2(𝑛+ 2)

, (9)

and for 0 ≤ 𝑦𝑖 ≤ 𝑦𝑗 , we have:

𝑝𝑌 (𝑖),𝑌 (𝑗)(𝑦𝑖, 𝑦𝑗 ) =𝑚(𝑖, 𝑗)[𝐹 (𝑦𝑖)]𝑖−1[𝐹 (𝑦𝑖) − 𝐹 (𝑦𝑗 )]𝑗−𝑖−1⋅

[1 − 𝐹 (𝑦𝑖)]𝑛−𝑗𝑓𝑌 (𝑦𝑖)𝑓𝑌 (𝑦𝑗 ),

where 𝑚(𝑖, 𝑗) denotes 𝑛!
(𝑖−1)!(𝑗−𝑖−1)!(𝑛−𝑗)! . Then we have:

𝐸[𝑌(𝑖)𝑌(𝑗)] =𝑚(𝑖, 𝑗)

1

∫
0

𝑦𝑖𝑓𝑌
(
𝑦𝑖
) [
𝐹
(
𝑦𝑖
)]𝑖−1

𝑑𝑦𝑖⋅

1

𝑦𝑗𝑓𝑌
(
𝑦𝑗
) [
𝐹
(
𝑦𝑗
)
− 𝐹

(
𝑦𝑖
)]𝑗−𝑖−1 [1 − 𝐹 (𝑦𝑗)]𝑛−𝑗 𝑑𝑦𝑗
9

∫
𝑦𝑖
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=𝑚(𝑖, 𝑗)

1

∫
0

𝑦𝑖𝑑𝑦

1

∫
𝑦

𝑥(𝑥− 𝑦)𝑗−𝑖−1(1 − 𝑥)𝑛−𝑗𝑑𝑥

=𝑚(𝑖, 𝑗)

1

∫
0

𝑦𝑖𝑑𝑦

1−𝑦

∫
0

(1 − 𝑡)[(1 − 𝑦) − 𝑡]𝑗−𝑖−1𝑡𝑛−𝑗𝑑𝑡

=𝑚(𝑖, 𝑗)
𝑗−𝑖−1∑
𝑘=0

(−1)𝑗−𝑖−1−𝑘C𝑘
𝑗−𝑖−1

1

∫
0

𝑦𝑖(1 − 𝑦)𝑘𝑑𝑦

1−𝑦

∫
0

(1 − 𝑡)𝑡𝑛−𝑖−1−𝑘𝑑𝑡

=𝑚(𝑖, 𝑗)
𝑗−𝑖−1∑
𝑘=0

(−1)𝑗−𝑖−1−𝑘C𝑘
𝑗−𝑖−1

[
𝐵(𝑖+ 1, 𝑛− 𝑖+ 1)

𝑛− 𝑖− 𝑘
− 𝐵(𝑖+ 1, 𝑛− 𝑖+ 2)

𝑛− 𝑖− 𝑘+ 1

]

= 𝑖(𝑛− 𝑖)!
(𝑛+ 2)(𝑛+ 1)(𝑗 − 𝑖− 1)!(𝑛− 𝑗)!

(𝑗 + 1)
𝑗−𝑖−1∑
𝑘=0

(−1)𝑗−𝑖−1−𝑘C𝑘
𝑗−𝑖−1

𝑛− 𝑖− 𝑘

We note that:

𝑛∑
𝑗=0

(−1)𝑗

𝑎+ 𝑗
𝐶𝑗
𝑛
= 𝑛!
𝑎(𝑎+ 1)⋯ (𝑎+ 𝑛)

.

Then:

𝐸
[
𝑌(𝑖)𝑌(𝑗)

]
= 𝑖(𝑗 + 1)

(𝑛+ 2)(𝑛+ 1)
(𝑛− 𝑖)!

