
Neural Networks 168 (2023) 459–470

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Exploring the role of edge distribution in graph convolutional networks
Liancheng He b, Liang Bai a,b,∗, Xian Yang c, Zhuomin Liang b, Jiye Liang a,b

a Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
b Institute of Intelligent Information Processing, Shanxi University, Taiyuan, 030006, Shanxi, China
c Alliance Manchester Business School, The University of Manchester, Manchester, UK

A R T I C L E I N F O

Keywords:
Graph Neural Networks
Heterophilous graphs
Node representation learning
Edge distribution
Neighbor selection

A B S T R A C T

Graph Convolutional Networks (GCNs) have shown remarkable performance in processing graph-structured
data by leveraging neighborhood information for node representation learning. While most GCN models
assume strong homophily within the networks they handle, some models can also handle heterophilous graphs.
However, the selection of neighbors participating in the node representation learning process can significantly
impact these models’ performance. To address this, we investigate the influence of neighbor selection on GCN
performance, focusing on the analysis of edge distribution through theoretical and empirical approaches. Based
on our findings, we propose a novel GCN model called Graph Convolution Network with Improved Edge
Distribution (GCN-IED). GCN-IED incorporates both direct edges, which rely on local neighborhood similarity,
and hidden edges, obtained by aggregating information from multi-hop neighbors. We extensively evaluate
GCN-IED on diverse graph benchmark datasets and observe its superior performance compared to other state-
of-the-art GCN methods on heterophilous datasets. Our GCN-IED model, which considers the role of neighbors
and optimizes edge distribution, provides valuable insights for enhancing graph representation learning and
achieving superior performance on heterophilous graphs.
1. Introduction

Graph-structured data is prevalent in real-life scenarios, encom-
passing social networks, citation networks, and biological networks.
Learning meaningful representations from graph data has been a sig-
nificant research focus due to its complexity and irregular relationships
between nodes. Graph Neural Networks (Atwood & Towsley, 2016;
Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2008), particularly
Graph Convolutional Networks (GCNs) (Bruna, Zaremba, Szlam, & Le-
Cun, 2014; Defferrard, Bresson, & Vandergheynst, 2016), have emerged
as powerful algorithms for capturing rich graph representations by
aggregating information from neighboring nodes. GCNs have achieved
success in various tasks, including node classification (Kipf & Welling,
2017; Li, Zemel, Brockschmidt, & Tarlow, 2016), graph classifica-
tion (Ma, Wang, Aggarwal, & Tang, 2019; Ying et al., 2018), and
link prediction (You, Ying, & Leskovec, 2019; Zhang & Chen, 2018).
While many GCNs are designed with the assumption of homophilous
graphs (McPherson, Smith-Lovin, & Cook, 2001), where nodes of the
same class tend to form edges. Some works have found that GCNs can
perform well on some heterophilous graphs with low homophily (Luan

∗ Corresponding author at: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University,
Taiyuan, 030006, Shanxi, China.

E-mail addresses: heliancheng@alu.sxu.edu.cn (L. He), bailiang@sxu.edu.cn (L. Bai), xian.yang@manchester.ac.uk (X. Yang),
202112407007@email.sxu.edu.cn (Z. Liang), ljy@sxu.edu.cn (J. Liang).

et al., 2022; Ma, Liu, Shah, & Tang, 2021). This challenges the notion
that GCNs are solely effective on homophilous graphs.

This study focuses on the performance of GCNs on heterophilous
graphs, which are characterized by connections between nodes from
different classes. Heterophilous graphs are prevalent in real-world
scenarios and cannot be overlooked. Examples include dating net-
works, where individuals often connect with those of the opposite gen-
der (Pandit, Chau, Wang, & Faloutsos, 2007), and protein structures,
where amino acids from different classes tend to be connected (Zhu
et al., 2020). While GCNs generally do not perform well on most
heterophilous graphs, several improved methods have been proposed
to address this challenge. For instance, Geom-GCN (Pei, Wei, Chang,
Lei, & Yang, 2020) suggests a two-level aggregation approach that
combines neighborhoods in both the graph space and latent space for
aggregation. H2GCN (Zhu et al., 2020) enhances GCN performance on
heterophilous graphs through feature embedding and concatenation
of nodes and multi-hop neighbors for downstream tasks. U-GCN (Jin
et al., 2021) improves GCN performance on heterophilous graphs by
combining kNN neighbors, 1-hop neighbors, and 2-hop neighbors for
vailable online 4 October 2023
893-6080/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2023.09.048
Received 26 February 2023; Received in revised form 3 September 2023; Accepted
 28 September 2023

https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:heliancheng@alu.sxu.edu.cn
mailto:bailiang@sxu.edu.cn
mailto:xian.yang@manchester.ac.uk
mailto:202112407007@email.sxu.edu.cn
mailto:ljy@sxu.edu.cn
https://doi.org/10.1016/j.neunet.2023.09.048
https://doi.org/10.1016/j.neunet.2023.09.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.09.048&domain=pdf

Neural Networks 168 (2023) 459–470L. He et al.

2

V
N
w
g
p
a
T
h
f

d
(

E
T
w
m

m

m

aggregation. However, the underlying reasons for their effectiveness
on heterophilous graphs still require further exploration.

In addition to the aforementioned studies, there have been other
research efforts focused on understanding the influence of graph struc-
ture on neighborhood aggregation. GIN (Xu, Hu, Leskovec, & Jegelka,
2019) and k-GNN (Morris et al., 2019) have utilized the WL test (Leman
& Weisfeiler, 1968) to analyze the ability of Graph Neural Networks
(GNNs) to capture different graph structures. However, distinguishing
between different graph structures is not always necessary. Instead,
achieving optimal results in node classification requires node represen-
tations that are close within classes and distant between classes. Some
clique methods (Luzhnica, Day, & Lio, 2019; Molaei, Bousejin, Zare,
Jalili, & Pan, 2021) have been developed to update the graph structure
by performing edge update operations based on graph denseness and
the maximum connected subgraphs. However, these methods have
limitations in their ability to update edges, and incorporating node
features to calculate similarity or distance can enable edge updates at
both local and global levels. Empirical findings in Ma et al. (2021)
reveal that, with fine-tuned hyperparameters, the GCN (Kipf & Welling,
2017) can match or even outperform heterophily-specific models on
certain heterophilous graphs. These results suggest the presence of a
‘‘good’’ type of heterophily characterized by distinguishable neighbor-
hood distributions. However, the Cross-Class neighborhood Similarity
(CCNS) metric used in Ma et al. (2021) may not be applicable to all het-
erophilous graphs. To avoid introducing complex graph structures, we
propose utilizing neighborhood distribution and analyzing the process
of neighborhood aggregation through edge distribution. This approach
provides insights into the role of neighbors in graph representation
learning without relying on explicit differentiation of graph structures.

In this paper, we introduce the concept of neighborhood distribu-
tion, which encompasses both edge distribution and feature distribu-
tion, to explore the impact of edge distribution on feature aggregation.
Through theoretical and experimental analyses, we investigate the
characteristics of a ‘‘good’’ edge distribution and examine how neigh-
borhood affects the reliability of aggregated features. To enhance the
edge distribution, we propose a method that utilizes local neighbor-
hoods to update the direct edge distribution, improving the overall
graph topology. Additionally, we present an extensible neighborhood
aggregation module to complement the hidden edge distribution. Our
main contributions can be summarized as follows:

• We conduct a comprehensive investigation into the effect of
edge distribution on neighborhood aggregation, utilizing both
theoretical and experimental approaches.

• We propose GCN-IED, a novel framework that improves the edge
distribution of graphs by updating the graph topology and intro-
ducing an extensible neighborhood aggregation module.

• Extensive experimental results demonstrate the outstanding per-
formance of our proposed model, particularly on heterophilous
graphs.

. Related work

GCNs (Hamilton, Ying, & Leskovec, 2017; Kipf & Welling, 2017;
aswani et al., 2017) belong to the broader family of Graph Neural
etworks (Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2009),
hich have gained significant popularity due to their utilization of
raph convolution operators for aggregation. Researchers have ex-
lored various techniques to enhance the process of neighborhood
ggregation within GCNs by modifying the neighborhood distribution.
his distribution encompasses both the direct edge distribution and the
idden edge distribution, and efforts have been made to improve it
rom two primary perspectives.

Several approaches have been explored to modify the direct edge
istribution by updating the graph topology. For example, GAT
460

Veličković et al., 2018), GATv2 (Brody, Alon, & Yahav, 2022), and w
CAT (Javaloy, Martin, Levi, & Valera, 2023) have improved neighbor-
hood aggregation by optimizing edge weights and considering the edge
perspective. LDS (Franceschi, Niepert, Pontil, & He, 2019) has intro-
duced additional edges to the graph structure using a bi-level frame-
work (Franceschi, Frasconi, Salzo, Grazzi, & Pontil, 2018). IDGL (Chen,
Wu, & Zaki, 2020) has enforced smoothness between nodes and their
neighbors through a smoothness loss. In the case of heterophilous
graphs, Geom-GCN (Pei et al., 2020) and U-GCN (Jin et al., 2021) have
achieved notable performance by identifying neighbors from high-order
neighborhoods. Understanding the underlying reasons for the success
of these methods on both homophilous and heterophilous graphs is an
important consideration.

