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Abstract—Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world
domains. However, most of existing graph neural networks for graph classification tasks use 90% of labeled graphs for training and the
remaining 10% for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph
classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource
consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN)
framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available
unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test
set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph

examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the
generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the
expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use
of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural
networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields
competitive performance on graph classification tasks with only a small number of labeled graph examples.

Index Terms—Graph neural networks, active learning, semi-supervised learning, graph classification

1 INTRODUCTION

AS a powerful data organization way, graph structured data
are ubiquitous across many domains such as knowledge
graphs, social networks, biological networks and recom-
mender systems [1], [2], [3]. Graph classification [4] endeavors
to identify the class labels of graphs and has become an impor-
tant research hot-spot in numerous scenarios like text
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categorization, protein function prediction, chemical com-
pound classification and malicious code detection, etc.

To tackle the task of graph classification, various preva-
lent methods are proposed. Graph kernel methods [5], [6],
[7], [8], [9] leverage on structural properties such as walks,
subtrees, shortest path lengths or graphlets for measuring
the similarity among graphs and classify graphs into differ-
ent categories by the supervised classifiers. The advantage
of graph kernel methods is that they can be compatible with
any standard plug and play classifier (SVM, random forest,
multilayer perceptron, etc.) easily. However, they mainly
follow a two-stage learning framework in which graph fea-
ture learning and classification are processed respectively.
More recently, graph neural network (GNN) as the latest
research achievement in the field of deep learning has
become a representative tool for machine learning on
graphs, especially for graph classification. Graph neural net-
work based methods can extract expressive and discrimina-
tive graph structural features in a supervised end-to-end
manner [10], [11], [12], [13], [14], [15]. In specific, graph neu-
ral networks accentuate neighborhood aggregation and fea-
ture passing among nodes, both of which are responsible
for recursively learning intricate structural information in
graphs. Although graph neural networks have achieved the
state-of-the-art graph classification results, they have one
limitation that training high-quality networks is data-hun-
gry and often depends on the abundant labeled graphs,
since most existing graph neural network approaches for
graph classification tasks use 90% of labeled graphs for
training, and the remaining 10% for testing. Unfortunately,
the high dimensionality and complexity of graph structured
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data [16], [17] bring great challenges to label annotation, and
it is unrealistic to obtain a large amount of labeled graph
examples for training graph neural networks in the real-
world graph classification applications.

To cope with the graph classification situation with lim-
ited availability of class labels or no available graph labels
during training, some works [18], [19], [20] introduced self-
supervised learning to graph neural networks for graph clas-
sification. Nguyen et al. [18] extended the universal self-
attention network from NLP tasks to graph classification and
proposed U2GNN for learning graph embeddings that can
memorize the dependencies among nodes and characterize
node attributes and global network properties. Specifically,
U2GNN first generates node embeddings by optimizing the
unsupervised contrastive loss and then obtains the embed-
ding representation of the entire graph by summing all
learned node embeddings. GCC [19] presents a self-super-
vised pre-training GNN framework, which treats subgraph
instance discrimination in and across networks as a pre-
training task and leverages contrastive learning to empower
graph neural networks for learning the transferable struc-
tural representations. Actually, both U2GNN [18] and GCC
[19] detach the model training and subsequent tasks, and are
inclined to learn universal representations for graph-rele-
vant tasks. To produce more discriminative graph represen-
tations tailored for graph classification, LCGNN [20]
optimizes the traditional cross-entropy graph classification
loss coupled with the label contrastive coding loss, which
can utilize the available label information of graph examples
to encourage the instance-level intra-class compactness and
inter-class separability. To the best of our knowledge, there
is no work that dedicates to exploring the strength of active
learning and semi-supervised learning for taking full use of
small number of labeled examples and available unlabeled
examples to achieve desirable graph classification to date,
which is also very important in both industry and academic
applications in reality.

Motivated by this, we propose a novel framework named
active and semi-supervised graph neural network
(ASGNN) to learn graph classification models with better
generalization through collaboratively training of multiple
graph neural networks. Specifically, we first train multiple
graph neural network models using the training set which
is continuously expanded by active learning. Active learn-
ing exploits multiple GNNSs to select valuable unlabeled
graph examples with high uncertainty and representative-
ness from the test set, and add them to the training set after
annotation so as to improve the graph classification perfor-
mance. Then, semi-supervised learning uses multiple graph
neural networks to select many high-confidence unlabeled
graph examples from the test set, and add them to the train-
ing set after pseudo labeling to further promote the model
performance. To avoid performance degradation of the
model due to the accumulation of mislabeled graph exam-
ples in the training set, we take out the pseudo labeled
graph examples and relabel unlabeled graph examples at
specific intervals. In a nutshell, the key contributions of this
paper can be summarized as follows:

e A universal active and semi-supervised graph neural
network (ASGNN) framework is proposed to tackle

the challenge of the scarcity of labeled graph exam-
ples in real-world graph classification tasks.

e Active learning and semi-supervised learning mod-
ules designed in our framework exploit multiple
graph neural networks to collaboratively select the
valuable graph examples from the test set and add
them to the training set after true or pseudo annota-
tion, which can reliably enhance the generalization
performance of graph classification models.

e Empirical evaluation on several real-world datasets
demonstrate that our framework yields superior per-
formance on graph classification tasks with a small
amount of labeled graph examples and available
unlabeled graph examples.

The remainder of this paper is organized as follows.
Related works are reviewed in the next section. We then
elaborate the proposed framework in Section 3. Experi-
mental setup and discussion of results are provided in
Section 4. Finally, we conclude the paper and give future
directions.

2 RELATED WORK

In this section, we review related works strongly related to
our work, including graph neural networks, active learning
and semi-supervised learning.

