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Adaptive distance metric learning based on the characteristics of data can significantly
improve the learner’s performance. Due to the limitations of single metric learning for
heterogeneous data, multiple local metric learning has become an essential representative
tool to describe local properties of data. Most existing multiple metric learning algorithms
need to perform metric learning on a pre-obtained instance division. However, the number
of clusters in the pre-obtained division affects the effectiveness of metric learning. To
tackle this problem, we propose a Multiple Metric Learning via Local Metric Fusion
(MML-LMF) framework, which unifies local metric learning and fusion of similar local met-
rics into one metric and adaptively determines the number of local metrics. As an applica-
tion of the MML-LMF framework to pairwise constraints, we devise a MML-LMF algorithm
by constructing a concrete optimization model and acquiring a closed-form solution to the
model. The experimental results on several benchmarks, person re-identification, and face
verification datasets show that the performance of the proposed algorithm is superior to
that of the existing state-of-the-art global and multiple metric learning algorithms.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that machine learning algorithms are sensitive to a given distance or similarity measure [1–3]. However,
it is often difficult to capture the underlying semantic space of a given problem with standard metrics such as the Euclidean
distance. To overcome this deficiency, several metric learning algorithms have been developed in the literature [4–6]. Maha-
lanobis distance metric learning is one of the most common metric learning algorithms [7–9], which is equivalent to the
Euclidean distance under a linear transformation. In many applications, one can replace the Euclidean distance with the
Mahalanobis distance.

Generally, metric learning algorithms that learn a uniform metric are called single metric learning or global metric learn-
ing. The typical single metric learning algorithms include NCA (Neighbourhood Component Analysis) [10], LMNN (Large
Margin Nearest Neighbor) [11], GMML (Geometric Mean Metric Learning) [12], GNSML (Global Nonlinear Smooth Metric
Learning) [13], and CDML (Curvilinear Distance Metric Learning) [14]. Although the single metric learning algorithms are
effective for data with simple structures, they fail to learn the distance for datasets with complex nonlinear structures. To
address this issue, several strategies have been proposed in the literature [15,16], which includes kernel tricks, deep
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embedding, and multiple metric learning. The kernel tricks map the input data into a high-dimensional feature space, in
which a linear transformation can effectively separate the data [17,18]. Nevertheless, the kernel tricks suffer from enormous
computational cost and have difficulty in choosing the kernel, which significantly limits their applications. The deep embed-
ding has powerful feature representation capability, but it lacks interpretability and requires high data scaling. As a result of
its good interpretability and low computational cost, multiple metric learning has received much attention.

Multiple metric learning yields a good balance between the fitting power and the complexity of the model and is thus
suitable for more complex nonlinear data. Given the number of metrics, different metrics can be attained with multiple met-
ric learning based on particular instances [19,20], local clusters [21], and selected bases [22]. MMLMNN (Multiple Metric
Large Margin Nearest Neighbor) [11] is an extension of LMNN, which learns each class’s corresponding local linear transfor-
mation while making similar and dissimilar instances with larger intervals. SCML (Sparse Compositional Metric Learning)
[23] uses Fisher discriminant analysis to extract basic metrics in different local data regions and learns sparse linear com-
binations of these basic metrics for each local region. CMML (Clustered Multi-Metric Learning) [18] first uses clustering
methods to cluster data into multiple clusters and then constructs triple constraints to learn a local metric for each cluster,
where the local metric should be consistent with the global metric as much as possible to reduce the risk of overfitting. How-
ever, these algorithms require both specifying the number of local metrics and learning a single local metric for a cluster
according to a fixed data partition in advance. To get rid of these requirements, a LIFT (Local Metrics Facilitated Transforma-
tion) framework was proposed in [21]. The LIFT framework learns the global and multiple local metrics jointly. Specifically,
each local metric is derived from the global metric through a local bias optimization that takes into account the local prop-
erties of data. The LIFT framework learns a metric for every cluster, but it needs to specify the number of clusters in advance.
Nonetheless, the changes in the number of clusters can cause a significant increase in the computational cost of LIFT.