In addition to modifying the direct edge distribution, there have
been efforts to change the neighborhood distribution by considering
the hidden edge distribution. MixHop (Abu-El-Haija et al., 2019) and
JKNet (Xu et al., 2018) have utilized high-order information through
concatenation. Graph diffusion and propagation techniques have also
gained popularity due to their simplicity and effectiveness. Methods
such as PageRank (Andersen, Chung, & Lang, 2006; Klicpera, Bo-
jchevski, & Günnemann, 2019; Page, Brin, Motwani, & Winograd,
1999) and heat kernel (Chamberlain et al., 2021; Kloster & Gleich,
2014; Kondor & Lafferty, 2002; Zhao, Dong, Ding, Kharlamov, & Tang,
2021) offer effective ways to adjust the influence of different hop
neighbors during aggregation. While some methods (Chien, Peng, Li, &
Milenkovic, 2021; Feng et al., 2020; Sun, Lin, & Zhu, 2021) have been
designed to extract knowledge from high-order neighbors and have
shown good performance on homophilous graphs, they often struggle
on heterophilous graphs. Moreover, these methods often require care-
ful hyperparameter tuning to control the weighting of different hop
neighbors.

Furthermore, the updating of edges is closely related to other
graph rewiring techniques. For example, Differentiable Graph Mod-
ule (DGM) (Kazi, Cosmo, Ahmadi, Navab, & Bronstein, 2022) intro-
duced a learnable function that predicts edge probabilities optimized
for downstream tasks using the Gumbel-Top-k trick. Several works
have explored the issue of over-smoothing in hidden edges, proposing
new metrics (Chen, Lin, et al., 2020; Rusch, Bronstein, & Mishra,
2023) or studying the impact of aggregation steps on learning perfor-
mance (Keriven, 2022). Homophily has also been a focus in some graph
rewiring methods. FairDrop (Spinelli, Scardapane, Hussain, & Uncini,
2021) proposed a biased edge dropout algorithm to address homophily
and enhance fairness in learning node embeddings. SELENE (Zhong,
Gonzalez, Grattarola, & Pang, 2022) investigated learning embeddings
in unsupervised heterophilous scenarios. ACM (Luan et al., 2022)
examined heterophily from the perspective of post-aggregation node
similarity and introduced new homophily metrics. However, it is im-
portant to note that edges form the foundation of the graph structure
and determine which neighbors are aggregated. In contrast to the
aforementioned approaches, our analysis focuses on how neighbor
aggregation impacts performance after aggregation, providing a more
intuitive understanding from the perspective of edges.

3. Notations and preliminaries

Consider a graph 𝐺 = (𝑉 ,𝐸) consisting of 𝑛 nodes and 𝑚 edges.
ach edge connecting node 𝑖 and node 𝑗 can be represented as 𝑒𝑖𝑗 .
he nodes in the graph are described by a feature matrix 𝑿 ∈ R𝑛×𝑓 ,
here 𝑓 is the dimension of the node features. To indicate the class
embership of each node, we use a label matrix 𝒀 ∈ R𝑛×𝐶 , where

𝐶 represents the total number of classes. The element in the 𝑖th row
and 𝑐th column of 𝒀 is denoted as 𝑦𝑖,𝑐 . The value of 𝑦𝑖,𝑐 is 1 if node
𝑖 belongs to class 𝑐, and 0 otherwise. Let 𝑨 represent the adjacency

atrix and 𝑫 denote the diagonal degree matrix of 𝑨. The adjacency
matrix, including self-loops, is denoted as �̃� = 𝑨 + 𝑰 , and the degree

atrix of �̃� is �̃� = 𝑫 + 𝑰 . The symmetric normalized adjacency matrix
̂ ̃ − 1

2 �̃��̃�
− 1

2 . The edge distribution,
ith self-loops is given by 𝑨 = 𝑫

Neural Networks 168 (2023) 459–470L. He et al.

w
l
a
w
c
c
S
H
t
c
t
𝑉
r

w

d
e

P
c
s
L

𝑒

H
t

𝒖

w

t
S
d
n
t
r

T

E

P

P
i
w

P

L

denoted as , represents the connected edges in the graph. For a specific
class 𝑐, the edge distribution is denoted as 𝑐 . Specifically, let |𝑐 |
denote the number of edges connected to class 𝑐, and |𝑐𝑐′ | represent
the number of edges between class 𝑐 and class 𝑐′. The edge distribution
of class 𝑐 is described by 𝑐 = {𝑝𝑐,1,… , 𝑝𝑐,𝑐′ ,… , 𝑝𝑐,𝐶}, where the values
𝑝𝑐,𝑐′ can be approximated by |𝑐𝑐′ |∕|𝑐 |.

Homophily. In a graph, homophily refers to the tendency of edges
to connect nodes within the same class. The homophily ratio of edges
in a graph can be calculated as the fraction of edges connecting nodes
with the same class label, as defined in Zhu et al. (2020):

𝑟 = 1
||

∑

𝑒𝑖,𝑗∈
𝒚𝑖𝒚𝑗 𝑇 , (1)

here || is the number of edges, 𝒚𝑖 represents the 𝑖th row vector of the
abel matrix 𝒀 , and (⋅)𝑇 denotes the transpose operator. A graph with
high homophily ratio indicates that nodes are more likely to connect
ith others within the same class, while a graph with a homophily ratio

lose to 0 suggests that nodes from different classes are more likely to
onnect. It is important to note that heterogeneity, as defined in Zhang,
ong, Huang, Swami, and Chawla (2019), is distinct from heterophily.
eterogeneous graphs, such as knowledge graphs, consist of multiple

ypes of nodes and different types of relationships between nodes. In a
ontent-associated heterogeneous graph defined in Zhang et al. (2019),
he graph 𝐺 = (𝑉 ,𝐸,𝑂𝑉 , 𝑅𝐸) is composed of various types of nodes

and edges 𝐸, where 𝑂𝑉 represents the set of object types and 𝑅𝐸
epresents the set of relation types.
Graph Convolutional Networks. The graph convolutional layer in

Vanilla GCN (Kipf & Welling, 2017) is defined as:

𝑯 (𝑙+1) = 𝜎
(

�̂�𝑯 (𝑙)𝑾 (𝑙)) , (2)

here 𝜎 is the ReLU activation function.
In the spectral graph theory, the graph convolution operation is

efined as 𝑔𝛾 (𝑳) ∗ 𝒙 = 𝑼𝑔𝛾 (𝜦)𝑼𝑇 𝒙, where 𝑳 = 𝑰 − 𝑫− 1
2 𝑨𝑫− 1

2 with
igendecomposition 𝑼𝜦𝑼𝑇 and 𝑔𝛾 (𝜦) = 𝑑𝑖𝑎𝑔(𝛾) is a filter for dealing

with signal 𝒙. Furthermore, the graph convolution operation can be
approximated using a polynomial of the Laplacian matrix, as shown by

𝑼𝑔𝛾 (𝜦)𝑼𝑇 𝒙 ≈ 𝑼

(𝐾
∑

𝑘=0
𝛾𝑘𝜦𝑘

)

𝑼𝑇 𝒙 =

(𝐾
∑

𝑘=0
𝛾𝑘𝑳𝑘

)

𝒙, (3)

where 𝜽 ∈ R𝐾+1 is a vector of polynomial coefficients. In the vanilla
GCN, 𝐾 = 1 and the graph convolution is performed using the
renormalization trick. It is evident that the polynomial form provides a
more general framework for describing the graph convolution process,
which can be expressed as

𝒉 =

(𝐾
∑

𝑘=0
𝜃𝑘𝑻 𝑘

)

𝒙, (4)

where 𝑻 is a matrix that can be learned or computed to aggregate
neighborhood information, 𝜃𝑘 represents the weight coefficient for the
k-hop neighbors of 𝑥, and 𝐾 determines the range of aggregation.

4. Theoretical and empirical analysis of the impact of edge distri-
bution

4.1. Theoretical analysis

To gain a deeper understanding of how graph topology affects node
features during neighborhood aggregation, we introduce the concept
of edge distribution, which comprises two key components: the direct
edge distribution and the hidden edge distribution. The direct edge
distribution primarily influences the graph’s topology, while the hid-
den edge distribution is closely related to the presence of multi-hop
neighbors.

In order to facilitate our analysis, we introduce the following as-
461

sumptions for each node 𝑖 belonging to class 𝑐: (1) the feature of node a
𝑖, denoted as 𝒙𝑖, follows the distribution 𝑐 , i.e., 𝒙𝑖 ∼ 𝑐 ; (2) the direct
connection between node 𝑖 and another node 𝑗, represented by the edge
𝑒𝑖𝑗 , follows the distribution 𝑐 , i.e., 𝑒𝑖𝑗 ∼ 𝑐 . Here, 𝑐 represents the edge
distribution specific to class 𝑐.