2.1 Graph Neural Networks

Graph neural network based methods for graph classifica-
tion represent each graph as a low-dimensional vector,
which is usually constructed based on the learned node
representations that preserve the global structure of a
whole graph. By virtue of graph neural networks, two sim-
ilar graphs can be mapped into the embedding space
closely. Recently, a great many graph neural networks are
developed to tackle the problem of graph classification.
MPNN [10] contemplates that related graph neural net-
work models can be boiled down to a universal neural
message passing framework, which is composed of a mes-
sage passing phase for neighboring node feature aggrega-
tion and a readout phase for generating graph
representations. A back-trackless aligned-spatial graph
convolutional network [12] is proposed to learn effective
features for graph classification, which is inspired by the
idea of the arbitrary-sized graphs can be transformed into
fixed-sized back-trackless aligned grid structures. Chen
et al. [14] devised a simple lightweight graph feature net-
work, which uses a simplified GNN with linear graph fil-
tering and non-linear set function to conduct graph
classification tasks with a fraction of computation cost.
However, these variants usually perform the graph classi-
fication task with 90% labeled graph examples for training
and the remaining 10% graph examples for validation. In
many real-world application scenarios, labeling graph
data is very difficult and laborious owing to the high struc-
tural complexity, which often leads to the lack of sufficient
labeled graph data for graph classification tasks. There-
fore, how to use a small amount of labeled graph data and
available unlabeled graph data to complete the task of

raph classification is a challenging problem.
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2.2 Active Learning

Active learning focuses on promoting the classification per-
formance of the model with a small amount of labeled
examples and less label cost as much as possible. It first
selects the data with high representativity from the test set
by certain query strategies [21]. After being manually
labeled by experts, the selected data coupled with their cate-
gory labels are incorporated into the training set to itera-
tively promote the model performance. The key point of
active learning is the query strategy which usually contains
multiple indicators for obtaining examples with high repre-
sentativity from test set. Recently, active learning mainly
contains two categories of query methods, query synthesiz-
ing and query acquiring/pool based. The query synthesiz-
ing methods directly generate example data for model
training by using generative models such as generative
adversarial networks. In recent years, most of active learn-
ing methods are query acquiring based, i.e., designing
query strategies to select the valuable example data. Joshi
et al. [22] developed a multi-class active learning setup and
a value-of-information algorithm for multi-class image clas-
sification. To solve the text classification task, Goudjil et al.
[23] presented an active learning method based on support
vector machine to reduce the labeling effort, without
compromising the classification accuracy, by intelligently
selecting the examples to be labeled. Cai et al. [24] proposed
an active graph embedding framework in order to optimize
the node classification performance by actively selecting the
labeled training nodes. However, to the best of our knowl-
edge, there is no method focusing on applying active learn-
ing to GNNSs for graph classification tasks. Inspired by this,
we attempt to incorporate active learning for tackling graph
classification tasks.

2.3 Semi-Supervised Learning

Semi-supervised learning acts as a classical learning para-
digm between supervised learning and unsupervised learn-
ing, and has attracted increasing attention in the field of
pattern recognition and machine learning [25], [26]. Semi-
supervised learning makes an effort to effectively enhance the
performance of machine learning models by utilizing a small
number of labeled examples and available unlabeled exam-
ples. In fact, both unlabeled examples and labeled examples
are obtained from the total examples of independently and
identically distributed, and unlabeled examples containing
the data distribution information enable improving the gener-
alization ability of machine learning models. Therefore, a few
works have begun to investigate the use of semi-supervised
learning on graph neural networks for node classification
[27]. Wang et al. [28] proposed an adaptive multi-channel
graph convolutional network (AM-GCN) for semi-super-
vised node classification, which adequately preserves the
topological structures, node features and their correlated
information to improve the capability of GCNs. Liao ef al. [29]
introduced graph partition neural networks (GPNNs) to han-
dle extremely large graphs for semi-supervised node classifi-
cation, which alternate between locally propagating
information among nodes in small subgraphs and globally
propagating information among the subgraphs. All these
methods demonstrate that semi-supervised learning can help

IEEE TRANSACTIONS ON BIG DATA, VOL. 8, NO. 4, JULY/AUGUST 2022

boost the performance of node classification tasks remark-
ably. As a matter of fact, promoting the performance of vari-
ous classification tasks by using semi-supervised learning has
made great strides. Jakob et al. [30] designed a semi-super-
vised approach using the tags associated with labeled and
unlabeled images to learn a classifier for image classification.
Zhu et al. [31] presented a multi-view semi-supervised learn-
ing framework, which leverages the information contained in
pseudo labeled images to improve the prediction perfor-
mance of image classification using multiple views of an
image [32]. These research efforts indicate that semi-super-
vised learning can improve the performance of classification
tasks in many cases. However, they paid scant attention on
the truth that a small amount of training graph data may not
achieve valuable results, and there is no work applying semi-
supervised learning to GNNs for graph classification tasks.
To tackle this, we incorporate semi-supervised learning and
active learning to graph neural networks for graph classifica-
tion tasks for the first time as far as we know.

3 METHODOLOGY

This section first introduces the problem definition and
notations. Then we describe the proposed active and semi-
supervised graph neural network framework for graph clas-
sification. Next, we expound on how our framework incor-
porates active learning and semi-supervised learning to
improve the performance of graph classification with less
labeled graphs in detail.

3.1 Problem Statement and Notations
3.1.1  Graph Classification

A graph is represented as G, = (V, E), where V is a set of
nodes, F is a set of edges. Given the input space of graphs
{G.,})_| and a set of class labels ), the goal of graph classifi-
cation is to learn a mapping function f : {G, })_ — V.

3.1.2 Supervised Graph Classification

Given a training set Giaining = {G1, ..., G} that contains a
certain number of labeled graph examples, supervised
graph classification aims at learning a mapping function f
to predict the class labels for unlabeled graph examples in
the test set Giest = {Gi11, - -+, Gipu -

3.1.3 Active Graph Classification

Given a training set Giuining = {G1,...,G;} and a test set
Giest = {Gi41, - -+, G}, active graph classification attempts
to select a set of graphs Gyeleet = {Gi41, - - -, G111 } from the test
set and adds them to the training set after annotation, so as to
utilize the new training set Giaining = {G1,---,G1 01,

., G } to predict the class labels for unlabeled graph exam-

ples in the new testset Giest = {Griit1s- - - Givu -

3.1.4 Semi-Supervised Graph Classification

Given a training set Giaining = {G1, -+, G, i1, - - -, Gipo } that
contains ! labeled graph examples and « unlabeled graph
examples, the purpose of semi-supervised graph classifica-
tion is to predict the class labels for unlabeled graph exam-
ples in the test set Giest = {Gi+1 , Gl
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TABLE 1
The Notations Used in This Paper

Notations Explanations

g A graph example

%4 Set of nodes in a graph

E Set of edges in a graph

Yy The class label of a graph

Yy Set of class labels

Giraining The training set for graph classification
Glest The test set for graph classification
The parameter matrix

NNg A neural network

N (v;) The neighbor set of node v;

hg The graph feature representation of G

readout () A readout function to obtain the graph-level
representation

Dy, The set of labeled graph examples

Dy The set of unlabeled graph examples

PE The entropy percentage

Dd The euclidean percentage

al_k Graph examples selected by active learning
per epoch

ss-k Graph examples selected by semi-supervised
learning per epoch

ALK Proportion budget of graph examples selected
by active learning

SS_K Proportion budget of graph examples selected
by semi-supervised learning

invl Interval of epochs for taking out pseudo

labeled graph examples

A description of the notations used in this paper is given
in Table 1.

