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GCN is a widely-used representation learning method for capturing hidden features in graph 
data. However, traditional GCNs suffer from the over-smoothing problem, hindering their ability 
to extract high-order information and obtain robust data representation. To overcome this 
limitation, we propose a novel graph model, the high-order graph attention network. Compared to 
other existing graph attention networks, our model can adaptively aggregate node features from 
multi-hop neighbors through an attention mechanism. Moreover, the edges in the original graph 
may not accurately represent the relationships between nodes. We implement a new approach to 
update the graph by using the aggregated node representation to adjust the edges with small step 
sizes. Additionally, we perform a theoretical analysis to demonstrate the relationships between 
our proposed model and other GCN models. Finally, we evaluate our proposed model against 
eight variants of GCN models on multiple widely-used benchmark datasets. The experimental 
results show the superiority of our proposed model over other models.

1. Introduction

Graph-structured data is prevalent in real-life applications, such as social networks, citation networks, and biological networks 
[32,13]. Due to its expressive nature, graph-structured data is widely used to represent complex systems in various fields, such as 
social networks [22], recommendation systems [50,25] and computer vision [26,28,48]. Graph data often includes both topological 
relationships between nodes and properties of nodes. However, many machine learning algorithms find it challenging to directly 
handle this type of data. To address this challenge, numerous graph representation learning or graph embedding methods have been 
developed, such as graph factorization, deepwalk, and graph neural networks, to find node embeddings such that similar nodes in 
the graph have similar embeddings.

Currently, as an effective tool for graph embedding, graph neural networks have achieved great success in graph machine learning 
[20,14,34]. Especially, graph convolutional network (GCN) [20] has attracted extensive attention, which plays a fundamental role 
in the development of follow-up graph neural networks. It is a two-layer neural network that aggregates information from neighbors 
to learn the representation of nodes. However, the traditional GCN is limited by the over-smoothing problem, leading to a lack of 
high-order graph information in the learned node representations. It is insufficient to only consider low-order neighbor information 
when representing a node, as high-order neighbor information contains valuable hidden relationships between nodes that can 
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contribute to more accurate node representation. For example, nodes belonging to the same class may not have a direct connection 
with each other. Thus, it is important to uncover the hidden relationships between them to obtain a better representation.

Furthermore, several graph neural networks have been designed, applying various techniques to enhance the aggregation of 
neighbor information for node representation. These technologies include sampling nodes or layers [14,4], reconstructing adjacency 
matrix [11,6], mutual information [35] and random walk [46,23]. However, these methods face challenges in incorporating 
high-order neighborhood information for node representation. The challenge of incorporating information from higher-order 
neighborhoods is a key issue that needs to be addressed in the advancement of graph convolutional networks. To address this 
challenge, several studies have attempted to aggregate node features from multi-hops neighbors through feature propagation 
and mapping [10,36]. However, they have a common limitation in that they can not dynamically recognize the significance of 
multi-hop neighbor information for node representation. The use of fixed coefficients for aggregating multi-hop neighbors restricts 
the expressive power of these models.

In terms of graph topology update, Similarity Metric is a commonly used technique, as seen in methods like spectral clustering 
[24] and kNN graph [17,16], to construct adjacency matrices. However, relying solely on the original feature information may 
overlook the diversity among nodes within the same class. For instance, two nodes belonging to the same class may have distinct 
features but similar neighbors, making it challenging to differentiate them based solely on node features. Thus we consider using 
the aggregated representation from neighbors to update the graph. Furthermore, we adopt an iteration method to update the graph 
topology in a more effective way by gradually finding better edge weights with a small step size.

In this work, we present a novel high-order graph attention network (HGRN) that consists of three components: generation of 
high-order feature tensor through feature propagation, weighting combination of multi-order features with attention mechanism, 
and updating graph topology. Compared to existing versions of GCN and its variants, the novel HGRN network adaptively integrates 
different-order feature information to obtain the node representation, thereby avoiding the over-smoothing problem. We provide a 
theoretical analysis to show the relationship between the proposed network and related deep neural graph networks. Our analysis 
shows that our model is a general form for aggregating node features, leading to improved node representation. Our experimental 
results illustrate that HGRN outperforms existing models and achieves state-of-the-art performance.