To tackle the deficiencies with the existing multiple metric learning algorithms discussed above, we propose a Multi-
Metric Learning via Local Metric Fusion (MML-LMF) framework, which unifies learning local metrics for constraints and
fuses similar local metrics into one metric. The basic idea of the framework is as follows. Suppose that we initially obtain
N local metrics based on N pairs of constraints. As similar local metrics are continuously fused into one metric, the number
of different local metrics decreases. The framework uses a classifier to verify the classification accuracy of the current num-
ber of local metrics, records the classification accuracy on the classifier at each change of the number of local metrics, and
chooses the number of local metrics according to the optimal classification accuracy. Based on the MML-LMF framework, we
acquire a concrete optimization model with pairwise constraints and derive a closed-form solution to this optimization
model. Furthermore, we have carried out extensive experiments on several benchmarks, person re-identification, and face
verification datasets to demonstrate the performance of the proposed algorithm. The main contributions of this paper can
be summarized as follows:

� We propose a novel Multi-Metric Learning via Local Metric Fusion (MML-LMF) framework. This kind of local metrics in
terms of constraints can enlarge the parameter space, thus allowing a better fitting power for the complex data
distribution.

� Using pairwise constraints, we construct a concrete optimization model based on the MML-LMF framework. Furthermore,
we obtain a closed-form solution to the optimization model.

� We have carried out extensive experiments on several benchmarks, person-identification, and face verification datasets.
The results show that the proposed algorithm outperforms the existing state-of-the-art algorithms.

2. Preliminaries

2.1. Notations

Let D ¼ fðxi; yiÞgNi¼1 denote a training dataset of N instances, where xi 2 Rd and yi 2 f1;2; � � � ;Cg (C is the number of
classes). The side information extracted from D is composed of pairwise constraints or triplet constraints. Let
T0 ¼ fðxi; xj; qijÞg denote the set of all pairwise constraints for N instances, where qij indicates whether the corresponding
pairs belong to the same class or not. Let ði; jÞ $ t be a one-to-one mapping, where t indicates that ðxi; xjÞ is the tth constraint
in T0. If yi ¼ yj, then qij ¼ qt ¼ 1; otherwise, qij ¼ qt ¼ �1. Let jT0j be the number of pairwise constraints. We have
jT0j ¼ NðN � 1Þ=2. Note that xi � xj ¼ v ij ¼ v t . Given two instances xi and xj, the Mahalanobis distance is defined as:

d2
Mðxi; xjÞ ¼ ðxi � xjÞTMðxi � xjÞ ¼ kLðxi � xjÞk22 ¼ kLv tk22, where M is a positive semi-definite (PSD) matrix with M ¼ LLT .

2.2. The Local Metrics Facilitated Transformation (LIFT) framework

The global Mahalanobis metric M0 describes a uniform type of feature relationship between instances. Most algorithms
first divide the instances and then describe the different localities (instance clusters) of data using a single metricMk. Instead
of learning Mk, Ye et al. [21] learn a global metric plus a local metric bias for each locality, i.e., Mk ¼ M0 þ DMk.

To eliminate the computational cost of ensuring the positive semi-definiteness of M, Ye et al. attempt to learn multiple
transformations Lk ¼ L0 þ DLk, where Lk; L0, and DLk are the corresponding transformation matrices of Mk;M0, and DMk,

respectively. When data are clustered into K clusters, they define the kth cluster asNk ¼ fðxki ; ykj Þg
Nk

i¼1
, where Nk is the number
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of instances in the kth cluster. Let Tk ¼ fðxki ; xkj ; qk
ijÞg be the set of pairwise constraints extracted from Nk with

jTkj ¼ NkðNk � 1Þ=2. The framework of LIFT is as follows:
min
L

l1

X
ðxi ;xj ;qijÞ2T0

lðqijðc� d2
L0
ðxi; xjÞÞÞ þ k1kL0k2F þ l2

XK
k¼1

X
ðxk

i
;xk
j
;qk

ij
Þ2Tk

lðqk
ijðc� d2

L0þDLk ðxki ; xkj ÞÞÞ þ k2kDLkk2F ;
where c is a pre-defined non-negative threshold value, L ¼ fL0; fDLkgKk¼1g;l1;l2; k1, and k2 are non-negative trade-off
hyper-parameters, k � kF is the matrix Frobenius norm, and lð�Þ is a convex non-increasing loss function.