3.2 Framework
The typical graph neural network based methods usually
require a large amount of labeled graph examples to accom-
plish the graph classification task. However, graph classifi-
cation tasks are frequently faced with a problem of the
scarcity of labeled graph examples since large-scale labeled
graph datasets often mean the high cost of time and labor.
Fortunately, active learning and semi-supervised learning
are two classical learning paradigms which can be utilized
in the training process to solve the problem of the scarcity
of labeled graph examples by enlarging the training set. In
specific, active learning can select the graph examples with
high value from the test set, and semi-supervised learning
can select the graph examples with high confidence level
from test set. The graph examples selected by active learn-
ing or semi-supervised learning can be added into training
set after truly annotation or pseudo labeling respectively.
Motivated by this, we propose a novel active and semi-
supervised graph neural network framework for graph clas-
sification, whose graphical illustration is shown in Fig. 1.
The proposed framework includes two paradigms, i.e.,
active learning and semi-supervised learning, which are
efficiently applied to multiple GNNs for promoting the
graph classification performance. In this way, although the
graph examples with high value selected from test set in
active learning by only one GNN probably are not reliable,
this framework selects the graph examples that are com-
monly recognized as valuable to the performance gain of

graph classification models through multiple GNNs, and
then adds them into the training set after human annotation.
As for semi-supervised learning, our framework selects the
unlabeled graph examples with high confidence level in
soft clustering jointly by multiple GNNs, and adds them to
the training set after pseudo labeling for improving the
graph classification results.

Algorithm 1. Procedure of the Proposed ASGNN
Framework

Input:
Dy, Dy
Output:
The graph classification accuracy of Dy
Step 1 Initialization:
Initialize epoch = 0, al_k, AL_K, ss_k, SS_K, invl.
Step 2 Optimization:
Dyhole < D, U Dy
SHUFFLE(D 1)
Step 2.1 Active learning:
while epoch <= w do
(Dys, Dyr) « Algorithm2(Dy, Dy, al_k)
Dy =Dy ,Dy = Dy
Update gradient of GNN1 and GNN2 by the SGD
algorithm.
epoch + +
end while
Step 2.2 Semi-supervised learning:
while epoch <= %ﬁw do
(Dys, Dy) « Algorithm3(Dy, Dy, ss-k)
D L= =D L
Update gradient of GNN1 and GNN2 by the SGD
algorithm.
epoch + +
if epoch % invl = 0 then
Take out the pseudo labeled graph examples from Dy.
else
continue
end if
end while
Step 3 Output the classification results:
Output the classification accuracy of graph examples in
Dy.

Graph structured data is originally organized in non-
euclidean geometric space and should first be represented
as feature vectors so as to be convenient for subsequent
graph classification tasks. In order to generate the graph-
level representation hg,, for a graph G,,, we first learn the
low-dimensional embedding features for each node by a
powerful aggregation function

B = NNo® [ D+ 37 RV ), )

v;EN (v;)

where A denotes the feature vector of node v; at tth layer,
N (v;) represents the set of neighboring nodes of node v,
NNg is a neural network such as multi-layer perceptron
and O is the parameter matrix to be learned. The feature
vector of node v; at tth layer can be obtained from its own
feature vector at (¢ —1)th layer incorporated with the

Authorized licensed use limited to: Shanxi University. Downloaded on October 11,2023 at 03:00:00 UTC from IEEE Xplore. Restrictions apply.



924

IEEE TRANSACTIONS ON BIG DATA, VOL. 8, NO. 4, JULY/AUGUST 2022

(Output: Graph Classification Accuracy for DU>

Phase 1: Active Learning |

Intersecting

R —

Truly annotating some

\ graph examples )

Phase 2: Semi-supervised Learning

Predicting

[

Intersecting

Predicting

[

Input: D; and Dy

Fig. 1. Graphical illustration of our proposed active and semi-supervised graph neural network framework for graph classification. With labeled graph
examples from D;, and unlabeled graph examples from Dy;, our framework explores active learning and then semi-supervised learning to train two
graph neural networks (GNN1 and GNNZ2). In the phase of active learning, each GNN selects the graph examples with high uncertainty and represen-
tativity, followed by which we take out the graph examples that two GNNs simultaneously consider valuable from the test set, and add them to the
training set after truly annotation. In the phase of semi-supervised learning, two GNNs select the graph examples with high confidence level by soft
clustering respectively, and then add the intersection of them to the training set after pseudo labeling. Finally, we can confidently output the graph

classification accuracy for Dy;.

aggregation of feature vectors of its neighboring nodes at
(t — 1)th layer. Then, a readout function is used to yield the
graph-level representation hg,, generally as the following
form:

hg,, = readout({h,ﬁ? |v; € gm})v )

where T' denotes the number of layers in the graph neural
network. The readout function can be instantiated by a
global sum/mean pooling, followed by fully connected and
softmax layers to generate the categorical output. The train-
ing loss of two graph neural networks can be defined by:

L
Lira = Z ( Z Yi[Gm|log (i [gm])> ) 3)

Gm =1

where L denotes the number of categories of graph exam-
ples, y,[G,,] represents the indicator variable (if the category
l is the same as the category of a graph example G,,,, 1G] is
1, otherwise it is 0) and p;[G,,] is the predicted probability
that the graph example G,, belongs to the category .