The neighborhood distribution of class 𝑐 is denoted as 𝑐 = {𝑐 , 𝑐},
which determines the node features after aggregation. Suppose the
expectation and variance of the feature vectors 𝒙𝑖 from class 𝑐 are
E𝑐 [𝒙𝑖] = 𝝁𝑐 ∈ R𝑓 and D𝑐 [𝒙𝑖] = 𝜮𝑐 ∈ R𝑓×𝑓 (𝑓 is the dimension of
features), respectively. For each node 𝑖, its neighborhood aggregation
is defined as 𝒖𝑖 = 1

| (𝑖)|
∑

𝑗∈ (𝑖) 𝒙𝑗 , where (𝑖) denotes the direct
neighbors of node 𝑖. Then, we have the following theorem:

Theorem 4.1. Consider a graph in which the feature of each node 𝑖 from
class 𝑐 satisfies E𝑐 [𝒙𝑖] = 𝝁𝑐 and D𝑐 [𝒙𝑖] = 𝜮𝑐 . Let 𝑝𝑐,𝑐′ denote the connection
probability between class 𝑐 and class 𝑐′. Under the assumption that node
features are independent of each other, when enough edges are added, the
aggregated feature of node 𝑖 satisfies the following condition:

𝒖𝑖 ∼𝑎 𝑁

(

∑𝐶
𝑐′=1 𝑝𝑐,𝑐′𝝁𝑐′
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′
,

∑𝐶
𝑐′=1 𝑝𝑐,𝑐′𝜮𝑐′

| (𝑖) |
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′

)

. (5)

roof. The number of connected edges between node 𝑖 and nodes from
lass 𝑐′ is 𝑝𝑐,𝑐′

∑𝐶
𝑐′=1 𝑝𝑐,𝑐′

| (𝑖) |. Since the node features in the same class
atisfy the independent identical distribution condition, according to
indeberg-Levy CLT (central limit theorem), we have the following:

∑

𝑖𝑗∈ ,𝑦𝑗,𝑐′=1
𝒙𝑗 ∼𝑎 𝑁

(

𝑝𝑐,𝑐′ | (𝑖) |
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′
𝝁𝑐′ ,

𝑝𝑐,𝑐′ | (𝑖) |
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′
𝜮𝑐′

)

. (6)

For all classes, the aggregated information of node 𝑖 is as follows

𝒖𝑖 =
1

| (𝑖) |

∑

𝑗∈ (𝑖)
𝒙𝑗 =

1
| (𝑖) |

𝐶
∑

𝑐′=1

∑

𝑒𝑖𝑗∈ ,𝑦𝑗,𝑐′=1
𝒙𝑗 . (7)

ence, 𝒖𝑖 consists of 𝐶 Normal Distributions approximately and asymp-
otically obeys the following distribution:

𝑖 ∼𝑎 𝑁

(𝐶
∑

𝑐′=1

𝑝𝑐,𝑐′ | (𝑖) |𝝁𝑐′

| (𝑖) |
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′
,

𝐶
∑

𝑐′=1

𝑝𝑐,𝑐′ | (𝑖) |𝜮𝑐′

| (𝑖) |2
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′

)

= 𝑁

(

∑𝐶
𝑐′=1 𝑝𝑐,𝑐′𝝁𝑐′
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′
,

∑𝐶
𝑐′=1 𝑝𝑐,𝑐′𝜮𝑐′

| (𝑖) |
∑𝐶

𝑐′=1 𝑝𝑐,𝑐′

)

.

(8)

hich completes the proof. □

By examining Eq. (5), it can be observed that the variance of
he neighborhood distribution is influenced by the degree of nodes.
pecifically, as the degree of nodes increases, the variance tends to
ecrease. This relationship indicates that when there are a sufficient
umber of edges, we can expect the node representation 𝒖𝑖 to be close
o its expected value E𝑐

[

𝒖𝑖
]

. Another theorem further describes the
elationship between 𝒖𝑖 and its expectation E𝑐

[

𝒖𝑖
]

.

heorem 4.2. Suppose all elements of 𝒖𝑖 are bounded in [𝑎, 𝑏]. For
𝑡1 ≥ 𝑓 ⋅ 𝑡2 > 0, the probability of the distance between 𝒖𝑖 and its expectation
𝑐
[

𝒖𝑖
]

larger than 𝑡1 is bounded by

(

‖𝒖𝑖 − E𝑐 [𝒖𝑖]‖1 ≥ 𝑡1
)

≤ 2𝑓 ⋅ 𝑒𝑥𝑝

(

−
2| (𝑖) |𝑡22
(𝑏 − 𝑎)2

)

. (9)

roof. Before proving Theorem 4.2, we introduce Hoeffding’s inequal-
ty as follows: Let 𝑞1,… , 𝑞𝑛 be independent bounded random variables
ith 𝑞𝑖 ∈ [𝑎, 𝑏], where 𝑖 ∈ [1, 𝑛] and −∞ < 𝑎 ≤ 𝑏 < ∞. For all 𝑡 ≥ 0,
(

|

|

|

|

|

1
𝑛

𝑛
∑

𝑖=1

(

𝑞𝑖 − E[𝑞𝑖]
)

|

|

|

|

|

≥ 𝑡

)

≤ 2 ⋅ 𝑒𝑥𝑝
(

− 2𝑛𝑡2

(𝑏 − 𝑎)2

)

. (10)

et 𝒖𝑖[𝑘] be the 𝑘th element of 𝒖𝑖. Suppose for all 𝑖 and 𝑘, 𝒖𝑖[𝑘] ∈ [𝑎, 𝑏]

nd −∞ < 𝑎 ≤ 𝑏 < ∞. Following Hoeffding’s inequality, for all 𝑡𝑘 ≥ 0

Neural Networks 168 (2023) 459–470L. He et al.

H

P

Fig. 1. The performance of GCN is plotted as a function of the homophily on the 𝑥-axis and the accuracy on the 𝑦-axis, with the increasing number of inter-class edges. The red
dotted line shows the MLP prediction accuracy.
we have:
P
(

|

|

𝒖𝑖[𝑘] − E𝑐 [𝒖𝑖[𝑘]]|| ≥ 𝑡𝑘
)

= P
⎛

⎜

⎜

⎝

|

|

|

|

|

|

1
| (𝑖) |

∑

𝑗∈ (𝑖)

(

𝒙𝑗 [𝑘] − E[𝒙𝑗 [𝑘]]
)

|

|

|

|

|

|

≥ 𝑡𝑘
⎞

⎟

⎟

⎠

≤ 2 ⋅ 𝑒𝑥𝑝

(

−
2| (𝑖) |𝑡2𝑘
(𝑏 − 𝑎)2

)

.

(11)

ence, for all elements in 𝑘 = 1,… , 𝑓 , we have
(

‖𝒖𝑖 − E𝑐 [𝒖𝑖]‖1 ≥
𝑓
∑

𝑘=1
𝑡𝑘

)

≤ 2
𝑓
∑

𝑘=1
𝑒𝑥𝑝

(

−
2| (𝑖) |𝑡2𝑘
(𝑏 − 𝑎)2

)

≤ 2𝑓 ⋅ 𝑒𝑥𝑝

(

−
2| (𝑖) |𝑡2𝑚𝑖𝑛
(𝑏 − 𝑎)2

)

,

(12)

where 𝑡𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑡1,… , 𝑡𝑘,… , 𝑡𝑓).
Let 𝑡1 =

∑𝑓
𝑘=1 𝑡𝑘 and 𝑡2 = 𝑡𝑚𝑖𝑛, we have 𝑡1 ≥ 𝑓 ⋅ 𝑡2 and

P
(

‖𝒖𝑖 − E𝑐 [𝒖𝑖]‖1 ≥ 𝑡1
)

≤ 2𝑓 ⋅ 𝑒𝑥𝑝

(

−
2| (𝑖) |𝑡22
(𝑏 − 𝑎)2

)

, (13)

which completes the proof. □

Theorem 4.2 highlights that there is a high probability for the aggre-
gated node features to be close to their expectations when the degree
of nodes is high. This implies that as the degree of nodes increases, the
462
node features tend to approach their expected values. In order to ensure
distinguishable aggregated node features, it is important for the feature
distributions between different classes to be far apart from each other.
Moreover, the applicability of the theorem can be extended to Message
Passing Phase in MPNN. During this phase, the edge indices serve to
record the direct neighbors surrounding each node, and neighborhood
information is aggregated using edges for node updates. To validate the
findings of this theorem, we will proceed with conducting experimental
analyses.