In LIFT, once the global metric L0 is competent for measuring local losses compared with local metric L0 þ DLk, the local
metric bias DLk becomes zero. The number of local metrics will thus be small so that the model complexity of LIFT is reduced.
However, getting a low loss with a single metric for a local cluster may be challenging when the number of clusters is small.
When the number of clusters is large enough, it also needs a high computational cost to ensure that different local metrics
are dissimilar. Therefore the number of clusters will significantly affect the performances of the algorithms based on the LIFT
framework.

3. Learning Multi-Metric via Local Metric Fusion

This section proposes a Multi-Metric Learning via Local Metric Fusion (MML-LMF) framework. As an application of this
framework to pairwise constraints, we acquire a much easier multiple metric learning optimization model, which has a
closed-form solution.

3.1. The MML-LMF Framework

Let T be a set of constraints extracted from D, where the constraints can be pairwise constraints, triple constraints,
quadruplet constraints, etc. With this set of constraints, we obtain the most fine-grained local metric and learn a metric
Lt for tth constraint Tt in T. Let Lt ¼ L0 þ DLt , where L0 is a global metric and DLt metric is found with
min
DLt

lðf ðTt; L0 þ DLt ; cÞÞ þ kkDLtk2F ; ð1Þ
where c is a pre-defined non-negative threshold value, k is a non-negative trade-off hyper-parameter, lð�Þ is a convex non-
increasing loss function, and f ð�Þ is an operator defined on the constraint Tt , which describes how close the current con-

straint is to the threshold c under the metric L0 þ DLt . For example, in pairwise constraints, f ð�Þ ¼ qtðc� kðL0 þ DLtÞv tk22Þ
defines the distance between similar (dissimilar) instances in comparison with a certain threshold c.

The above procedure learns a global metric L0 on the constraint setT, which can well distinguish most of the constraints.
To deal with those undistinguishable constraints, the MML-LMF framework further requires aggregating the constraints with
similar non-zero metric biases. In the aggregation process, the number of different local metrics decreases so that the com-
plexity of the model is reduced. The MML-LMF framework can be stated as follows:
min
L

XjTj

t¼1

lðf ðTt; L0; cÞÞ þ k1kL0k2F þ l
XjTj

t¼1

lðf ðTt; L0 þ DLt; cÞÞÞ þ k2kDLtk2F þ k3
X

16j1<j26jTj
DLj1

;DLj2
–0

wfj1 ;j2gkDLj1 � DLj2k2F ð2Þ
where L ¼ fL0; fDLtgjTj
t¼1g;l; k1; k2, and k3 are non-negative trade-off hyper-parameters. wfj1 ;j2g ¼ expð�dkDLj1 � DLj2k2F Þ is a

non-negative weight (d is a pre-defined non-negative value), which can be used to control the scope of aggregating metric
biases, and j1 and j2 mean the j1th and j2th constraints in T, respectively.

3.2. An Application of the MML-LMF Framework to Pairwise Constraints

An intuitive drawback of the MML-LMF framework is the low efficiency due to the enormous number of constraints. To
overcome this drawback, this section employs a simple and efficient constraint selection method [24,25] to select pairwise
constraints. Furthermore, we attain an optimal solution approach in which sub-optimization problems are transformed into
closed-form solutions. The approach only involves matrix addition and multiplication operations. Finally, the computational
complexity of the algorithm is analyzed.

Under the global metric L0 for pairwise constraints, most of the constraints already satisfy the loss lð�Þ, i.e., similar
instances are less than or equal to a certain threshold, and dissimilar instances greater than or equal to a certain threshold,
where we take lðxÞ ¼ maxf1;�xg and c ¼ 2. The proposed model learns a metric bias DLt for the tth constraintTt ¼ ðxi; xj; qtÞ
in an unsatisfied loss, i.e., Tt 2 T0 and DLt – 0, where the unsatisfied loss implies that lðxÞ ¼ �x. Let Tu ¼ fTt jTt 2 T0 and
DLt – 0g. We fuse the metrics with similar metric biases into one metric and obtain the following optimization problem:
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min
fDLtgjTu j

t¼1

XjTu j

t¼1

lðqtðc� kðL0 þ DLtÞv tk22ÞÞ þ k2kDLtk2F þ k3
X

16j1<j26jTu j
wfj1 ;j2gkDLj1 � DLj2k2F ;
where v t ¼ xi � xj; lðxÞ ¼ �x, and j1 and j2 mean the j1th and j2th constraints in Tu, respectively. The purpose of the last term

is to enforce similarity among fDLtgjTu j
t¼1 . When DLj1 ¼ DLj2 ¼ � � � ¼ DLjk , the k constraints form a cluster, and thus generate a

local metric. Therefore, the last term can effectively control the number of local metrics to avoid the overfitting. Especially
the algorithm generates the local metric from the perspective of constraints and has more parameters, which allows a better
fitting capability for complex data distributions.