To enhance the graph classification performance, we
make graph neural networks “see” more data. Active learn-
ing is utilized to select the graph examples that contain rich
information from test set, and then these examples are
added into the training set after annotation. Generally, the
more the representativeness and uncertainty of the graph
examples in a dataset, the richer the information contained
in these graph examples. We employ two indicators includ-
ing euclidean distance and information entropy to measure
the representativeness and uncertainty of graph examples,
respectively. Selecting the graph examples that contain rich
information by one GNN may be unreliable. Therefore, our
framework explores two GNNs to collaboratively select the

graph examples, and add the intersection of the selected
graph examples by the two GNNSs to the training set after
human annotation to promote the performance of graph
neural networks.

To further improve the performance of graph classifica-
tion, semi-supervised learning is adopted to select the unla-
beled graph examples that are most likely belonging to a
certain category. Then graph neural networks can pseudo
label them with predicted labels, and add the pseudo labeled
graph examples to the training set. There is no doubt that
selecting the unlabeled graph examples with high confi-
dence level from the test set is a crucial issue. Soft clustering,
a fuzzy clustering method, is exploited to tackle this issue by
calculating the soft clustering scores of the graph examples
and regard the graph examples with high score of soft clus-
tering results as the pseudo labeled graph examples. Like-
wise, our framework takes into account the intersection of
unlabeled graph examples selected by two GNNs as the
graph examples waiting for pseudo labeling. After pseudo
labeling the selected graph examples, the pseudo labeled
graph examples with high confidence are added to the graph
training set expanded by the previous active learning, and
these pseudo labeled graph examples are taken out after a
specific epoch. As a result, the performance of graph neural
networks can be effectively promoted by the pseudo labeled
graph examples. After active learning and semi-supervised
learning, the label of each unlabeled graph example is deter-
mined by the averaged predicted probability of two GNNs.
For clarity, Algorithm 1 summarizes the overall procedure of
our proposed framework.

3.3 Active Learning
In this subsection, we illustrate the active learning module
designed in our framework in detail. As shown in Fig. 2, the
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Fig. 2. Graphical illustration of the process of active learning. Dy and Dy,
denote set of unlabeled graph examples and set of labeled graph exam-
ples, the representative graph examples D, and D, are selected by
GNN1 and GNNZ2 respectively. The intersection of D, and D, is utilized
to promote the classification performance of graph neural networks by
adding them to the training set after annotation.

unlabeled graph example set Dy and the labeled graph
example set Dy, are taken as the input of two GNNs. GNN1
and GNN2 collaboratively select the graph examples that
contain rich information from test set, and add them to the
training set after annotation. For the sake of measuring the
richness of the information contained in graph examples,
two indicators are employed including information entropy
and euclidean distance in our framework.

By virtue of the end-to-end graph neural networks, the
classification probability of each graph example can be out-
put by the Softmax formula straightforwardly as

P[Gn] = Softmax(Sifhg, |) = —PilN6,) W

ZZI;ZI eXp(Sl/ [hng 7

where Sj[hg,,] denotes the soft clustering score that a graph
example G, is predicted to belong to class [ as defined in
Eq. (9). Softmax(S;[hg,,]) is the predicted probability of a
graph G,, from Dy is classified into the category [/, and L
indicates the number of classes of graph examples. Further-
more, the predicted probability can be utilized to calculate
the entropy of a graph example by the following formula so
as to choose the highly uncertain graph examples from test
set

L
E=- Zpl[gm]*l()g (Pl [gm])v (5)
=1

where p;[G,,] represents the probability that a graph exam-
ple G, is predicted to belong to the class / and L denotes the
number of classes of graph examples. To quantitatively
describe the uncertainty of graph example G,, in the whole
unlabeled graph dataset Dy, the proportion of all graph
examples whose entropy value is less than G, is defined as
the entropy percentage pr of the graph example G,,. The
higher the entropy percentage of the graph example G,,, the
greater the uncertainty of the graph example G,, in the unla-
beled graph dataset Dy;.

Considering that only using one indicator entropy to
evaluate the information contained in a graph example is
unreliable, we further exploit euclidean distance to measure
the richness of the information contained in the graph
example. Essentially, the clustering center i.., C'= {C},
Cy,...,Cr} of available labeled S%raph examples can be

Authorized licensed use limited to:

obtained by the following formula:

O — SH{mIGn] |G € D and  YV[Gn] =1} ©
: l{gm | Gn €D and y[gm] = l}| ’

where h[G,,] represents the embedding representation of
each labeled graph example in the category /. The represen-
tativeness of unlabeled graph examples can be determined
by the euclidean distance from each unlabeled graph exam-
ple to the nearest clustering center, which is shown as fol-
lows:

dg,, = l:q{i{}L{||hg,,, - CIH%}- M
Later, we calculate the proportion of all graph examples
whose euclidean distance is less than G,,, and define it as
the euclidean percentage p, of the unlabeled graph example
Gm. The higher the euclidean percentage of graph example
G, the greater the representativeness of the graph example
G, in the unlabeled graph dataset Dy;.

Algorithm 2. Procedure of Active Learning in the
ASGNN Framework

Input:
Dy, Dy, al_k
Output:
New training set D, and test set Dy after active learning
Step 1 Process:
Calculate the entropy percentage and euclidean percentage
for each graph by GNN1 and GNN2 simultaneously.
GNNT1 selects al_k representative graph examples D,,.
GNN2 selects al_k representative graph examples Dy,
Take out D, N D, from Dy and add them into D; after
annotation.
Step 2 Output:
Output the new training set D, and test set Dy after active
learning.

Finally, the representativeness of each graph example is
determined by multiple indicators, which is advantageous
to select graph examples with high uncertainty and strong
representativeness as the graph examples with rich infor-
mation to be labeled. After selection, we add them to the
training set after annotation, so as to boost the classification
performance of GNN models and further improve the accu-
racy of graph classification tasks. The multiple indicator
weighting formula is defined as follows:

I, = o«"pp + (1 — ) pa, (®)

where pp and pg represent the entropy percentage and
euclidean percentage, « and 1 — « are the weights of two
indicators, respectively. Ig, indicates the richness of infor-
mation contained in the graph example G,,. According to
the I value of each unlabeled graph example that simulta-
neously considers the uncertainty and representativeness of
the graph, the graph example with the most significant per-
formance gain to the training model can be selected.