(𝑗 − 𝑖− 1)!(𝑛− 𝑗)!
⋅

(𝑗 − 𝑖− 1)!
(𝑛− 𝑖)(𝑛− 𝑖− 1)⋯ (𝑛− 𝑗 + 1)

= 𝑖(𝑗 + 1)
(𝑛+ 2)(𝑛+ 1)

. (10)

Following Equation (9) and Equation (10), we have:

𝐶𝑜𝑣(𝑌(𝑖), 𝑌(𝑗)) =
𝑖(𝑗 + 1)

(𝑛+ 2)(𝑛+ 1)
− 𝑖

𝑛+ 1
𝑗

𝑛+ 1
= 𝑖(𝑛+ 1 − 𝑗)

(𝑛+ 2)(𝑛+ 1)2
. (11)

Based on Equation (9) and Equation (11), we have:

𝑉 𝑎𝑟
(
𝑌(𝑖) + 𝑌(𝑗)

)
= (𝑗 + 2𝑖)(𝑛+ 1 − 𝑗) + 𝑖𝑛+ 𝑖− 𝑖2

(𝑛+ 2)(𝑛+ 1)2
.

Then:

𝑉 𝑎𝑟
(
𝑍(𝑗) +𝑍(𝑖)

)
= (𝑗 + 2𝑖)(𝑛− 𝑗 + 1) + 𝑖𝑛+ 𝑖− 𝑖2

(𝑛+ 2)(𝑛+ 1)2
4𝜇2.

Then we can derive the estimation variance by adopting the RO:

𝑉 𝑎𝑟

(1
2
𝑍(⌊ 𝑛2 ⌋) + 1

2
𝑍(⌈ 𝑛2 ⌉)

)
= 𝑛2 + 3𝑛+ 1

(𝑛+ 2)(𝑛+ 1)2
𝜇2.

This implies that when 𝑛 = 3, 5, 7, ⋯,

𝑀𝑆𝐸(𝑅𝑂) = 𝑛2 + 4𝑛+ 3
(𝑛+ 1)2(𝑛+ 2)

𝜇2 − 2𝜇𝜆
𝑛+ 1

+ 𝜆2. □

Further, we analyze the MSE of value estimation methods in Theorem 4.

Theorem 4. The comparison of MSE of value estimation methods is

𝑀𝑆𝐸(𝑅𝐷3) ≤𝑀𝑆𝐸(𝑄𝑀𝐷3) ≤𝑀𝑆𝐸(𝑇𝐴𝐷𝐷) ≤𝑀𝑆𝐸(𝑀𝑄𝐿)

=𝑀𝑆𝐸(𝑇𝐷3) =𝑀𝑆𝐸(𝑅𝐸𝐷𝑄).

Proof. According to Equation (5) and the proof of Theorem 3, we know that the MSE of minimization operation (MO) and QMO 
10

(𝑛 = 5, 7, 9, ⋯) are
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𝑀𝑆𝐸(𝑀𝑂) = 𝑛3 + 𝑛+ 2
(𝑛+ 1)2(𝑛+ 2)

𝜇2 + 2 − 2𝑛
𝑛+ 1

𝜇𝜆+ 𝜆2,

𝑀𝑆𝐸(𝑄𝑀𝑂) = 𝑛2 + 6𝑛+ 5
(𝑛+ 1)2(𝑛+ 2)

𝜇2 − 4
𝑛+ 1

𝜇𝜆+ 𝜆2.

Since 𝜇 ≫ 𝜆 > 0, we can simplify the calculation by removing the term containing 𝜆 above. When 𝑛 = 4, 6, 8, ⋯, it is obvious that 
𝑛3 + 𝑛 + 2 − 𝑛2 − 3𝑛 − 2 > 0, it implies that 𝑀𝑆𝐸(𝑅𝐷3) =𝑀𝑆𝐸(𝑄𝑀𝐷3) ≤𝑀𝑆𝐸(𝑀𝑄𝐿) =𝑀𝑆𝐸(𝑇𝐷3) =𝑀𝑆𝐸(𝑅𝐸𝐷𝑄). When 
𝑛 = 3, 5, 7, ⋯, clearly 𝑛2 + 4𝑛 + 3 ≤ 𝑛2 + 6𝑛 + 5 ≤ 𝑛3 + 𝑛 + 2, then we have:

𝑀𝑆𝐸(𝑅𝐷3) ≤𝑀𝑆𝐸(𝑄𝑀𝐷3) ≤𝑀𝑆𝐸(𝑇𝐴𝐷𝐷) ≤𝑀𝑆𝐸(𝑀𝑄𝐿)