In summary, the contributions of the proposed paper are as follows:

1) We present a novel high-order graph attention network that effectively integrates multi-hop neighbor information for node 
representation. Our model incorporates an attention mechanism that adaptively learns the importance of different-order 
neighbors.

2) Our method can effectively use high-order neighbor information to alleviate the problem of over-smoothing.

3) The proposed HGRN method uses an innovative strategy that updates the graph topology through an iteration method with 
small step sizes, cumulatively improving the edge weights.

4) Our theoretical analysis demonstrates that the proposed HGRN is a general form of aggregating node features for better 
representation.

The structure of the rest of this paper is as follows: Section 2 covers related work in the field. Section 3 provides an overview 
of GCN and GAT, as well as their limitations. The framework of our proposed HGRN model is presented in Section 4. In Section 5, 
we analyze the relationship of the HGRN with other deep graph neural networks. The experimental results that demonstrate the 
effectiveness of the proposed HGRN are presented in Section 6. Finally, Section 7 concludes the paper with some final remarks.

2. Related work

For the task of node classification, we introduce two main types of graph convolutional networks: spectral graph convolutional 
networks and spatial graph convolutional networks. We also discuss the advancement of attention mechanism and graph attention 
models as follows.

Spectral Graph Convolutional Networks (GCN) models [3,9] define the convolution operation in the spectral domain to uncover 
the relationship between nodes. In fact, they prefer global information or multi-order information of graphs. These models can be 
explained by spectral graph theory. However, their drawback lies in the high computational cost during training. GCN [20] limits 
the layer-wise convolution operation to 1-hop neighborhoods around each node to construct a local spatial relationship of node 
features. However, this results in the over-smoothing problem as the GCN model can not effectively utilize high-order neighbor 
information [23]. As a result, Spectral Graph CNN models are not well-suited to address the challenge of incorporating high-order 
graph information.

Spatial graph approaches [14] define how to aggregate information of neighbor. They are designed to make use of both node 
features and graph topology to classify nodes or graphs. For most graph models [42,34], they would face the issue that when 
increasing the depth of layers, local information is lost and the learned features become indistinguishable. Several studies examine 
adjacency topology to enhance feature aggregation. LDS [11] and IDGL [6] methods merge low-level information and some high-level 
information by recreating the graph structure. Disentangled models (such as [29,27,45]) attempt to disentangle a graph into multiple 
factorized graphs as input. Thus, they can extract information from each subgraph to generate a new combination of features. 
However, they usually have a longer runtime. Models combining graph neural networks with adversarial learning have emerged 
[41,39], but they are designed to solve the robustness problem. Additionally, incorporating information from high-order neighbors 
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remains challenging for these models. Furthermore, some regularization methods [19,44] have been proposed to examine high-order 
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information in graphs. For deep GCNs, some works [5,49,12] attempt to alleviate the over-smoothing problem by assigning weights 
to neighbors. However, the weights for multi-order neighbors are determined by hyperparameter tuning. Recently, an optimization 
algorithm [15] formulates the asymptotic behaviors of GNTK in the large depth, which shows that wide and deep GCNs experience 
an exponential drop in trainability in the optimization process.

The attention mechanism in sequential data ([33]) has shown its strong representation capabilities in importance distribution. 
It has also been applied in graph neural networks to learn the significance of neighbors and aggregate neighbor features. Graph 
Attention Networks (GAT) [34] utilize self-attention to learn and assign weights to neighbors. GaAN [47] introduces the control of 
the importance of each attention head. HAN [37] addresses heterogeneous graph problems. SuperGAT ([18]) is an advanced graph 
attention model for handling noisy graphs. Furthermore, a recent work [2] proposes that there are simple graph problems that GAT 
can not address due to the static attention mechanism. However, exploring high-order graph relationships remains difficult for these 
models. To address this limitation, we propose a novel model that leverages both low-order and high-order information in graphs.