4.2. Empirical investigation of edge distribution

4.2.1. Empirical analysis of GCN
We conducted experiments using a two-layer GCN on nine different

graphs to evaluate our assumptions and conclusions. The GCN model
utilized two layers with the ReLU activation function applied after
the first layer, and the hidden units were set to 64. The dropout
rate of 0.5 was applied to the node features. We employed the Adam
optimizer with a learning rate of 0.01 and utilized the cross-entropy
loss function. The 𝐿2 regularization parameter was set to 5 × 10−4
for all datasets. The early stopping criterion used a patience of 𝑝 =
100 and a maximum of 𝑛 = 1500 epochs. To investigate the impact
of homophily, we introduced inter-class edges sampled from specific
distributions, thereby varying the level of homophily in the graphs. The
accuracy results were recorded and presented in Fig. 1. Based on our
observations, the following conclusions can be drawn:

Neural Networks 168 (2023) 459–470L. He et al.

d
d
t
c
o
e
C
i
s

Fig. 2. Impact of edge distribution on multiple MPNN models. (a) and (b) compare the accuracy of node classification for each model on the original graph and the synthesized
graph after adding inter-class edges to reduce homophily. (c) and (d) explore the influence of neighborhood variation on aggregation performance.
• Increasing the number of edges between classes led to a decrease
in homophily for each graph. However, the accuracy did not
always decrease accordingly. In fact, all nine datasets exhibited
high accuracy despite having low homophily. This suggests the
presence of a ‘‘good’’ edge distribution in heterophilous graphs,
which can enhance the neighborhood distribution for effective
aggregation.

• neighborhood aggregation in homophilous graphs outperformed
the Multilayer Perceptron (MLP) baseline, as depicted in Figs. 1(a),
1(b), and 1(c). In heterophilous graphs, two distinct cases were
observed, as shown in Figs. 1(d) to 1(i). A ‘‘good’’ edge distribu-
tion improved the node representation after aggregation, while a
‘‘bad’’ edge distribution made it difficult to distinguish the aggre-
gated features. These findings suggest that homophilous graphs
naturally possess a ‘‘good’’ edge distribution, while heterophilous
graphs exhibit more uncertainty in this regard.

The experimental results highlight the substantial influence of edge
istribution on the performance of GCNs. Notably, a ‘‘good’’ edge
istribution contributes to a more distinct neighborhood distribution,
hereby enhancing the effectiveness of GCNs. Consequently, it becomes
rucial to devise strategies for improving the edge distribution to
ptimize neighborhood aggregation. However, constructing a ‘‘good’’
dge distribution with low homophily poses a considerable challenge.
onsequently, we delve into the transformation of heterophilous graphs

nto homophilous graphs, specifically focusing on the identification of
uitable neighbors for each node.
463
4.2.2. Comprehensive analysis of edge distribution on MPNNs
MPNNs (Message Passing Neural Networks) (Gilmer, Schoenholz,

Riley, Vinyals, & Dahl, 2017) serve as a versatile framework for mes-
sage passing on graphs, consisting of two key phases: the message
passing and the readout phases. In order to evaluate the wide-ranging
applicability of the theory expounded in Section 4.1, we conducted
a comprehensive analysis using various MPNNs on two extensively
employed datasets: Cora and Chameleon. The findings are visually
represented in Fig. 2. The edge addition procedure, as described in
Section 4.1, was applied, resulting in homophily values of 0.24 for
Cora and 0.15 for Chameleon. Refer to Table 1 for a detailed break-
down of these values. Notably, all models leveraged two-hop neighbor
information without the inclusion of any regularization terms.

The results shown in Figs. 2(a) and 2(b) indicate that the model
performs better on the synthesized dataset than the original dataset.
This suggests that the inclusion of inter-class edges does not necessarily
have a negative impact on the model’s predictive capability. Further-
more, the distinguishability of aggregated node features tends to be
stronger when the neighboring edges of each class follow a specific
distribution and are more abundant. This observation is consistent with
the theory discussed in Section 4. On the other hand, Figs. 2(c) and
2(d) demonstrate that expanding the neighborhood in heterophilous
graphs can lead to a rapid decline in performance due to the indis-
tinguishable nature of aggregated node features. Among the models
examined, JKNet exhibits the highest stability. This can be attributed to
JKNet’s ability to concatenate and preserve neighbor information from
different layers, effectively mitigating information pollution during
neighborhood expansion.

Neural Networks 168 (2023) 459–470L. He et al.

1

i
o
t
r

Table 1
Inter-class Edge Addition in Different Datasets: 𝛾 denotes the added edge ratio, and 𝑟 represents the resulting homophily.

Cora 𝛾
𝑟

0
0.81

0.4
0.58

0.8
0.45

1.2
0.37

1.6
0.31

2
0.27

2.4
0.24

Citeseer 𝛾
𝑟

0
0.74

0.4
0.53

0.8
0.41

1.2
0.34

1.6
0.28

2
0.25

2.4
0.22

Pubmed 𝛾
𝑟

0
0.8

0.4
0.57

0.8
0.45

1.2
0.36

1.6
0.31

2
0.27

2.4
0.24

Chameleon 𝛾
𝑟

0
0.24

0.1
0.21

0.2
0.2

0.3
0.18

0.4
0.17

0.5
0.16

0.6
0.15

Squirrel 𝛾
𝑟

0
0.22

0.2
0.19

0.4
0.16

0.6
0.14

0.8
0.13

1
0.11

1.2
0.1

Actor 𝛾
𝑟

0
0.22

0.4
0.16

0.8
0.12

1.2
0.1

1.6
0.08

2
0.07

2.4
0.06

Cornell 𝛾
𝑟

0
0.3

0.5
0.21

1
0.16

1.5
0.14

2
0.11

2.5
0.1

3
0.09

Wisconsin 𝛾
𝑟

0
0.2

0.5
0.13

1
0.1

1.5
0.08

2
0.07

2.5
0.06

3
0.05

Texas 𝛾
𝑟

0
0.11

0.5
0.07

1
0.06

1.5
0.05

2
0.04

3
0.03

5
0.02
4.2.3. Impact of neighborhood range on neighborhood aggregation
To find reliable neighbors, we need to evaluate node features.

We utilize the SGC model (Wu et al., 2019) to investigate how the
range of the neighborhood influences the hidden edge distribution. The
algorithm for adding edges based on the distribution is outlined in
Algorithm 1. To ensure fast and effective convergence, we specifically
add inter-class edges sampled from a predetermined edge distribution,
where one-way edges are generated from class 𝑐𝑘 to 𝑐𝑘+1. To avoid
creating an imbalance where some classes have a high concentration
of edges while others have very few or no added edges, we recalculate
the distribution based on the number of edges in each class. Initially,
we determine the edge distribution by calculating the proportion of the
number of edges between two classes in relation to the total number of
edges. Using this initial edge distribution and the predetermined edge
distribution, we generate the edges. However, slight modifications are
made to the algorithm for the Texas and Cornell datasets due to the
presence of isolated nodes (classes with only one node and no edges). In
these cases, our default class distribution sampling number is at least 1.

Algorithm 1 Adding edges sampling from distribution.
Input: 𝐴,
Parameter: 𝛾
Output: new adjacency matrix 𝐴′

1: Calculate number of edges 𝑚.
2: Calculate proportion of edges between classes .
3: Calculate specific distribution of class 𝑐: 𝑐 = 𝑐 ∗ 𝑐 .
4: Calculate adding numbers 𝑛 = 𝑚 ∗ 𝛾.
5: Initialize k=1.
6: while 𝑘 ≤ 𝑛 do
7: Sample node 𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚().
8: Obtain the label 𝑐 of node 𝑖.
9: Sample a set 𝑐 from 𝑐 .
0: Sample a node 𝑗 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑐).

11: Update edge set .
12: 𝑘 ← 𝑘 + 1.
13: end while
14: Update 𝐴 using edge set .
15: return updated adjacency matrix 𝐴′.

The procedure for adding inter-class edges based on the distribution
s summarized in Table 1. Each dataset is represented by two rows
f data. The first row indicates the ratio of added edges (𝛾) relative
o the original number of edges, while the second row represents the
esulting homophily (𝑟) after the edges are added. For instance, in the
464
Cora graph, the initial homophily is 0.81 (𝑟 = 0.81) with no added edges
(𝛾 = 0). After increasing the number of inter-class edges by a factor of
2, the homophily decreases to approximately 0.27 (𝑟 = 0.27) with 𝛾 = 2.

Empirical results: One common approach to updating the graph
topology is by utilizing node features to identify k-nearest neighbors.
However, relying solely on node features may not yield optimal results,
as valuable information from the edge distribution can be overlooked.
In Fig. 3(a), we introduce a specific edge distribution to the Cora
dataset, creating synthetic datasets with varying levels of homophily.
In Fig. 3(b), we compare the influence of different-hop neighbors on
post-aggregation performance across nine datasets. Our observations
indicate that expanding the neighborhood has little adverse impact
on homophilous graphs. In heterophilous graphs, local neighborhood
information within a 2-hop radius exhibits greater reliability for classi-
fication, while hidden edges connected to higher-order neighbors can
have a detrimental effect on neighborhood aggregation. These findings
suggest the feasibility of utilizing local neighborhood information to
identify neighbors and update the original edge distribution.

5. The GCN-IED model

As illustrated in Fig. 4, we propose the GCN-IED model for obtain-
ing direct edges by updating the graph topology and exploring hid-
den edges from multi-hop neighbors through extensible neighborhood
aggregation.