In a practical training phase, it is optional to use all pairwise constraints in T0 for metric learning. Most algorithms con-
struct similarity constraints with k1 nearest neighbors of the same label and dissimilar constraints with k2 nearest neighbors
of different labels, where k1 and k2 usually belong to f1;2;3g. A similar strategy for constructing pairwise or triplet con-
straints can be found in [24,25]. Let Tk1&k2 denote the constraint set consisting of each instance xi and its k1 and k2 nearest

neighbors. We modify the constraint set Tu as T̂u ¼ fTt jTt 2 Tk1&k2 ;DLt – 0g. For the tth DLt , the optimization model is:
min
DLt

qtðkðL0 þ DLtÞv tk22 � cÞ þ k2kDLtk2F þ k3
XjT̂u j

j–t

wtjkDLt � DLjk2F ; ð3Þ
where v t ¼ xi � xj;Tt ¼ ðxi; xj; qtÞ is the tth constraint in T̂u, and wtj is an abbreviation of wft;jg.

3.3. Optimization

To solve the problem (3), one needs to initialize the metric bias fDLtgjT̂u j
t¼1 and solve the following optimization problem,
min
DLt

qtðkðL0 þ DLtÞv tk22 � cÞ þ k2kDLtk2F : ð4Þ
Taking the derivative of formula (4), we obtain:
DLt ¼ �qtðk2I þ qtv tvT
t Þ

�1v tvT
t L0; ð5Þ
where I is an identity matrix. An application of the Sherman-Morrison formula to ðk2I þ qtv tvT
t Þ�1 yields
DLt ¼ � qt

k2
ðI � qtv tvT

t

k2 þ qtvT
t v t

Þv tvT
t L0: ð6Þ
After the initialization of DLt , we get from the formula (3)
DLt ¼ 1
a
ðI � qtv tvT

t

aþ qtvT
t v t

Þðk3
Xj ^Tu j

j–t

wjtDLj � qtv tvT
t L0Þ; ð7Þ
where a ¼ k2 þ k3
Pj ^Tu j

j–t wtj.
As the metrics merge continuously, there will be more and more identical metrics. Let G be the constraints set such that

8Tt1 ;Tt2 2 G, we have DLt1 ¼ DLt2 – 0. Then
PjGj

t¼1 @f ðDLtÞ=@DLt ¼ 0. Thus,
DLG ¼ DLt ¼ ðâI þ
XjGj

t¼1

qtv tvT
t Þ

�1

� ðk3
XjT̂u j

j¼1

wGjDLj �
XjGj

t¼1

qtv tvT
t L0Þ; ð8Þ
where j indicates the jth constraint in T̂u; â ¼ k2jGj þ k3
PjT̂u j

j¼1 wGj and wGj ¼
PjGj

t¼1wtj. The matrix inversion process in the for-
mula (8) can be replaced by the iteration in Lemma 1.

Lemma 1. Kt ¼ ðâI þPjGj
t¼1qtv tvT

t Þ
�1

in the formula (8) can be updated as
K0 ¼ 1
â I;

K1 ¼ ðK�1
0 þ q1v1vT

1Þ
�1 ¼ K0 � q1K0v1vT

1K0

1þq1vT
1K0v1

;

. . . ;

Kt ¼ Kt�1 � qtKt�1vtvT
t Kt�1

1þqtvT
t Kt�1vt

;

8>>>>><
>>>>>:
where Kt can be obtained by t iterations and the derivation is simply a repeated application of the Sherman-Morrison
formula.
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When the two metric biases DLG1 and DLG2 are similar, we need to fuse them into a new metric bias DLG, i.e.
DLG ¼ jG1jDLG1 þ jG2jDLG2

jG1j þ jG2j : ð9Þ
To judge whether two metric biases should be merged, we use a small threshold on kDLG1 � DLG2k2F , which we set to be

1:05 �mini;jkDLGi
� DLGj

k2F .