3. Preliminary

Let 𝐺 = (𝑉 , 𝐸) denote an undirected graph with nodes 𝑉 and edges 𝐸. The nodes are described by the feature matrix 𝑋 ∈ℝ𝑛×𝑓 , 
where 𝑛 is the number of nodes, and 𝑓 is the dimension of their features. 𝐴 ∈ ℝ𝑛×𝑛 is the adjacency matrix, which reflects the 
connection of the nodes linked by the edges with corresponding degree matrix 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖𝑗 . 𝐴 =𝐴 +𝐼 stands for the adjacency matrix 

𝐴 for a graph with self-loops and 𝐷̃ =𝐷+𝐼 is degree matrix of 𝐴. 𝐴̂ = 𝐷̃− 1
2𝐴𝐷̃− 1

2 denotes the symmetric normalized adjacency matrix 
with self-loops.

3.1. Graph convolutional networks (GCN)

The vanilla GCN is proposed by Kipf & Welling [20]. It aggregates information of neighbors by symmetric normalized adjacency 
matrix 𝐴 to generate new node representation. The GCN model can be described by

𝐻 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(
𝐴̂𝑅𝑒𝐿𝑈

(
𝐴̂𝑋𝑊 (0))𝑊 (1)) , (1)

where 𝑊 (0) and 𝑊 (1) denote the trainable parameter matrices of the first and second layers of GCN, respectively. 𝐻 is the final 
prediction of the GCN model. Each GCN layer can aggregate the features of the 1-hop neighborhoods around nodes. However, 
different weights need to be considered for different nodes in a neighborhood.

3.2. Graph attention networks (GAT)

In contrast to GCN, GAT ([34]) uses an attention mechanism to calculate edge weights. GAT updates both the adjacency matrix 
and features by aggregating feature information from neighbors with node-specific weights. The weights of edges can be calculated 
by the following formula

𝛼𝑖𝑗 =
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑎𝑇 [𝑊 ℎ⃗𝑖‖𝑊 ℎ⃗𝑗 ]

))
∑

𝑘∈𝑖
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑎𝑇 [𝑊 ℎ⃗𝑖‖𝑊 ℎ⃗𝑗 ]

)) , (2)

where 𝛼𝑖𝑗 is the weight of edge between the 𝑖th and 𝑗th nodes. 𝑊 is a trainable weight matrix that transforms previous node features. 
ℎ⃗𝑖 and ℎ⃗𝑗 denote the feature for the 𝑖th and 𝑗th nodes. 𝑎 is a weight vector that measures and compares node features. 𝑖 is the 
direct neighborhood of the 𝑖th node in the graph. The feature information is processed by combining with the weighted neighbor 
information from the attention adjacency matrix and then transformed through a nonlinear function, which is described by

ℎ⃗′𝑖 = 𝜎

⎛⎜⎜⎝ 1
𝐾

𝐾∑
𝑘=1

∑
𝑗∈𝑖

𝛼𝑘𝑖𝑗𝑊
𝑘ℎ⃗𝑗

⎞⎟⎟⎠ , (3)

where 𝐾 is the number of multi-heads. 𝜎 denotes the final nonlinear function (usually a softmax). Finally, make a prediction using 
the output of the final layer.

GCN and GAT have achieved significant success in classification tasks. However, they are limited to only considering local 
neighbors for each node and are unable to capture higher-order relationships among neighborhoods. For instance, a two-layer graph 
model can only consider the information of two-hop neighbors. To address this limitation and explore higher-order relationships, we 
introduce a novel model that aggregates information from nodes at various distances in the neighborhood.

4. High-order graph attention network

4.1. Algorithm framework

In this study, we introduce a High-Order Graph Attention Network (HGRN) that utilizes high-order graph information to enhance 
224

node representation generation. The framework of HGRN is shown in Fig. 1. It is made up of three key modules as follows.
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Fig. 1. Illustration diagram of HGRN.

1) Generation of feature tensor from multi-order neighbors. In this module, we employ feature mapping and propagation to obtain a 
feature tensor that captures the node features from multi-order neighbors (including the node itself).