5.1. Updating graph topology

Before updating the graph topology, it is necessary to generate a
similarity matrix that measures the distance between nodes. This simi-
larity matrix, denoted as 𝑺 ∈ R𝑛×𝑛, is obtained by computing the cosine
similarity between node embeddings. These node embeddings capture
information from the neighborhood through the following process:

𝑯 (𝐿) = (�̂�)𝐿𝑯 (0), (14)

where 𝑯 (0) = 𝑓𝜃 (𝑿), and 𝑓𝜃 (𝑿) represents a fully connected neural
network (FCNN) with ReLU activation applied to the feature matrix 𝑿.
The matrix (�̂�)𝐿 denotes the 𝐿th power of the matrix �̂�, which incor-
porates information from the 1 to 𝐿-hop neighbors in the computation
of node embeddings for similarity measurement. In this paper, we set
𝐿 ≤ 2 to limit the influence on the local neighborhood range and avoid
interference from high-order information.

Let 𝒉(𝐿)𝑖 ∈ R𝑓 denote the 𝑖th row vector of 𝑯 (𝐿). The element at the
𝑖th row and 𝑗th column of 𝑺 is given by:

𝑠 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝒉(𝐿),𝒉(𝐿)), (15)
𝑖𝑗 𝑖 𝑗

Neural Networks 168 (2023) 459–470L. He et al.
Fig. 3. The impact of the neighborhood range in SGC on (a) synthetic datasets from Cora and (b) nine common datasets.
Fig. 4. Illustration of the proposed method. The method consists of two main components: Graph Topology Update (GTU) and Extensible neighborhood Aggregation (ENA) module
that incorporates information from multi-hop neighbors.
̃

We then get the matrix 𝑺𝑘𝑁𝑁 by remaining the top 𝑘 similar node pairs
for each node, whose element on 𝑖th row and 𝑗th column is:

𝑠𝑘𝑁𝑁
𝑖,𝑗 =

{

𝑠𝑖,𝑗 , if 𝑠𝑖,𝑗 ≥ 𝜑𝑘,𝑖,
0, otherwise. (16)

Here, 𝜑𝑘,𝑖 is the 𝑘th largest 𝑠𝑖,𝑗 for all 𝑗.
The adjacency matrix of the updated graph topology is obtained as

follows:

𝑨𝐶 = 𝑨𝐷 + 𝜆𝑺𝑘𝑁𝑁 , (17)

where 𝑨𝐷 is derived from the adjacency matrix �̂� of the original
topology, where only the elements larger than 𝜌 in 𝑺 are retained. The
parameter 𝜆 controls the balance between the two adjacency matrices.
The matrix 𝑨𝐶 is further normalized as �̃�𝐶 via:

𝑎𝑖,𝑗 =
𝑒𝑥𝑝

(

𝑎𝑖,𝑗
)

∑

𝑘∈𝑖
𝑒𝑥𝑝

(

𝑎𝑖,𝑘
) , (18)

where 𝑎𝑖,𝑗 denotes the edge weight of node 𝑖 connected to node 𝑗.

5.2. Designing extensible neighborhood aggregation

Once we have the updated graph topology, the next step is to
discover hidden edges through extensible neighborhood aggregation.
The feature matrix 𝒁(𝑘), obtained by propagating features from the
𝑘-hop neighbors using the matrix �̃�𝐶 , is expressed as follows:

𝒁(𝑘) = (�̃�)𝑘𝑯 (0). (19)
465

𝐶

Let 𝒛(𝑘)𝑖 denote the 𝑖th row vector of 𝒁(𝑘), representing the informa-
tion aggregated from the 𝑘-hop neighbors of node 𝑖. The aggregated
information for each node 𝑖 can be expressed as follows:

𝒛𝑖 =
𝐾
∑

𝑘=0

𝑒𝑥𝑝
(

𝒗𝑖𝒛
(𝑘)
𝑖

)

∑𝐾
𝑘=0 𝑒𝑥𝑝

(

𝒗𝑖𝒛
(𝑘)
𝑖

)𝒛(𝑘)𝑖 , (20)

where the trainable vector 𝒗𝑖 ∈ R𝑓 is used to learn the importance of
each k-hop embedding of node 𝑖. The distribution of neighbors around
each node may vary, and thus, we set a trainable vector for each node.
Unlike U-GCN, which focuses only on adding kNN graph information,
we optimize the aggregated graph structure by considering both direct
edges and hidden edges. Subsequently, the vector �̃�𝑖 is passed through
a fully connected neural network (FCNN) with the Softmax activation
function to obtain the prediction vector 𝒚𝑖. The prediction loss is
calculated using the cross entropy loss function:

 = −
∑

𝑖∈𝑦

𝐶
∑

𝑐=1
𝑦𝑖,𝑐 𝑙𝑜𝑔𝑦𝑖,𝑐 , (21)

where 𝑦𝑖,𝑐 is a binary indicator (0 or 1) equal to 1 if the correct
label of node 𝑖 is 𝑐, 𝑦𝑖,𝑐 is the 𝑐th element of 𝒚𝑖, and 𝑦 is the set of
labeled nodes. The training process of our GCN-IED model is outlined
in Algorithm 2. The convergence criterion in the algorithm is inspired
by GAT (Veličković et al., 2018). Specifically, training stops when the
loss on the validation set does not decrease for a certain number of
consecutive rounds, indicating convergence.

Neural Networks 168 (2023) 459–470L. He et al.
Table 2
Dataset statistics.

Dataset Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Wisconsin Texas

#Nodes 2708 3327 19171 2277 5201 7600 183 183 251
#Edges 5429 4732 44338 36101 217073 33544 295 309 499
#Features 1433 3703 500 2325 2089 931 1703 1703 1703
#Classes 7 6 3 4 4 4 5 5 5
homophily(r) 0.81 0.74 0.8 0.24 0.22 0.22 0.31 0.21 0.11
r
a
0
a

m
2
a
H
2
i
i
1
s
G

h
t

6

s
t
t
m
m
h
a
b
t

w
f
d
n
o
A
r
t

Algorithm 2 The GCN-IED model.
Input: Feature matrix X, adjacent matrix A.
Parameter: neighborhood range (hops) 𝐾, local neighborhood range
𝐿, hyperparameter 𝑘 of kNN graph, threshold 𝜌.
Prediction: �̃�.
1: while not convergence do
2: Encode feature matrix X using a fully connected network 𝑓𝜃 (𝑋).

3: Calculate the similarity values between nodes using Eq.(15).
4: Get the matrix 𝑺𝑘𝑁𝑁 from Eq.(16).
5: Get the matrix 𝑨𝐷 by setting elements in �̂� smaller than the

threshold 𝜌 to 0.
6: Get the adjacent matrix 𝑨𝐶 of the updated graph using Eq.(17).
7: Get the normalized version 𝑨𝐶 from Eq.(18).
8: for 𝑘 = 0 to 𝐾 do
9: Get 𝒁(𝑘) through propagating features from the k-hop

neighbors using 𝑨𝐶 as expressed in Eq.(19).
10: end for
11: Aggregate multi-hop neighborhood to get �̃�𝑖 using Eq.(20).
12: Use �̃�𝑖 to get the predicted results.
13: Minimize the prediction loss using Eq.(21).
14: end while

6. Experiments

6.1. Experimental setup

6.1.1. Datasets
We evaluate the performance of our model and other baselines in

both semi-supervised and full-supervised node classification tasks. For
semi-supervised node classification, we utilize three standard citation
network datasets: Cora, Citeseer, and Pubmed (Sen et al., 2008). These
datasets exhibit strong homophily. The data is divided into three sets
using the standard fixed split method (Yang, Cohen, & Salakhutdinov,
2016): 20 nodes per class for training, 500 nodes for validation, and
1000 nodes for testing.

For full-supervised node classification, we employ 9 graph datasets.
The dataset statistics are summarized in Table 2, which include in-
formation about the number of nodes, edges, features, classes, and
homophily. Following the approach of Geom-GCN (Pei et al., 2020),
we perform 10 random splits of nodes per class for each dataset. The
training, validation, and testing sets are divided with a 48%/32%/20%
split, respectively.

6.1.2. Baselines methods and implementation details
Our GCN-IED model is compared with several baselines in both

semi-supervised and full-supervised node classification tasks.
For semi-supervised node classification, we compare GCN-IED with

the following baselines: GCN (Kipf & Welling, 2017), GAT (Vaswani
et al., 2017), MixHop (Abu-El-Haija et al., 2019), APPNP (Klicpera
et al., 2019), SGC (Wu et al., 2019), SSGC (Zhu & Koniusz, 2021), and
GPRGNN (Chien et al., 2021). GCN, GAT, and SGC are implemented
with their original settings, while GAT uses the sparse version. The
propagation step 𝐾 is set to 10 for APPNP and GPRGNN, and 16 for
SSGC. The parameter 𝛼 is set to 0.1 for APPNP and GPRGNN, and 0.05
466

for SSGC. In our GCN-IED model, we set the weight decay parameter to n
5 × 10−4 and the learning rate to 0.01. The early stopping criterion has
a patience of 100 and a maximum of 1500 iterations for all datasets.
For aggregation, the hidden layer has 64 hidden units, and a dropout
rate of 0.5 is applied to the feature tensor. For updating the graph
topology, we use 1-hop neighbors for neighborhood aggregation. We
set 𝑘 = 2 for kNN graphs on all datasets and use thresholds 𝜌 =
0.4, 0.5, 0.5 for edge deletion in the Cora, Citeseer, and Pubmed datasets,
espectively. For aggregation from multi-hop neighbors, we use 10, 4,
nd 10 propagation steps. After fine-tuning, we set the dropout rate to
.5 and 0.8 on the input and hidden layers in the Cora dataset, and 0.5
nd 0.5 in the Citeseer and Pubmed datasets.