3.4. Global Metric Learning of MML-LMF

When learning global metric L0, the lð�Þ for global and local regularizers should be different. To facilitate the optimization
process, we choose the smooth hinge loss lsð�Þ for global metric learning, which is defined as:
lsðxÞ ¼
0 if x > 1
1
2 ðx� 1Þ2 if 0 6 x 6 1
1
2 � x if x < 0:

8><
>:
When k2 is sufficiently large and k3 ¼ 0, the MML-LMF in formula (2) degenerates to a global distance metric learning algo-
rithm. With lsð�Þ, the optimization problem formula (2) becomes:
min
L0

XjT0 j

t¼1

lsðqtðc� kL0v tk22ÞÞ þ k1kL0k2F : ð10Þ
For the global metric learning, the solution can be simply attained by the gradient descent method, which is similar to that of
LMNN. The summary of the application of the MML-LMF framework to pairwise constraints is presented in Algorithm1.

3.5. Computational Complexity

In Algorithm1, the computational complexity of MML-LMF is mainly concentrated in the loop process of the metric
fusion, where the number of metrics determines the number of loop iterations. The maximum number of metrics is nk,
where k is the number of selected nearest neighbors. The computational complexity of formula (8) and formula (9) are

oðnkd3Þ and oðn2k2d2Þ, respectively. The algorithm terminates when the number of metrics equals t. Therefore, the compu-

tational complexity of algorithm 1 is oðtðnkd3 þ n2k2d2ÞÞ. With the help of the global metric, the number of metrics t is much
smaller than nk. Therefore, the efficiency of the algorithm is relatively high.

Algorithm1: MML-LMF

Input: X: data matrix; Y: label vector; k1; k2; k3; c ¼ 2; k1; k2: neighborhood numbers.

Output: fDLtgjT̂u j
t¼1 : metric biases.

1: Learning the global metric L0 by solving optimization problems (10).
2: Select partial pairwise constraints set T̂u based on the number of similar nearest neighbors k1 and the number of

dissimilar nearest neighbors k2.

3: Initialize the metric biases fDLtgT̂u
t¼1 using formula (6).

4: Calculate the weight matrix wij ¼ expð�dkDLi � DLjk2F Þ, where d ¼ 1.
5: while truedo
6: Update the metric biases DLt using formula (8).
7: Fusion of similar metric biases is performed using formula (9).
8: Let jDLt j be number of different metric biases.
9: if(jDLtj==2) or (jDLt j < threshold)
10: break;
11: end
12: end while
4. Experiments on Benchmark Datasets

This section investigates the performances of some representative single metric learning and multiple metric learning
algorithms on 15 benchmark datasets: Auto(205, 25, 6), Balance(625, 4, 3), Breast(699, 10, 2), Cars(392,8,3), Chess(3196,
36, 2), Cleve(303, 13, 4), Glass(214, 9, 6), Heart(270, 13, 2), ILPD(583, 10, 2), Letter(20000, 16, 26), Pima(768, 8, 2), Seg-
ment(2310, 19, 7), Solar(323, 12, 6), Vote(435, 16, 2), and Wilt(4839, 5, 2), where the numbers in each parenthesis are
the number of instances, features, and classes.
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We have tested all the algorithms on the 15 benchmark datasets. Twenty runs evaluate the accuracy of these algorithms.
At each run, every dataset is randomly partitioned into two parts with 70% as the training set and 30% as the testing set. We
have tuned the parameters for each run to obtain optimal results. In the MML-LMF1 algorithm, we set k1 ¼ 1 and ignore the

global regularization term kL0k2F , since the local metric learning tasks can also serve the purpose of the regularization term. Fur-
thermore, we neglect the fusion regularization term and set k3 ¼ 1 as we want local metrics to fuse slowly. The process of metric
fusion makes a trade-off between discriminative ability and performance. We mainly adjust the parameters in the selection
method for constraints and the parameter k2. In the implementation, we classify the parameters of the selection method for
constraints into 9 pairs according to the number of similar nearest neighbors k1 and the number of dissimilar nearest neighbors
k2, i.e., ðk1; k2Þ : fð1;1Þ; ð1;2Þ; ð1;3Þ; � � � ; ð3;3Þg. The parameter k2 controls the sparsity of local metrics and is tuned from
f0:001;0:01;0:1;1g.