For the sake of enhancing the generalization ability of
graph classification models, GNN1 selects the unlabeled
graph examples D, with rich information based on two
indicators including entropy percentage and euclidean
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percentage, and GNN2 also selects the unlabeled graph
examples D, based on these two indicators. The intersection
of D, and D, is taken out from Dy as the final result of selec-
tion and is then added into D;, after annotation to promote
the performance of graph neural networks for improving
the accuracy of graph classification tasks. Algorithm 2 sum-
marizes the detailed procedure of the active learning mod-
ule designed in our framework.

3.4 Semi-Supervised Learning

The semi-supervised learning module designed in our pro-
posed framework attempts to select the unlabeled graph
examples that are most likely belonging to a certain cate-
gory, to pseudo label them with predicted labels, and add
these pseudo labeled graph examples to the training set for
promoting the performance of GNNs. Therefore, selecting
the unlabeled graph examples with high confidence level
from the test set is a primary problem. We tackle this prob-
lem by regarding the unlabeled graph examples with high
soft clustering scores as graph examples waiting to be
pseudo labeled

(Iha, — )"

St (g, - Crl)

Sl [gm] = (9)

S1[Gm] denotes the soft clustering score that a graph example
G, is predicted to belong to the class [ and L represents the
number of categories of graph examples. Then the graph
examples that achieve the high soft clustering score can be
selected as the graph examples waiting to be pseudo labeled
for each category.

Algorithm 3. Procedure of Semi-Supervised Learning in
the ASGNN Framework

Input:
D L, DU, ss_k

Output:
New training set D, and the original test set Dy after semi-
supervised learning

Step 1 Process:
Calculate the soft clustering results of each graph by GNNI1
and GNN2 respectively according to Eq. (9).
GNNI selects ss_k high confidence level examples D,,.
GNN2 selects ss_k high confidence level examples D;,.
Pseudo label D, N Dy, and add them into Dj,.

Step 2 Output:
Output the new training set D, and the original test set Dy
after semi-supervised learning.

Likewise, our ASGNN framework considers the intersec-
tion of unlabeled graph examples selected by two GNNs as
the graph examples waiting for pseudo labeling. After
pseudo labeling the graph examples, the pseudo labeled
graph examples with high confidence level are added to the
training set. Every invl (such as 5) epochs, we take out the
pseudo labeled graph examples from training set, and rese-
lect high-confidence pseudo labeled graph examples as
shown in Algorithm 1. Because if the mis-predicted graph
examples are not taken out later, the training error will
accumulate in each iteration of training and the model
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performance will be bound to decline in the long run. The
semi-supervised learning module designed in our frame-
work simultaneously selects valuable unlabeled graph
examples by multiple GNNs, and adds them into the train-
ing set after pseudo labeling to effectively improve the clas-
sification performance of graph neural networks. Algorithm
3 summarizes the detailed procedure of the semi-super-
vised learning module designed in our framework.

3.5 Discussion

Trained on only small number of labeled graph examples,
the performance of graph neural networks is usually rele-
vantly unsatisfactory or even poor although they can work
to predict the labels for unlabeled graphs after training.
Heuristically, our whole framework attempts to spirally
improve the graph classification performance based on
active learning and semi-supervised learning, two of classi-
cal weakly-supervised learning paradigms. Two aspects are
taken into account while designing the active and semi-
supervised graph neural network framework.

e In the early training of graph neural networks for
graph classification, directly applying semi-super-
vised learning to GNNs may provide a lot of false
pseudo labels for unlabeled graph examples, which
easily lead to performance degradation due to the
accumulation of the training error. To tackle this, an
active learning strategy is presented to select the
graph examples that contain rich information and
deserve high attention, and then truly annotate them
for enlarging the training set, which empower graph
neural networks to enhance the generalization ability
promptly.

e Nevertheless, it is not only expensive and but not
necessary to continuously and truly annotate graph
examples in the whole training process, especially in
practical applications of graph classification. There-
fore, we further design a semi-supervised learning
strategy to take effective utilization of the trained
GNN itself to make prediction, and select the high-
confidence predicted graph examples for training
GNNs with better classification performance. Note
that we take out the pseudo-labeled graph examples
at every certain epoch, which endeavors to avoid the
performance decline due to the error accumulation.

Last but not least, the ASGNN framework utilizes two

graph neural networks to collaboratively select the critical
graph examples for updating model parameters, which is con-
ducive to achieve reliable and desirable graph classification.

4 EXPERIMENTS

In this section, we first introduce the experimental datasets
and baselines. Then, graph classification results and the
parameter sensitivity analysis are presented in detail.
Finally, we conduct the ablation study and effectiveness
verification of our proposed framework.

4.1 Datasets

To demonstrate the superiority of our proposed framework,
twelve graph classification benchmarks are employed in the
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TABLE 2
Statistics Information of Twelve Graph Classification Datasets

Dataset Num_G Num_Classes Avg. Avg. Node Edge
nodes edges labels labels
MUTAG 188 2 17.93 19.79 + +
PTC_MR 344 2 1429 14.69 + +
COLLAB 5000 3 74.49 245778 — -
BZR_MD 306 2 21.30 225.06 + +
BZR 405 2 35.75 38.36 + -
NCI1 4110 2 29.87 32.30 + —
PROTEINS 1113 2 39.06 72.82 + -
ER_MD 446 2 21.33 23485 + +
COX2_MD 303 2 2628 33512 + +
DHFR 467 2 4243 4454 + -
DHFR MD 393 2 23.87 283.01 + +
PTC_FR 351 2 14.56  15.00 + +
graph classification experiments, including MUTAG,