=𝑀𝑆𝐸(𝑇𝐷3) =𝑀𝑆𝐸(𝑅𝐸𝐷𝑄). □

Given this, we can deduce that our approach yields an MSE that is lower than that of other approaches, irrespective of the number 
of Q-function. Although the estimation variance of our method is slightly higher than that of QMD3 at 𝑛 = 3, 5, 7, ⋯, the estimation 
bias of our method is much lower, resulting in an overall lower MSE, which is the reason for the ultimate better performance of our 
method, and we will demonstrate it in the subsequent experiments. Further, we give Corollary 1 to show the relationship between 
the MSE of the RO and Q-function number 𝑛.

Corollary 1. The MSE of RO decreases as 𝑛 increases, and 𝑀𝑆𝐸(𝑅𝑂) = 0 when 𝑛 → +∞.

Proof. We also simplify the calculation by removing the term containing 𝜆 of Equation (7) and Equation (8). Then we have:

lim
𝑛→∞

𝑛2 + 4𝑛+ 3
(𝑛+ 1)2(𝑛+ 2)

= lim
𝑛→∞

2
6𝑛+ 8

= 0,

lim
𝑛→∞

𝑛2 + 3𝑛+ 2
(𝑛+ 1)2(𝑛+ 2)

= lim
𝑛→∞

2
6𝑛+ 8

= 0.

It is easy to see that (𝑛2 + 4𝑛 +3)∕[(𝑛 +1)2(𝑛 +2)] and (𝑛2 + 3𝑛 +2)∕[(𝑛 +1)2(𝑛 +2)] are both monotonically decreasing functions. 
As a result, the MSE of RO will get lower as 𝑛 increases. □

Moreover, in Theorem 5, we give an upper bound on the estimation bias of RO without any distribution assumption.

Theorem 5. For an arbitrary distribution of estimation bias 𝑧 with the same mean 𝜉 and variance 𝜎2, respectively. When 𝑛 = 3, 5, 7, ⋯, an 
upper bound on RO is

sup
𝑧∼(𝜉,𝜎2)

𝐸[𝑅𝑂] ≤ 𝜉 + 𝜎

2

(√
𝑛− 3
𝑛+ 3

+
√
𝑛− 1
𝑛+ 1

)
,

when 𝑛 = 4, 6, 8, ⋯,

sup
𝑧∼(𝜉,𝜎2)

𝐸[𝑅𝑂] ≤ 𝜉 + 𝜎
√
𝑛− 2
𝑛+ 2

.

Proof. We can derive from [36–38] that the 𝐸[𝑧(𝑘)] is upper bounded by:

min
𝑧

(
𝑧+ 𝑛

2(𝑛− 𝑘+ 1)

[
𝜉 − 𝑧+

√
(𝜉 − 𝑧)2 + 𝜎2

])
, (12)

where 𝑧∗ = 𝜉 + (2𝑘−𝑛−2)𝜎
2
√
(𝑘−1)(𝑛−𝑘+1)

, substituting 𝑧∗ into Equation (12) yields:

sup
𝑧∼(𝜉,𝜎2)

𝐸[𝑧(𝑘)] ≤ 𝜉 + 𝜎
√

𝑘− 1
𝑛− 𝑘+ 1

.

When 𝑛 = 3, 5, 7, ⋯, RO select (𝑄(⌊ 𝑛2 ⌋) +𝑄(⌈ 𝑛2 ⌉))∕2, then the upper bound of RO is

sup
𝑧∼(𝜉,𝜎2)

1
2

(
𝐸[𝑧(⌊ 𝑛2 ⌋)] +𝐸[𝑧(⌈ 𝑛2 ⌉)]

) ≤ 𝜉 + 𝜎
(√

𝑛− 3
𝑛+ 3

+
√
𝑛− 1
𝑛+ 1

)
,

and when 𝑛 = 4, 6, 8, ⋯, it becomes:√
𝑛− 2
11

sup
𝑧∼(𝜉,𝜎2)

(𝐸[𝑧(⌊ 𝑛2 ⌋)] ≤ 𝜉 + 𝜎 𝑛+ 2
. □
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The results of Theorem 5 are distribution-free without explicit distribution assumptions, and the analysis of the upper bound on 
the estimation bias can guide to find operations that can effectively reduce the estimation bias. Based on the proof of Theorem 5, 
we can obtain the upper bound on the estimation bias of the value estimation methods. For an exact upper bound of RO, just simply 
bring the specific mean and variance. For example, if the bias 𝑧 is independently and identically distributed in [𝜆 − 𝜇, 𝜆 + 𝜇], then 
the upper bound on the estimation bias of RO is 𝜆 + 𝜇

3

√
3(𝑛−2)
𝑛+2 when 𝑛 = 4, 6, 8, ⋯.