When calculating the metric corresponding to each constraint, each instance corresponds to multiple metrics and con-
straints. Let us denote the metrics set as Lxi and the constraints set as Txi for xi. We evaluate the metrics for xi by selecting
one metric L from Lxi so that the loss of the k1 þ k2 constraints is minimized, i.e.
1 http
min
L2Lxi

XjTxi
j

t¼1

lðqtðc� kLv tk22ÞÞ; ð11Þ
where lðxÞ ¼ maxf1;�xg. The distance between a testing instance xt and a training instance xi is denoted as d2
L ðxi; xtÞ. We

evaluate the performance of the proposed algorithm with the 3NN classifier.
We report the experimental results on classification accuracy in Table 1 and mark the highest accuracy for each dataset in

bold. Each item in the table represents the mean of 20 runs, with the variance of 20 runs in parentheses. The bottom row
shows the average rank order for each algorithm. The compared algorithms have been optimized by tuning the parameters
according to their corresponding literature. Our algorithm performs much better on benchmark datasets than those repre-
sentative algorithms. From the average rank order of the LIFT and the MML-LMF, one can see that the MML-LMF framework
achieves better trade-offs between discriminative ability and performance than the LIFT framework does.

4.1. Fusion Regularization Term in MML-LMF

In the MML-LMF, we fuse some similar metrics into one metric to reduce its complexity. Thus we show the accuracy
change of the 3NN classifier in the process of merging metrics to illustrate the effect of metrics fusion on the MML-LMF.
Regarding random partitions and simplicity of display, we randomly select 5 of the 20 runs and choose the parameters cor-
responding to the optimal results. In Fig. 1, we illustrate the effect of the number of metrics on the classification performance
for four datasets, which shows that the partition of data significantly affects the number of optimal metrics. Moreover, the
given number of metrics also affects the performance of MML-LMF. The results above further validates that MML-LMF can
provide a better trade-off between discriminative ability and performance.

4.2. Visualization

Here we use tSNE [26,27] to visualize the results of MML-LMF, plotted in Figs. 2(a)-(d). The Figs. 2(a)-(d) show the pro-
jection visualization effects on Balance and Chess, respectively. When learning each metric for the selected constraints,
MML-LMF picks the metric Li for each instance xi with (11). The distance between two instances in the training set is

dðxi; xjÞ ¼ kLixi � Ljxjk22. The MML-LMF is equivalent to the Euclidean distance after different linear transformations between
two instances. The original instance class membership is shown in Figs. 2(a), (c). The instance after trained metrics is shown
in Figs. 2(b), (d). One can see that most of the similar instances are clustered compared with the original instance class
membership.

4.3. Parameter Sensitivity

In the MML-LMF, the main factors affecting the model metric are the selection method of constraints and the local metric
regularizer’s coefficient k2. We have used only a simple constraint selection method, that is to say, we select only the k1 sim-
ilar and k2 dissimilar nearest neighbors of the instance to construct the pairwise constraints, where k1 and k2 are selected in
f1;2;3g. Furthermore, the parameter k2 controls the number of non-zero local metric biases. When k2 becomes large enough,
all local metric biases are zero. k2 is selected in f0:001;0:01;0:1;1g. We show the effect of parameters ðk1; k2Þ and parameter
k2 on the classification accuracy for 12 datasets in Fig. 3.

The experimental results show that the selection method of constraints is remarkably effective. At the same time, the reg-
ularization term of local metric biases also significantly affects the performance of MML-LMF in most datasets. From Figs. 3
(b), (g), and (h), one can see that the more the constraints are selected, the more the performance may be reduced instead.
Therefore, the selection method of constraints is the core issue in MML-LMF. Moreover, the experimental results in Figs. 3(a),
s://github.com/array12138/MML-LMF/tree/main
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Table 1
Classification accuracy of classical global and multiple metric learning algorithms on different data sets.