For full-supervised node classification, we compare our GCN-IED
odel with 17 baselines: GCN, GAT, GraphSAGE (Hamilton et al.,
017), JKNet (Xu et al., 2018) with concatenation, APPNP, GCNII
nd its variant, Geom-GCN (Pei et al., 2020) with three variants,
2GCN (Zhu et al., 2020) with two variants, GPRGNN (Chien et al.,
021), dDGM (Kazi et al., 2022), ACM-GCN (Luan et al., 2022) and
ts variant and MLP. All models except dDGM use 64 hidden units
n the hidden layer. dDGM uses the default settings including 32 and
6 hidden units in different hidden layers. And a patience of 100 is
et for the early stopping criterion in all models. MLP, GCN, GAT,
raphSAGE, and JKNet use a weight decay parameter of 5 × 10−4.

In particular, we reproduce GraphSAGE using the algorithm from the
original paper without node sampling. JKNet uses concatenation for
the aggregation layers (5 layers). We use the hyperparameters from
the original papers for GPRGNN, GCNII, Geom-GCN, and H2GCN.
Furthermore, the hyperparameters of ACM-GCN and its variant are
the same as in the original paper. In our GCN-IED model, we use an
adjacency matrix with self-loops. After a line search on the hyperparam-
eters, we fine-tune the parameters from the following options: weight
decay (5 × 10−5, 10−4, 5 × 10−4), range of local neighborhood (0, 1, 2),
ops (1, 2, 3, 4, 6, 9), dropout rate (0, 0.2, 0.5), top k edges (1, 2, 4), and
hreshold (0.4, 0.6, 1).

.2. Performance of semi-supervised node classification

Table 3 presents the classification accuracy along with the mean and
tandard deviation after 50 runs. The results for MixHop are directly
aken from its original paper, as the reproduced results did not match
he original values. From Table 3, it can be observed that our GCN-IED
odel achieves significantly higher accuracy compared to the other
odels. Furthermore, models that expand the range of the neighbor-
ood, such as SSGC and GPRGNN, also demonstrate high accuracy
cross all datasets. This indicates that properly expanding the neigh-
orhood in a homophilous graph can enhance the distinguishability of
he neighborhood distribution.

To analyze the contributions of different components in GCN-IED,
e conducted an ablation study as follows: (1) Using the original graph

or aggregation from multi-hop neighbors without graph topology up-
ating (w/o GTU). (2) Using the updated graph topology of two-hop
eighbors for aggregation, which is similar to performing graph topol-
gy updates on GCN without adaptive multi-hop aggregation (w/o
MA). As shown in Table 3, updating the graph topology plays a crucial
ole. Similarly, aggregating two-hop neighbors (w/o AMA) improves
he average accuracy by nearly 1.8% compared to GCN. The extensible

eighborhood aggregation further improves the overall performance.

Neural Networks 168 (2023) 459–470L. He et al.

m
t
o
r
p
p
t
s
r
a
p
g
h

Table 3
Summary of semi-supervised classification accuracy (%) on Cora, Citeseer, and
Pubmed. Results marked with † are reproduced from the original paper. The best
results are highlighted in bold.

Method Cora Citeseer Pubmed

GCN 81.4±0.7 70.8±0.7 79.1±0.3
GAT 82.1±0.6 72.4±0.7 77.6±0.8
MixHop† 81.9±0.4 71.4±0.8 80.8±0.6
SGC 80.8±0.0 71.4±0.0 78.9±0.0
SSGC 82.6±0.1 73.0±0.0 80.0±0.1
APPNP 83.2±0.6 71.0±0.8 80.0±0.5
GPRGNN 83.6±0.4 71.6±0.4 79.6±0.2
GCN-IED 85.2 ± 0.6 73.1 ± 0.4 81.2 ± 0.5

w/o GTU 85.1±0.4 72.4±0.6 80.1±0.4
w/o AMA 84.2±0.5 72.0±0.5 80.4±0.7

6.3. Performance of full-supervised node classification

We evaluate the performance of GCN-IED using the mean accuracy
across 10 splits in the task of full-supervised classification. The results
are summarized in Table 4, where the best results are highlighted in
bold while underlined letters indicate the second best. The AVG column
indicates the average of the model’s accuracy over all datasets. It is
obvious that GCN-IED matches or achieves state-of-the-art performance
on most datasets compared to the other 17 baselines. This indicates
that GCN-IED is highly effective especially in handling heterophilous
graphs. On the Squirrel dataset, which is a heterophilous graph, GCN-
IED achieves an accuracy nearly 11% higher than the best baseline,
ACM-GCN. This demonstrates the strong ability of GCN-IED to process
heterophilous graphs and extract meaningful node representations. Al-
though dDGM also updates the graph topology, it does not perform well
in the experiments. This shows finding a ‘‘good’’ edge distribution is
beneficial to neighbor aggregation and enhancing distinguishability of
aggregated node feature. On the Cornell, Wisconsin, and Texas datasets,
where the node features are distinguishable between classes, we use
the 0-hop neighborhood distribution for graph topology updating. This
choice further improves the performance of GCN-IED.

We also conduct ablation experiments to examine the contributions
of the different components in GCN-IED. The two modules, namely
w/o GTU (without Graph Topology Update) and w/o AMA (without
Adaptive Multi-hop Aggregation), are evaluated. From the results in
Table 4, we observe that using an updated graph topology in GCN
(w/o AMA) improves its performance on all datasets, particularly on
heterophilous graphs. Especially, its AVG accuracy is higher than 17
compared modes, which indicates the importance of a ‘‘good’’ edge dis-
tribution. Furthermore, the average performance of GCN-IED decreases
when any component is removed, indicating the significance of the
designed components in enhancing the performance of GCN-IED.

6.4. Sensitivity analysis

6.4.1. Impact of threshold 𝜌
The effect of the hyperparameter 𝜌 is examined in Fig. 5. In ho-

ophilous graphs, we observe that the accuracy tends to increase and
hen decrease as the threshold value increases. This suggests that the
riginal graph structure is already well-suited for the task and only
equires minor adjustments. In heterophilous graphs, we find that the
erformance tends to improve as the threshold increases. However, the
erformance of the Cornell and Wisconsin datasets fluctuates as the
hreshold increases, while the Chameleon and Squirrel datasets show
ignificant improvements only when the original graph is completely
emoved. The Actor dataset is less affected by the threshold value
nd exhibits less sensitivity. The results also indicate that the best
erformance in reconstructing the edge distribution for heterophilous
raphs is achieved with a threshold value of 1. This suggests that a
igher threshold value leads to a lower weight for the original graph
467
Fig. 5. Sensitivity analysis of the threshold 𝜌 on different datasets, exploring its effect
on performance.

Fig. 6. Impact of neighborhood range in GCN-IED on nine common datasets.

and a higher weight for the edges in the kNN graph. Moreover, as the
number of edges in the kNN graph increases, each edge weight should
decrease accordingly.

To make a balance between homophilous and heterophilous graphs,
we set 𝜆 = 1

𝑘+1∕(𝜌−0.3) as the coefficient for edges of the kNN graph.
The value of 𝜆 is calculated based on the 𝑘 value of the kNN graph
and the threshold 𝜌 (𝜌 > 0.3). This formulation ensures that as the
threshold value increases, the weight of the original graph decreases,
and the weight of the edges in the kNN graph increases. Additionally,
as the number of edges in the kNN graph increases, each edge weight
decreases.

6.4.2. Analysis of neighborhood range
From Fig. 6, we observe that the performance of the aggregated

features generally surpasses that of the original features (0-hop) in both
homophilous and heterophilous graphs, indicating the effectiveness of
updating the graph topology. Additionally, GCN-IED demonstrates the
capability to effectively expand the range of neighborhood aggregation.
Notably, the performance of GCN-IED stabilizes as the neighborhood
range increases, reaching its peak accuracy within a 10-hop neighbor-
hood. These results suggest that expanding the neighborhood on the
updated graph does not introduce excessive noise or irrelevant informa-
tion, and an appropriate neighborhood range contributes to improving

Neural Networks 168 (2023) 459–470L. He et al.

.