4. Experiments

In this section, we empirically evaluate RQ and RD3 on extensive different types of tasks. We use ten random seeds in our tests 
to ensure that our comparisons are valid and trustworthy. And we plot the average return as bold lines and half standard deviation 
as the darkened region. All experiments are conducted on servers with Intel I9-10850K and NVIDIA RTX3070.

4.1. Discrete action tasks

To evaluate RQ, We select six tasks from Gym [39], PLE [40], and MinAtar [41] to evaluate RQ. We compare our RQ with QMQ 
[31], MQL [25], ADQN [19], DDQN [21] and DQN [8]. The hyper-parameters and settings of network are maintained in line with 
[25]. The number of critics for RQ, QMQ, and ADQN is 5, for MQL is 2, and for DQN is 1.

Fig. 5 (a)-(f) show the smoothed learning curves on six benchmark environments. We find that RQ outperforms the comparison 
algorithms in the final performance on all tasks, and RQ can achieve a favorable policy with fewer time steps. Moreover, the 
standard deviation (height of the shaded area) of RQ is lower than that of the comparison algorithms, indicating that the decrease in 
estimation MSE significantly impacts performance enhancement. Generally, the ranking of the final performance of different methods 
is matched with Theorem 4. DQN and ADQN find inferior policy due to the overestimation problem, QMQ, MQL, and DDQN have 
clear underestimation bias. RQ alleviates the underestimation problem of QMQ, MQL, therefore, the final policy is better than the 
other algorithms.

Further analysis involves contrasting the performance trajectories of RQ, QMQ, and MQL for 𝑛 = 5, 7, 9, as illustrated in Fig. 5

(g) and (h). As 𝑛 escalates, both RQ and QMQ exhibit improved final performances, corroborating Corollary 1’s assertions. Notably, 
RQ demonstrates more pronounced gains, attributable to its marked reduction in MSE. While MQL may attain slightly enhanced 
final performance at higher 𝑛 values, it notably hinders early learning phases, a trend consistent with findings from [31] and 
[25]. Theoretically, increased 𝑛 values diminish estimation bias in RQ and QMQ but exacerbate MQL’s underestimation bias, thus 
rationalizing MQL’s delayed early learning with higher 𝑛 values.

4.2. Continuous action tasks

For the continuous action tasks, we select eight MuJoCo tasks [42]. For convenience, we abbreviate InvertedPendulum and 
InvertedDoublePendulum as IP and IDP. We first compare our RD3 with QMD3 [31], TADD [30], TD3 [24], and DDPG [23]. The 
hyper-parameters and network settings of RD3 are precisely equivalent to those of QMD3, TD3, and TADD for all tasks. The number 
of critics 𝑛 for RD3 and QMD3 is 5, for TADD is 4, for TD3 is 2, and for DDPG is 1.

Fig. 6 represents the smoothed learning curves on the eight MuJoCo tasks. Fig. 6 demonstrates that, compared to other methods, 
although RD3 has a slight underestimation bias that does not propagate through the gradient, RD3 can achieve comparable or superior 
performance on all continuous tasks while maintaining similar convergence speeds. In particular, for the challenging benchmarks, 
such as Hopper-v3 and Humanoid-v3, RD3 can achieve a significantly higher averaged return than the state-of-the-art (SOTA) method 
QMD3. Due to overestimation bias, DDPG performs poorly on most tasks, which aligns with our earlier findings. We also notice that 
TD3 and TADD do not work well on challenging tasks, such as Ant-v3. Furthermore, the standard deviation of RD3 and QMD3 is 
lower than that of the other methods.