Methods KNN NCA LMNN GMML GNSML ANML MMLMNN SCML CMML LIFT MML-LMF

Auto :550ð:060Þ :573ð:071Þ :583ð:047Þ :552ð:057Þ :584ð:071Þ :656ð:041Þ :557ð:245Þ :601ð:054Þ :573ð:043Þ :592ð:044Þ :683ð:065Þ
Balance :806ð:027Þ :936ð:027Þ :847ð:026Þ :924ð:017Þ :922ð:017Þ :944ð:007Þ :896ð:017Þ :903ð:020Þ :927ð:015Þ :922ð:018Þ :939ð:022Þ
Breast :956ð:009Þ :951ð:015Þ :963ð:011Þ :967ð:011Þ :961ð:009Þ :961ð:008Þ :963ð:011Þ :952ð:005Þ :964ð:009Þ :964ð:012Þ :971ð:011Þ
Cars :831ð:031Þ :925ð:040Þ :880ð:028Þ :845ð:032Þ :878ð:030Þ :871ð:035Þ :904ð:022Þ :923ð:014Þ :884ð:034Þ :874ð:027Þ :892ð:020Þ
Chess :783ð:214Þ :982ð:006Þ :974ð:007Þ :937ð:009Þ :954ð:007Þ :985ð:002Þ :979ð:005Þ :971ð:003Þ :980ð:006Þ :980ð:005Þ :985ð:004Þ
Cleve :729ð:031Þ :707ð:043Þ :743ð:050Þ :752ð:031Þ :753ð:037Þ :785ð:031Þ :730ð:031Þ :678ð:052Þ :740ð:029Þ :712ð:044Þ :768ð:031Þ
Glass :659ð:058Þ :658ð:082Þ :689ð:056Þ :687ð:039Þ :702ð:053Þ :769ð:040Þ :720ð:045Þ :655ð:035Þ :679ð:039Þ :673ð:062Þ :733ð:051Þ
Heart :816ð:037Þ :797ð:044Þ :825ð:027Þ :834ð:028Þ :830ð:030Þ :840ð:040Þ :807ð:039Þ :803ð:028Þ :836ð:040Þ :840ð:043Þ :864ð:034Þ
ILPD :658ð:035Þ :674ð:040Þ :661ð:031Þ :693ð:033Þ :677ð:037Þ :693ð:043Þ :664ð:028Þ :682ð:015Þ :692ð:026Þ :717ð:019Þ :728ð:023Þ
Letter :954ð:000Þ :960ð:032Þ :969ð:000Þ :951ð:000Þ :972ð:000Þ :971ð:000Þ :965ð:000Þ :970ð:000Þ :969ð:000Þ :977ð:000Þ :982ð:000Þ
Pima :727ð:031Þ :727ð:026Þ :730ð:025Þ :738ð:020Þ :752ð:026Þ :753ð:016Þ :734ð:023Þ :713ð:016Þ :750ð:021Þ :765ð:018Þ :766ð:022Þ
Segment :949ð:009Þ :957ð:010Þ :962ð:006Þ :948ð:009Þ :958ð:006Þ :971ð:005Þ :967ð:008Þ :969ð:004Þ :955ð:007Þ :966ð:008Þ :971ð:005Þ
Solar :610ð:044Þ :607ð:047Þ :642ð:052Þ :622ð:034Þ :632ð:045Þ :635ð:034Þ :645ð:040Þ :676ð:039Þ :639ð:038Þ :649ð:038Þ :665ð:051Þ
Vote :917ð:021Þ :939ð:024Þ :945ð:016Þ :929ð:019Þ :947ð:014Þ :957ð:010Þ :956ð:014Þ :921ð:009Þ :953ð:015Þ :960ð:014Þ :959ð:017Þ
Wilt :696ð:000Þ :853ð:023Þ :842ð:000Þ :722ð:000Þ :802ð:000Þ :838ð:000Þ :862ð:000Þ :854ð:000Þ :798ð:000Þ :806ð:000Þ :862ð:000Þ
Avg Rank 10:00 7:53 6:53 7:4 6:00 3:53 5:93 6:80 5:80 4:67 1:80
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Fig. 1. Change of the classification performance and the number of local metrics. Different colors indicate that different training sets are used.
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(b), and (g) show that different datasets have different sensitivities to the sparsity of local biases, so the optimal values
should be obtained at different k2 for the datasets. Hence it is also crucial to adjust k2 to control the sparsity of the local met-
ric biases.
4.4. Experiments on Person Re-identification

We have also evaluated our algorithm on two benchmark person re-identification datasets: VIPeR [28] and PRID450S
[29]. The VIPeR dataset contains individuals, each of which has two images. Each group of images is taken from a horizontal
view but with very different orientations. There are 450 image pairs in the PRID450S dataset, which are collected from two
different static surveillance cameras. Fig. 4 gives some example images of each of these datasets.