Table 4
The mean classification accuracy (%) of full-supervised node classification under 10 runs. The best results are highlighted in bold while underlined letters indicate the second best

Method Chameleon Squirrel Actor Cornell Wisconsin Texas Cora Citeseer Pubmed AVG

GCN 59.98 38.75 27.16 61.35 49.41 55.95 86.96 76.40 87.03 60.33
GAT 55.75 35.24 27.18 60.54 50.00 56.22 87.67 76.09 85.48 59.35
GraphSAGE 62.24 44.25 34.1 62.24 77.25 71.89 86.88 76.72 88.71 67.14
JKNet 60.39 45.38 25.91 58.92 48.63 58.38 84.79 71.79 85.92 60.01
APPNP 54.39 35.11 26.53 58.65 45.69 58.92 87.36 75.29 86.64 58.73
GPRGNN 66.48 48.86 35.27 84.71 83.53 83.53 87.78 76.62 87.85 72.74
GCNII 58.99 38.87 33.76 72.43 72.75 71.62 88.21 76.96 89.38 67.00
GCNII∗ 63.20 41.46 34.88 77.03 81.18 76.22 88.01 76.94 90.27 69.91
Geom-GCN-I 60.37 33.14 29.10 56.75 58.63 57.57 85.25 78.05 89.99 60.98
Geom-GCN-P 60.92 38.09 31.65 59.45 64.51 68.38 84.83 75.40 88.08 63.48
Geom-GCN-S 60.19 36.14 30.32 55.67 56.86 60.26 85.27 74.90 84.70 60.48
H2GCN-1 52.96 36.42 34.31 79.46 83.14 83.24 86.21 77.11 89.43 69.14
H2GCN-2 58.38 32.33 34.49 78.11 84.31 80.00 87.93 77.06 89.55 69.13
dDGM 45.61 33.04 31.58 54.05 60.78 64.86 82.09 66.81 85.78 58.29
ACM-GCN 66.47 54.38 36.12 84.86 86.47 84.05 87.81 77.09 89.03 74.03
ACMII-GCN 66.82 51.72 36.37 81.89 85.49 86.22 87.87 77.06 88.59 73.56
MLP 45.33 28.98 34.20 79.19 85.49 81.08 75.49 73.23 86.17 65.46
GCN-IED 73.25 65.07 36.12 86.76 86.67 84.86 88.39 77.85 89.57 76.50

w/o GTU 56.21 40.06 31.86 62.16 72.16 57.84 88.15 77.32 89.50 63.92
w/o AMA 72.98 65.00 35.86 85.41 85.49 83.24 87.53 76.70 88.71 75.65
Table 5
Impact of local neighborhood range on performance.

Range Chameleon Squirrel Actor Cornell Wisconsin Texas Cora Citeseer Pubmed

0-hop 43.9 29.17 36.12 86.76 86.67 84.86 87.16 76.46 89.45
1-hop 65.9 60.35 32.54 73.78 78.01 71.35 88.39 77.85 89.57
2-hop 73.25 65.07 31.69 71.08 75.69 67.03 88.01 77.34 89.51
the edge distribution and, consequently, the neighborhood distribu-
tion. However, the impact of the neighborhood range on different
datasets varies; for instance, the Squirrel dataset is more sensitive to the
neighborhood range, while the Citeseer dataset shows less sensitivity.

6.4.3. Comparison of homophily
We compare the homophily of the input graphs (with self-loops)

to the mean homophily of the output graphs (with self-loops) after
10 runs. Fig. 7 illustrates the changes in homophily resulting from
the graph topology updates in GCN-IED. While the impact is less pro-
nounced in homophilous graphs, we observe a significant improvement
in homophily across all datasets for heterophilous graphs. This finding
suggests that leveraging local neighborhood information aids in iden-
tifying corresponding neighbors, thereby enhancing performance on
heterophilous graphs. Conversely, the fluctuations in homophily help
explain the limited improvements observed in homophilous graphs.

6.4.4. Impact of different hop local neighbors
We investigate the effect of different hop local neighbors on graph

topology update, and the results are summarized in Table 5. On ho-
mophilous graphs, using 1-hop neighbors tends to yield better results.
However, on heterophilous graphs such as Chameleon and Squirrel, the
original edge distribution plays a positive role, and aggregating neigh-
bor information improves the updating of graph topology. On other
heterophilous graphs, expanding the range of aggregated neighbors has
a negative impact, indicating that the node itself provides the best
features.

These findings highlight the varying distinguishability of neighbor-
hood distributions on different datasets. Some datasets, like Cornell,
have easily distinguishable node features, and the edge distribution
disrupts the aggregation of node features, making it challenging to find
neighbors from the same class. This phenomenon is commonly observed
in heterophilous graphs. Other datasets, like Chameleon, have less
distinguishable node features, but a ‘‘good’’ edge distribution enhances
the distinguishability of aggregated node features and facilitates the
468

identification of neighbors from the same class.
Fig. 7. The comparison of homophily before and after the graph topology update.

6.4.5. Sensitivity analysis of 𝑘 values for kNN graphs
We conducted a sensitivity analysis of the 𝑘 values in the kNN

graphs on nine datasets, as shown in Fig. 8. The experimental results
indicate that the 𝑘 values have little effect on the majority of the
datasets when 𝑘 ≤ 5. This suggests that the neighbors found on most
of the datasets are reliable when 𝑘 is not too large. However, on the
Squirrel dataset, the best performance was observed when 𝑘 ≤ 2, after
which the performance decreased significantly due to an increase in the
number of unreliable neighbors.

6.5. Applicability of our model on large graph data

Our model, GCN-IED, has demonstrated successful performance in
experimental evaluations on various datasets, particularly those involv-

ing heterogeneous graphs. To assess the effectiveness of GCN-IED on

Neural Networks 168 (2023) 459–470L. He et al.

A

A

C

C

Fig. 8. Sensitivity analysis of 𝑘 values for kNN graphs on nine datasets.

Fig. 9. Comparison of model performances using the OGB dataset.

large-scale datasets, we conducted tests using the ogbn-arxiv dataset
from OGB (Hu et al., 2020). In our experimental setup, we utilized
256 hidden units and a dropout rate of 0.5 for all models. MLP, GCN,
GAT, and GraphSAGE were configured with two layers, while JKNet
utilized five layers. For APPNP, GCNII, GPRGNN, and GCN-IED, we
set 10 propagation steps. Additionally, we established weight decay as
10−4, a local neighborhood range of 1, a dropout rate of 0.6, a top-k
edges value of 6, and a threshold of 0.5 for our model.

The outcomes of various models are displayed in Fig. 9. However, it
is important to note that models specifically designed for heterogeneous
graphs, such as Geom-GCN and H2GCN, are not included in Fig. 9.
These models require the exploration of global neighbors, but their
results could not be included in the figure due to memory limitations.
It is worth emphasizing that our model also requires the exploration of
neighbors. In order to overcome memory limitations during training,
we implemented a sampling technique where 15,000 nodes were se-
lected for global neighbor identification and aggregation at each epoch.
This sampling strategy helps conserve memory but does result in a
slight reduction in prediction accuracy. As a result, the performance
of our model, as shown in Fig. 9, does not stand out significantly.
However, our algorithm focuses on the impact of edge distribution
469
and demonstrates significant improvements in heterogeneous graphs.
Moving forward, we will explore different approaches to enhance our
model’s adaptability to large-scale graph datasets.

7. Conclusion

In conclusion, we have conducted a thorough investigation into
the role of edge distribution in GCNs and its impact on network
performance. Our theoretical and empirical analyses have revealed
the significance of edge distribution in achieving optimal results in
graph representation learning. To address this, we have proposed a
novel framework called GCN-IED (Graph Convolution Network with
Improved Edge Distribution) that enhances edge distribution through
graph topology updating and extensible neighborhood aggregation.
By incorporating both direct and hidden edges, our model achieves
superior performance, particularly on heterophilous graphs. Extensive
experiments on various datasets validate the effectiveness of GCN-IED
in different scenarios.

Our study provides valuable insights into the improvement of graph
convolutional networks by considering the influence of edge distribu-
tion. By optimizing the edge distribution, we contribute to the advance-
ment of graph representation learning, especially for heterophilous
graphs. The proposed GCN-IED framework paves the way for further
research and advancements in graph-based machine learning. It holds
great potential for applications in a wide range of fields, including
social networks, biological networks, and recommendation systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by National Key Research and Development
Program of China (No. 2021ZD0113303), the National Natural Science
Foundation of China (Nos. 62022052, 62276159).

References

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Harutyunyan, H., Alipourfard, N., Lerman, K.,
et al. (2019). MixHop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing. In International conference on machine learning (pp. 21–29).

ndersen, R., Chung, F., & Lang, K. (2006). Local graph partitioning using pagerank
vectors. In 2006 47th Annual IEEE symposium on foundations of computer science (pp.
475–486). IEEE.

twood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances
in neural information processing systems (pp. 1993–2001).

Brody, S., Alon, U., & Yahav, E. (2022). How attentive are graph attention networks? In
International conference on learning representations.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and
deep locally connected networks on graphs. In International conference on learning
representations.

Chamberlain, B., Rowbottom, J., Gorinova, M., Bronstein, M., Webb, S., & Rossi, E.
(2021). GRAND: Graph neural diffusion. In International conference on machine
learning (pp. 1407–1418).

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view.
In Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04 (pp.
3438–3445).

hen, Y., Wu, L., & Zaki, M. J. (2020). Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. In Advances in neural information
processing systems (pp. 19314–19326).

hien, E., Peng, J., Li, P., & Milenkovic, O. (2021). Adaptive universal gener-
alized PageRank graph neural network. In International conference on learning

representations.

http://refhub.elsevier.com/S0893-6080(23)00544-0/sb1
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb1
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb1
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb1
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb1
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb2
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb2
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb2
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb2
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb2
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb3
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb3
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb3
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb4
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb4
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb4
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb5
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb5
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb5
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb5
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb5
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb6
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb6
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb6
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb6
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb6
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb7
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb8
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb8
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb8
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb8
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb8
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb9
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb9
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb9
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb9
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb9

Neural Networks 168 (2023) 459–470L. He et al.