PTC_MR, COLLAB, BZR MD, BZR, NCI1, PROTEINS,
ER_MD, COX2_MD, DHFR, DHFR_MD and PTC_FR. The
MUTAG [33] dataset consists of 188 chemical compounds
divided into two classes according to their mutagenic effect
on a bacterium. The PTC_MR [33] dataset contains com-
pounds labeled according to carcinogenicity on male rats.
COLLAB [34] is a scientific collaboration dataset, derived
from 3 public collaboration datasets [35], namely, High
Energy Physics, Condensed Matter Physics and Astro Phys-
ics. BZR_MD s derived from the chemical compound dataset
BZR, which is a set of 405 ligands for the benzodiazepine
receptor [36]. NCI1 [37] is a chemical compound dataset and
consists of 4110 compounds, which represent the activity
against non-small cell lung cancer cell lines. PROTEINS is a
dataset obtained from [38] where nodes are secondary struc-
ture elements and there is an edge between two nodes if they
are neighbors in the amino-acid sequence or in 3D space. The
bioinformatics dataset ER_MD [36] assembles 446 estrogen
receptor ligands from multiple sources and the chemical
dataset. COX2_MD [36] contains 303 cyclooxygenase-2 inhib-
itors. DHER [36] is a set of 467 inhibitors of dihydrofolate
reductase and DHFR_MD [36] is a subset of DHFR. PTC_FR
[33] consists of compounds labeled according to carcinoge-
nicity on rodents of male mice. Table 2 provides the summary
statistics of all datasets used in graph classification experi-
ments, including the total number of graphs, the number of
classes of graphs, the average number of nodes in graphs, the
average number of edges in graphs, the number of categories
of nodes and the number of categories of edges. “~” denotes
the lack of corresponding attributes.

4.2 Baselines

Two typical GNN representatives, GIN[13] and GFN [14],
are respectively adopted as baselines. GIN is one of the
provably most powerful GNNs under the neighborhood
aggregation framework endeavoring to preserve the high-
order neighborhood relations, while GEN can be seen as a
simple lightweight GNN with linear graph filtering and
non-linear set function, which is powerful enough to per-
form well than many sophisticated GNNs. To verify the
superiority of our framework, a competitive label contras-
tive coding based graph neural network (LCGNN) [20] is

compared, which shows more advantages than unsuper-
vised GCC [19] and U2GNN [18]. LCGNN utilizes the label
information effectively for graph classification tasks by
extending the contrastive learning to the supervised setting
and introducing the label contrastive coding. GIN+LCGNN
and HGP-SL+LCGNN are two implementations of LCGNN
in [20], thus we compare our ASGNN with GIN+LCGNN
that uses GIN as the graph encoders, and HGP-SL+LCGNN
that sets the graph encoders as HGP-SL [39]. Besides, a
newly developed method named graph multi-set trans-
former (GMT) [40] is included for comparison, which
explores the multi-head attention based global pooling for
characterizing the interaction among nodes and outper-
forms the state-of-the-art graph pooling methods. Our
ASGNN framework attempts to utilize a small amount of
labeled data to complete graph classification tasks, which is
different from the conventional methods that use 90% of
labeled data. In order to compare under the same condi-
tions, we settle the ratio of labeled training set and unla-
beled test set to 10% and 90%, respectively. More
importantly, we present the results of applying the two
modules including active learning and semi-supervised
learning designed in our framework to a single GNN (.e.,
GIN+ASGNN and GFN+ASGNN), and further demonstrate
the results of applying these two modules in multiple
GNNs (GIN+GFN+ASGNN).

4.3 Comparison With Different Methods

Table 3 shows the experimental results of our framework
and baselines for graph classification on twelve benchmark
datasets. GIN+ASGNN implies the two modules including
active learning and semi-supervised designed in our frame-
work are applied to a single graph neural network GIN,
and so does GFN+ASGNN. As for GIN+GFN+ASGNN, it
represents the ASGNN framework that incorporates the
graph neural networks GIN and GFN. For clarity, the bold-
face refers to the best graph classification accuracy among
different methods on each dataset.

The graph classification results of GIN and GIN+ASGNN
in Table 3 demonstrate that the classification accuracy is
improved when the two modules including active learning
and semi-supervised learning designed in our framework
are applied to single GIN. The performance improvement is
especially obvious on MUTAG, PROTEINS and PTC_MR
datasets, which are 3.36%, 4.13% and 3.74%, respectively.
When the two modules including active learning and semi-
supervised learning carefully designed in our framework
are applied to the original GFN, the average accuracy of
graph classification increases about 0.12% to 7.89%. The
diversity in the performance improvement of our frame-
work may be caused by the difference of the size and struc-
ture of graph datasets. We also observe that, compared to
the baseline methods GIN+LCGNN, GIN+ASGNN can
acquire better results on most datasets, especially on the
MUTAG, PROTEINS and PTC_FR datasets, which increase
by 4.47%, 6.79% and 4.23%, respectively. Furthermore, our
framework implemented on single GIN/GFN yields com-
petitive or even higher graph classification results than the
state-of-the-art baseline methods GMT and HGP-SL
+LCGNN. Overall, our ASGNN framework incorporated
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TABLE 3
Graph Classification Accuracy of Baseline Methods and Our Proposed Framework on Different Datasets With Different Labeling
Rate of 10%

Methods MUTAG PTC_MR COLLAB BZR_MD BZR NCI1 PROTEINS ER_MD COX2_MD DHFR DHFR_MD PTC_FR

GIN 76.524+0.01 | 55.0240.01 | 62.77£0.00 | 54.88£0.01 | 69.8940.01 [ 69.0540.00 | 66.0740.01 | 60.3640.01 | 50.70£0.01 | 51.3940.01 | 58.354+0.01 | 54.11£0.01
GEN 75.50+0.06 | 54.004+0.05 | 74.30+£0.01 | 61.70£0.06 | 70.6040.04 | 73.6140.01 | 69.914+0.04 | 65.2040.03 | 55.41+0.04 | 65.624+0.03 | 61.51+0.14 | 57.43£0.05
GMT 70.2940.02 | 53.60+0.03 | 69.22+0.01 | 55.43+0.04 | 75.5340.01 | 62.1240.03 | 65.2040.05 | 63.6740.01 | 52.42+0.02 | 64.3040.04 | 63.84+0.06 | 59.65+0.02
GIN+LCGNN 75.414+0.01 | 54.5740.03 | 65.24+0.02 | 55.20£0.02 | 70.5240.04 | 70.2440.03 | 63.4140.02 | 59.0310.01 | 49.34:£0.02 | 52.5040.06 | 60.36:£0.03 | 53.6240.01
HGP-SL+LCGNN 68.67+0.02 | 55.914+0.02 | 67.21£0.03 | 54.31£0.02 | 72.1540.03 | 60.7440.01 | 64.2340.01 | 60.5840.05 | 50.36+0.02 | 55.6840.01 | 61.524+0.06 | 56.18£0.04
GIN+ASGNN 79.88+0.01 | 57.754+0.02 | 65.32+0.06 | 56.44+0.01 | 72.0740.00 | 70.3440.01 | 70.2040.01 | 62.1740.01 | 50.88+0.01 | 53.3440.01 | 59.81+0.02 | 57.85+0.01
GFN+ASGNN 79.04+0.04 | 57.604+0.04 | 74.42+0.01 | 65.09£0.04 | 78.4940.06 | 74.2740.01 | 72.8140.02 [ 66.7240.03 | 56.75+0.04 | 69.2840.03 | 62.66+0.04 | 58.93£0.12
GIN+GFN+ASGNN | 81.83£0.03 | 59.1040.04 | 75.5610.01 | 66.86+0.05 | 79.73+£0.02 | 75.53+0.01 | 73.92£0.03 | 67.84:£0.03 | 57.9240.04 | 69.89:£0.03 | 66.014+0.02 | 61.154+0.04