Since the acquisition of natural images is easily affected by viewpoints, pose, illumination, and occlusion, we use a novel
descriptor method [30,31] based on a hierarchical distribution of pixel features. The method can effectively avoid the neg-
ative influence of a complex environment, while the extracted data features are publicly available 2.
2 http://www.i.kyushu-u.ac.jp/ matsukawa/ReID.html
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Fig. 2. Visualization effects on different datasets.
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We carry out all evaluations in the single-shot experiment settings [32,33]. Firstly, we divide the individuals in datasets
into two subsets, randomly selecting p individuals as the testing set and the remaining as the training set, where p is chosen
to be 316, 225 for VIPeR, PRID450S, respectively. Then we reduce the dimensionality of the original datasets to 50 dimen-
sions by using PCA. Following the same settings in [33], we randomly generate 10 groups of partitions. In each partition,
one image of each person is randomly chosen as a probe image, and the rest are regarded as gallery images.

In addition, we set c ¼ 4; k1 ¼ 1, and the other parameters are the same as the ones in the experiments conducted on the
Benchmark datasets. When calculating the distance between two instances according to multiple metrics, we follow the
principle that the distance is dMxi

ðxi; xjÞ, where Mxi is the metric corresponding to xi if we calculate how close xj is to xi. Fol-
lowing this principle, we evaluate the performance with the Cumulative Matching Characteristic (CMC) curves, which visu-
alize the expectation of finding the correct person in the top 30 matches. We calculate the average results of 10 runs and
show the experimental results in Fig. 5. From the result, one can see that our algorithm has a clear advantage on VIPeR
and PRID450S over the compared algorithms.
4.5. Experiments on Face Verification

The face verification task aims to determine whether two face images belong to the same face. In this section, we carry
out the MML-LMF algorithm on the LFW (Labeled Faces in the Wild) dataset for the face verification task. The algorithm’s
349



Fig. 3. Parameter Sensitivity on different datasets.
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performance is evaluated with accuracy. Experiments show that the MML-LMF outperforms the state-of-the-art metric
learning algorithms.

Our experiments first use a lightweight Python-based framework, deepface 3 to extract features. The deepface encapsulates
a variety of classical face recognition networks, such as DeepFace [34], VGG-Face[35], Facenet [36], and OpenFace [37]. Then the
3 https://github.com/serengil/deepface
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Fig. 4. Example images from the person re-identification datasets. For each dataset, images in the same column represent the same person.

Fig. 5. The CMC curves of different algorithms on different datasets.

Fig. 6. ROC curves of all algorithms on LFW dataset. AUC values are presented in the legends.
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VGG-Face feature is used to evaluate our algorithm, where the VGG-Face feature has 2622 dimensions. Subsequently, we use
PCA to reduce the VGG-Face feature to 50.

The MML-LMF is evaluated with a ten-fold cross-validation approach, which is similar to the experimental setup in
[25,38,14]. Each fold consists of 300 similar face pairs and 300 dissimilar face pairs. We choose one of the folds as the testing
set and the rest as the training set. For SCML, CMML, and LIFT, we set the target nearest neighbor to 1 neighbor while using
the face images in the training face pairs as the training set. Then the test instance selects the nearest training instance’s
metric as its metric. We plot the ROC curve by changing the thresholds of different distance metrics. Then the values of Area
Under Curve (AUC) are calculated to quantitatively evaluate the performances of all comparators. We report the ROC curves
and AUC values of KNN, NCA, GMML, ANML, SCML, CMML, LIFT, and MML-LMF in Fig. 6, where one can see that the proposed
MML-LMF algorithm can achieve satisfactory verification accuracy, higher to the competing algorithms. Among them, the
performance of SCML, CMML, and LIFT is relatively lower. Since these algorithms perform single metric learning on a cluster
of data, the differences in faces in clusters could be huge, and it is difficult to capture the cluster structure with a single
metric.

5. Conclusion

We have proposed a framework of multi-metric learning via local metric fusion, which has a significant advantage over
the instance cluster learning metrics approaches in the literature. The MML-LMF can adaptively determine the number of
local metrics before learning the local metrics. As a result of this framework, we have constructed a concrete optimization
model with pairwise constraints and acquired a closed-form solution to the model. The experimental results show that
MML-LMF is effective and performs better than the state-of-the-art multiple metric learning algorithms. In future work,
we will extend the MML-LMF framework to triple constraints and develop a better constraint selection method.
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