In Fig. 7, the average return of RD3 is tested for 𝑛 = 5, 7, 10, 15. RD3 consistently learns robust and superior policies for various 
values of 𝑛. Furthermore, an increase in 𝑛 correlates with RD3 achieving progressively better policies, aligning with the insights 
of Corollary 1. Additionally, our method does not appreciably increase computational costs relative to QMD3 when utilizing an 
equivalent number of critics.

In Tables 1 and 2, RD3 is compared with advanced methodologies such as DARC, PRAG, and GD3, each significantly enhancing 
value estimation accuracy through the use of double actors, activation functions, and action gradients, respectively. This comparison 
also includes high performers QMD3 and TADD from Fig. 6. Specifically, hyperparameters such as the weighting coefficient in DARC, 
the index term in GD3, and the action gradient regularization parameter in PRAG are maintained consistently with their original 
specifications in the respective literature. The scores for each algorithm are normalized by dividing them by TD3 scores, with larger 
values denoting superior performance across tasks. For Reacher-v2, given that the final returns are negative, we express performance 
as the inverse ratio to TD3. Additionally, a comparison of computational time relative to TD3 for these methods is provided in 
Tables 1.

We observe that RD3 outperforms other techniques across most tasks in both average and optimal performance metrics. This 
marked advancement can be largely credited to RD3’s enhanced capability in minimizing estimation errors. Moreover, compared 
to state-of-the-art methods like DARC, QMD3, and TADD, our approach significantly elevates TD3’s performance with acceptable 
12

training expenses.
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Fig. 5. Learning curves on discrete action tasks.

5. Conclusion

In this work, we present the Reinforced Operation, which can yield accurate and stable state-action value and be applied to 
any model-free RL method. Based on Reinforced Operation, we offer an extension of Q-learning and TD3, Reinforced Q-learning 
and Reinforced Delayed Deep Deterministic policy gradient to tackle discrete and continuous action tasks, respectively. In addition, 
we innovatively introduce the MSE to analyze the estimation error directly and jointly analyze the estimation bias and variance 
of value estimation methods. We theoretically demonstrate our method’s advantage in reducing the estimation MSE. Furthermore, 
we give the upper bound of the estimation bias of value estimation methods with arbitrary distribution assumptions. We conduct a 
wide range of experiments on different types of tasks, and the results show that the proposed method significantly surpasses SOTA 
13

methods.
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Fig. 6. Learning curves on continuous control tasks.
14

Fig. 7. The learning curves with varying 𝑛. The average return of last ten evaluation of QMD3 is shown as the black dotted line.
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Table 1

Benchmark results of the maximum average return of one million time steps. The 
optimal value for each task is bolded.

Task RD3 DARC GD3 PRAG QMD3 TADD

IP 1.00 1.00 1.00 1.00 1.00 1.00

IDP 1.09 1.03 1.02 1.01 1.03 1.01

Reacher 1.17 1.09 1.10 1.13 1.09 0.98

Hopper 1.15 1.08 1.02 0.99 1.06 1.08

HalfCheetah 1.26 1.18 1.16 1.12 1.21 1.10

Walker2d 1.29 1.13 1.10 1.02 1.17 1.04

Ant 1.36 1.39 1.23 1.21 1.21 1.00

Humanoid 1.13 1.07 1.02 1.01 1.07 1.03

Mean Score 1.18 1.12 1.08 1.06 1.10 1.03

Computation Cost 2.76 2.58 7.04 1.83 2.69 2.52

Table 2

Benchmark results of the average return of last ten evaluation. The optimal 
value for each task is bolded.

Task RD3 DARC GD3 PRAG QMD3 TADD

IP 1.08 1.06 1.05 1.05 1.02 1.03

IDP 1.18 1.08 1.08 1.08 1.13 1.04

Reacher 1.24 1.05 1.05 1.02 1.16 1.05

Hopper 1.14 1.07 1.06 1.05 1.10 1.01

HalfCheetah 1.26 1.11 1.09 1.07 1.19 1.11

Walker2d 1.18 1.09 1.01 0.95 1.01 0.93

Ant 1.27 1.29 1.08 1.06 1.16 0.98

Humanoid 1.16 1.09 1.07 1.03 1.11 1.07

Mean Score 1.19 1.10 1.06 1.04 1.11 1.03
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