F

F

F

G

H

H

J

J

K

K

K

K

K

M

P

P

R

S

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. In Neural information processing
systems (pp. 3844–3852).

eng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., et al. (2020). Graph random
neural networks for semi-supervised learning on graphs. In Advances in neural
information processing systems (pp. 22092–22103).

ranceschi, L., Frasconi, P., Salzo, S., Grazzi, R., & Pontil, M. (2018). Bilevel program-
ming for hyperparameter optimization and meta-learning. In International conference
on machine learning (pp. 1568–1577). PMLR.

ranceschi, L., Niepert, M., Pontil, M., & He, X. (2019). Learning discrete structures
for graph neural networks. In International conference on machine learning (pp.
1972–1982).

ilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In International conference on machine
learning (pp. 1263–1272).

amilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on
large graphs. In Neural information processing systems (pp. 1025–1035).

u, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., et al. (2020). Open graph
benchmark: Datasets for machine learning on graphs. Advances in Neural Information
Processing Systems, 33, 22118–22133.

avaloy, A., Martin, P. S., Levi, A., & Valera, I. (2023). Learnable graph convolutional
attention networks. In International conference on learning representations.

in, D., Yu, Z., Huo, C., Wang, R., Wang, X., He, D., et al. (2021). Universal graph
convolutional networks. Advances in Neural Information Processing Systems, 34.

azi, A., Cosmo, L., Ahmadi, S.-A., Navab, N., & Bronstein, M. M. (2022). Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(2), 1606–1617.

eriven, N. (2022). Not too little, not too much: a theoretical analysis of graph (over)
smoothing. In NeurIPS 2022-36th conference on neural information processing systems.

ipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International conference on learning representations.

licpera, J., Bojchevski, A., & Günnemann, S. (2019). Predict then propagate: Graph
neural networks meet personalized PageRank. In International conference on learning
representations.

loster, K., & Gleich, D. F. (2014). Heat kernel based community detection. In
Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 1386–1395).

Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete
structures. In Proceedings of the 19th international conference on machine learning,
vol. 2002 (pp. 315–322).

Leman, A., & Weisfeiler, B. (1968). A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9),
12–16.

Li, Y., Zemel, R., Brockschmidt, M., & Tarlow, D. (2016). Gated graph sequence neural
networks. In International conference on learning representations.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., et al. (2022). Revisiting
heterophily for graph neural networks. arXiv preprint arXiv:2210.07606.

Luzhnica, E., Day, B., & Lio, P. (2019). Clique pooling for graph classification. arXiv
preprint arXiv:1904.00374.

Ma, Y., Liu, X., Shah, N., & Tang, J. (2021). Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134.

Ma, Y., Wang, S., Aggarwal, C. C., & Tang, J. (2019). Graph convolutional networks
with eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining (pp. 723–731).

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily
in social networks. Annual Review of Sociology, 27(1), 415–444.

Molaei, S., Bousejin, N. G., Zare, H., Jalili, M., & Pan, S. (2021). Learning graph
representations with maximal cliques. IEEE Transactions on Neural Networks and
Learning Systems.
470
orris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., et al. (2019).
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, vol. 33, no. 01 (pp. 4602–4609).

age, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking:
Bringing order to the web: Technical report, Stanford InfoLab.

Pandit, S., Chau, D. H., Wang, S., & Faloutsos, C. (2007). Netprobe: a fast and scalable
system for fraud detection in online auction networks. In Proceedings of the 16th
international conference on world wide web (pp. 201–210).

ei, H., Wei, B., Chang, K. C.-C., Lei, Y., & Yang, B. (2020). Geom-GCN: Geometric
graph convolutional networks. In International conference on learning representations.

usch, T. K., Bronstein, M. M., & Mishra, S. (2023). A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993.

carselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Sen, P., Namata, G. M., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008).
Collective classification in network data. Ai Magazine, 29(3), 93–106.

Spinelli, I., Scardapane, S., Hussain, A., & Uncini, A. (2021). Fairdrop: Biased edge
dropout for enhancing fairness in graph representation learning. IEEE Transactions
on Artificial Intelligence, 3(3), 344–354.

Sun, K., Lin, Z., & Zhu, Z. (2021). AdaGCN: Adaboosting graph convolutional networks
into deep models. In International conference on learning representations.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. In Neural information processing systems (pp.
5998–6008).

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018).
Graph attention networks. In International conference on learning representations.

Wu, F., Zhang, T., de Souza, A. H., Fifty, C., Yu, T., & Weinberger, K. Q. (2019).
Simplifying graph convolutional networks. In International conference on machine
learning (pp. 6861–6871).

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks. In International conference on learning representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., ichi Kawarabayashi, K., & Jegelka, S. (2018). Rep-
resentation learning on graphs with jumping knowledge networks. In International
conference on machine learning (pp. 5449–5458).

Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning (pp. 40–48).

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical
graph representation learning with differentiable pooling. Advances in Neural
Information Processing Systems, 31.

You, J., Ying, R., & Leskovec, J. (2019). Position-aware graph neural networks. In
International conference on machine learning (pp. 7134–7143). PMLR.

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks.
Advances in Neural Information Processing Systems, 31.

Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous
graph neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining (pp. 793–803).

Zhao, J., Dong, Y., Ding, M., Kharlamov, E., & Tang, J. (2021). Adaptive diffusion in
graph neural networks. Advances in Neural Information Processing Systems, 34.

Zhong, Z., Gonzalez, G., Grattarola, D., & Pang, J. (2022). Unsupervised network
embedding beyond homophily. Transactions on Machine Learning Research.

Zhu, H., & Koniusz, P. (2021). Simple spectral graph convolution. In International
conference on learning representations.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., & Koutra, D. (2020). Beyond
homophily in graph neural networks: Current limitations and effective designs.
Advances in Neural Information Processing Systems, 33, 7793–7804.

http://refhub.elsevier.com/S0893-6080(23)00544-0/sb10
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb10
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb10
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb10
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb10
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb11
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb11
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb11
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb11
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb11
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb12
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb12
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb12
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb12
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb12
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb13
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb13
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb13
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb13
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb13
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb14
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb14
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb14
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb14
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb14
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb15
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb15
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb15
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb16
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb16
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb16
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb16
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb16
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb17
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb17
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb17
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb18
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb18
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb18
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb19
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb19
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb19
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb19
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb19
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb20
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb20
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb20
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb21
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb21
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb21
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb22
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb22
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb22
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb22
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb22
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb23
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb23
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb23
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb23
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb23
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb24
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb24
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb24
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb24
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb24
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb25
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb25
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb25
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb25
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb25
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb26
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb26
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb26
http://arxiv.org/abs/2210.07606
http://arxiv.org/abs/1904.00374
http://arxiv.org/abs/2106.06134
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb30
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb30
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb30
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb30
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb30
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb31
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb31
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb31
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb32
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb32
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb32
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb32
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb32
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb33
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb33
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb33
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb33
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb33
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb34
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb34
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb34
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb35
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb35
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb35
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb35
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb35
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb36
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb36
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb36
http://arxiv.org/abs/2303.10993
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb38
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb38
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb38
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb39
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb39
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb39
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb40
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb40
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb40
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb41
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb41
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb41
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb41
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb41
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb42
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb42
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb42
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb43
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb43
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb43
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb43
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb43
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb44
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb44
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb44
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb45
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb45
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb45
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb45
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb45
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb46
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb46
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb46
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb47
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb47
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb47
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb47
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb47
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb48
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb48
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb48
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb49
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb49
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb49
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb49
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb49
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb50
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb50
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb50
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb51
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb51
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb51
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb52
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb52
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb52
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb52
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb52
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb53
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb53
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb53
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb54
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb54
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb54
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb55
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb55
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb55
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb56
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb56
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb56
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb56
http://refhub.elsevier.com/S0893-6080(23)00544-0/sb56

	Exploring the role of edge distribution in graph convolutional networks
	Introduction
	Related Work
	Notations and Preliminaries
	Theoretical and Empirical Analysis of the Impact of Edge Distribution
	Theoretical Analysis
	Empirical Investigation of Edge Distribution
	Empirical Analysis of GCN
	Comprehensive Analysis of Edge Distribution on MPNNs
	Impact of Neighborhood Range on Neighborhood Aggregation

	The GCN-IED Model
	Updating Graph Topology
	Designing Extensible Neighborhood Aggregation

	Experiments
	Experimental Setup
	Datasets
	Baselines Methods and Implementation Details

	Performance of Semi-supervised Node Classification
	Performance of Full-supervised Node Classification
	Sensitivity Analysis
	Impact of Threshold ρ
	Analysis of Neighborhood Range
	Comparison of Homophily
	Impact of Different Hop Local Neighbors
	Sensitivity Analysis of k Values for kNN Graphs

	Applicability of Our Model on Large Graph Data

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