with multiple GNNs expresses the most evident and stable
improvement in the task of graph classification. The reason
may be that multiple GNNs are more reliable in selecting
the valuable graph examples by mutual learning in active
learning and semi-supervised learning. In specific, multiple
GNNs can confidently select the unlabeled graph examples
from different views, to simultaneously improve the model
performance of GNNs. Moreover, the gain of these graph
examples to the model performance is often higher and
more stable than the gain of the graph examples selected by
a single GNN to the performance of graph classification.

Experimental results in Table 3 fully reveals the effective-
ness of exploiting active and semi-supervised learning for
graph classification. And the two paradigms including
active learning and semi-supervised learning can be applied
to a single graph neural network to promote the generaliza-
tion performance and improve the classification accuracy of
graph classification tasks. Overall, two obvious conclusions
can be concluded from the experimental results. The pro-
posed framework incorporating two GNNs can promote
the graph classification accuracy than that only based on
single GNN. Active learning and semi-supervised learning
on multiple graph neural networks can facilitate the model
training and achieve an advanced performance increment
for graph classification results.

4.4 Parameter Sensitivity Analysis
In this section, we investigate how hyper-parameters affect
the performance of our proposed framework for graph clas-
sification. Specifically, we evaluate how three key parame-
ters AL_K, SS_K and « influence the graph classification
accuracy.

For the hyper-parameter AL_K in the proposed frame-
work, AL_K represents the proportion budget of the graph

90 1 90 1

examples selected from the test set by active learning and
we study the impact of its different values AL_K €
{1%, 2%, 5%, 8%,10%} on graph classification. Considering
that the results of different datasets show similar tends, we
take MUTAG, PTC_MR, PROTEINS and DHFR datasets as
examples for analysis. Fig. 3 manifests how the parameter
AL_K influences the graph classification accuracy on four
datasets when our framework incorporated with the single
GIN, single GFN and multiple GNNs. It demonstrates that
the performance of our proposed framework achieves an
improvement with the rise of the number of representative
examples marked by active learning.

We further investigate the influences of different SS_K of
our proposed framework on MUTAG, PTC_MR, PROTEINS
and DHFR datasets for graph classification. SS_K repre-
sents the proportion budget of the graph examples selected
from the test set by semi-supervised learning and we set
SS_K € {2%,4%,6%,8%,10%}. Fig. 4 presents how the
parameter SS_K influences the graph classification accuracy
on MUTAG, PTC_MR, PROTEINS and DHFR datasets
when our framework incorporated with the single GIN, sin-
gle GFN and multiple GNNSs. It exhibits that the perfor-
mance of our proposed framework brings an improvement
with the increase of the number of pseudo labeled examples
marked by semi-supervised learning.

Finally, the influences of the weight of entropy percent-
age « and euclidean percentage 1 — « on the graph classifi-
cation accuracy are explored. We set o€ {0.1,0.3,0.5,
0.7,0.9} and the weight of euclidean percentage is corre-
spondingly as 1 —« € {0.9,0.7,0.5,0.3,0.1}. Fig. 5 indicates
the influence for graph classification accuracy on MUTAG,
PTC_MR, PROTEINS, and DHFR datasets with different
proportions of @ when our framework incorporated with

the single GIN, single GFN and multiple GNNs. Our
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Fig. 3. Sensitivity analysis of AL_K from 0% to 10% on MUTAG, PTC_MR, PROTEINS and DHFR datasets.
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Fig. 4. Sensitivity analysis of SS_K from 0% to 10% on MUTAG, PTC_MR, PROTEINS and DHFR datasets.

framework yields the best graph classification accuracy
when the weight « is 0.5. Additionally, when one of the two
indicators (entropy percentage or euclidean percentage) is
assigned as high weights, the classification accuracy of our
framework is relatively decreased.

To summarize, with two hyper-parameters AL_K and
SS_K increasing from 0% to 10%, the accuracy of graph clas-
sification achieves an incremental improvement. The incre-
ment of AL_K and SS_K indicates that more examples with
rich information are selected from test set and added into
the training set for promoting the performance of graph
neural networks. It proves that active learning and semi-
supervised learning can utilize a small number of labeled
graph examples or pseudo labeled graph examples to
expand the training set for promoting the performance of
graph neural networks. In Figs. 3a and 4a, on the small data-
set MUTAG, the performance of our framework incorpo-
rated with single GIN has a significant improvement with
the increase of AL_K and SS_K at the beginning. Figs. 3c
and 4c show us that when the multiple GNNs are incorpo-
rated with our framework, with the labeling rate increasing
to 10%, the classification accuracy still has the potential to
improve with the increment of AL_K and SS_K. Overall,
the ASGNN framework proposed in this paper incorpo-
rated with single GNN or multiple GNNs all achieve an
improvement of graph classification accuracy. In Fig. 5,
with the weight of entropy percentage increases from 0.1 to
0.5, the performance of our framework is gradually

improved, due to more attention paid to the effect of
entropy percentage on the process of selecting examples
with rich information by active learning. When « is near 0.5,
we obtain the best classification performance. However,
when the value of o continuously increases, the classifica-
tion accuracy of our framework will drop slowly. The pre-
mier reason may be that the model does not reasonably
consider the influence of two indicators on the process of
selecting examples with rich information by active learning,
but pays more attention to the euclidean percentage on the
selection.

4.5 Ablation Study

To demonstrate the effectiveness of two learning steps
designed in our framework, we conduct ablation study on
active learning and semi-supervised learning, respectively.
Finding that results of different datasets show similar tends,
we take MUTAG, PTC_MR, PROTEINS and DHEFR as exam-
ples. The effect of removing different components in our
framework on the performance of graph classification is
shown in Table 4. It is obvious that both active and semi-
supervised learning steps have positive contributions to the
single GNN for graph classification, respectively. With the
integration of active learning and semi-supervised learning
on single GNN, the accuracy of graph classification is fur-
ther enhanced, indicating that it is feasible to exploit the
two paradigms together to improve the generalization
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Fig. 5. Sensitivity analysis of « from 0.1 to 0.9 on MUTAG, PTC_MR, PROTEINS and DHFR datasets.
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TABLE 4
Ablation Study on Active Learning and Semi-Supervised Learning Steps of Our Framework on Different Datasets With Labeling
Rate of 10%

GIN GEN Active learning Semi-supervised learning MUTAG PTC_MR PROTEINS DHEFR
v 76.52+0.01 55.02+0.01 66.07+0.01 51.39+0.01
4 v 78.261+0.02 56.51+0.01 69.02+0.03 52.29+0.05
v v 78.20+0.02 56.96+0.04 68.31+0.05 52.41+0.01
4 4 v/ 79.88+0.01 57.7540.02 70.2040.01 53.34+0.01
4 75.50+0.06 54.00+0.05 69.91+0.04 65.62+0.03
v 4 77.4440.02 56.00+0.03 70.5140.01 67.39+0.02
4 v 77.03+0.03 56.98+0.02 70.1940.04 67.31+0.05
v 4 v 79.0410.04 57.60+0.04 72.8140.02 69.28+0.03
v 4 v 4 81.83+0.03 59.10+0.04 73.92+0.03 69.89+0.03
(Improvement over the second best baselines) (1.95) (1.35) (1.11) (0.61)
Bold Numbers are the Best or the Second Best Graph Classification Accuracy for clarity.
TABLE 5
Graph Classification Accuracy of Different Methods on Datasets With Different Amount of Labeled Data
Methods MUTAG PTC_MR PROTEINS DHFR
GIN 85.02+0.01 59.33+0.03 71.80+0.01 55.61+0.01
(90%) (90%) (90%) (90%)
GIN+ASGNN 85.8240.03 60.78+0.02 72.42+0.01 57.87+0.02
(50%) (50%) (50%) (30%)
GEN 87.21+8.22 62.451+9.46 75.46+5.06 75.30+4.19
(90%) (90%) (90%) (90%)
GFN+ASGNN 87.9440.05 63.60+0.03 75.70+0.02 75.514+0.01
(50%) (50%) (50%) (30%)
GIN+GFN+ASGNN 88.20+0.04 64.40+0.01 76.20+0.01 76.89+0.02
(50%) (30%) (25%) (30%)

performance. Furthermore, our framework implemented on
two GNN s yields more desirable graph classification accu-
racy than that only based on single GNN, achieving the
gain of 0.61%-1.95% at least. All these results fully verify
that our framework incorporating with the carefully
designed active learning and semi-supervised learning
strategies can effectively select and exploit the valuable
graph examples in different phases to facilitate the model
training of GNNs and enhance the graph classification
accuracy.

4.6 Verification of Effectiveness on Used
Labeled Data

In this section, we explore the relation between the perfor-
mance of the graph classification model and the amount of
training data required. Considering that results of different
datasets show similar tends, we take MUTAG, PTC_MR,
PROTEINS and DHFR as examples for illustration. Table 5
reports the experimental results of our framework and dif-
ferent methods for graph classification with different
amount of labeled data on MUTAG, PTC_MR, PROTEINS
and DHFR datasets. The amount of labeled data used in
GIN and GFN is 90%, 90%, 90% and 90% for MUTAG,
PTC_MR, PROTEINS and DHEFR datasets, respectively. To
achieve the comparable classification accuracy, the labeled
data required in GIN+ASGNN and GFN+ASGNN is 50%,
50%, 50% and 30% for MUTAG, PTC_MR, PROTEINS and

Authorized licensed use limited to: Shanxi University. Downloaded on October 11,2023 at 03:00:00 UTC from IEEE Xplore. Restrictions apply.

DHFR datasets, respectively. In GIN+GFN+ASGNN, the
amount of labeled data required is 50%, 30%, 25% and 30%
on MUTAG, PTC_MR, PROTEINS and DHFR datasets. In
this case, the graph classification results in GIN+ASGNN
and GFN+ASGNN outperform GIN and GEN, respectively.
And GIN+GFN+ASGNN can achieve the best classification
accuracy only using the minimal number of labeled graph
examples. The main reason is that the two paradigms
including active learning and semi-supervised learning in
our framework can select the informative graph examples
and many pseudo labeled graph examples with structure
information for promoting the performance of graph classi-
fication. These results further verify the effectiveness of our
framework.

5 CONCLUSION

Graph neural networks play an increasingly important role
in solving the problem of graph classification and existing
works widely utilize a large volume of labeled graph exam-
ples for training. However, there are rare labeled graph
examples in the real-world application of graph classifica-
tion and it is very expensive to label a large number of
graph examples manually. In this paper, we propose a
novel active and semi-supervised graph neural network
framework to complete the graph classification tasks with a
small number of labeled graph examples and available
unlabeled graph examples. The two learning Faradigms
Yy
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including active learning and semi-supervised learning
designed in our framework exploit multiple GNNs for col-
laboratively increasing the reliability of graph classification
results. The framework can not only gracefully explore
unlabeled graph examples for facilitating graph classifica-
tion tasks, but also can be utilized to other existing graph
neural networks for graph classification. Experimental
results on benchmark graph classification datasets manifest
that the proposed framework is effective on graph classifica-
tion tasks only with a small number of labeled examples
and available unlabeled graph examples.

For future works, we would like to further extend the
proposed framework for more complex and challenging
graph classification problems. Besides, the design of other
active and semi-supervised graph neural network frame-
works for efficient graph classification is also a promising
research direction.
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