2) Aggregation of the features from different-order neighbors. In this module, new node features are generated by aggregating the 
feature matrices from different-order neighbors, weighted by attention coefficients.

3) Updating graph topology. In this module, the graph topology is refined by incorporating the newly obtained features, improving 
the representation of node relationships. This module enables iterative updates of the graph edge weights.

In the subsequent sections, we will provide a detailed explanation of each module’s implementation.

4.2. Generation of feature tensor from multi-order neighbors

In the first module, the goal is to generate node representations from various-order neighbors and store them in a feature tensor. 
This requires two key steps, feature mapping and feature propagation.

Since the original node feature matrix 𝑋 in a graph is often sparse, it can not be used directly to compute features from multi-order 
neighbors. Therefore, we first map the node feature matrix 𝑋 to a label feature space that reflects the distribution of each node’s 
label among classes. In this paper, the feature mappings are realized using a two-layer fully-connected neural network, which is 
described as follows:

𝑓𝜃 (𝑋) =𝑅𝑒𝐿𝑈 (𝑋𝑊 (1))𝑊 (2). (4)

Following the feature mappings, we compute new representations for each node based on its different-order neighbors using a 
feature propagation mechanism on the normalized adjacency matrix 𝐴̂ of the graph. The process of generating the feature tensor 𝑇
is described as follows:

𝑍(0) = 𝑓𝜃 (𝑋) , (5)

𝑍(𝑙+1) = 𝐴̂𝑍(𝑙), (6)

𝑇[∶,𝑗,∶] =𝑍(𝑗), 𝑇 ∈ℝ𝑛×(𝐿+1)×𝑐 , (7)

where 𝑍(0) ∈ ℝ𝑛×𝑐 is the feature matrix which 𝑋 is mapped to, 𝑐 is the number of classes, 𝐿 is the number of orders. Note that the 
length of the vector obtained by feature mapping is equal to the number of classes. Therefore, 𝑍(0) also can be seen as the original 
label features of each node. 𝑍(𝑙) is the label feature matrix for each node from 𝑙th-order neighbors by the 𝑙th feature propagation. The 
label feature matrix of each order is stacked to generate a feature tensor 𝑇 . To improve the generalization ability of neighborhood 
expansion, we adopt the DropEdge [31] strategy to randomly dropout edges of the graph to get different 𝐴̂ in each propagation.

4.3. Aggregation of the features from different-order neighbors

After obtaining the feature tensor, we aggregate the label features from multi-order neighbors to derive a representation for 
each node. In the second module of the proposed framework, we use a feedforward neural network with an attention mechanism to 
perform the aggregation task. This module aggregates the label features of neighbors from different orders, with adaptive weights 
computed through the attention mechanism, which learns coefficients to weight the feature information of neighbors from each hop. 
225

It is important to note that the proposed module differs from GAT, as illustrated in Fig. 2. GAT only assigns weights to itself and 
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Fig. 2. The difference between GAT and HGRN in learning weight.

its immediate neighbors, while our proposed method learns weights for neighbors of various orders. This allows for learning more 
high-order information to represent nodes as the number of layers increases.

The attention coefficient can be calculated as

𝑚𝑖,𝑙 =
𝑒𝑥𝑝

(
𝑢𝑖𝑡⃗𝑖,𝑙

)∑𝐿
𝑘=0 𝑒𝑥𝑝

(
𝑢𝑖𝑡⃗𝑖,𝑘

) , (8)

where 𝑈 ∈ℝ𝑛×𝑐 is the parameter matrix of the attention network and 𝑢𝑖 is the 𝑖th row in 𝑈 for the 𝑖th node. 𝑚𝑖,𝑙 ∈ℝ𝐿+1 denotes the 
weight for the 𝑙th-order neighborhood of the 𝑖th node with self-loop. 𝑡⃗𝑖,𝑙 = 𝑇[𝑖,𝑙,∶] is a vector with 𝑐 elements in 𝑇 , which reflects the 
𝑙th-order feature of 𝑖th node.

Next, we need to aggregate the features of different-order neighbors with the obtained weights to get the new representation of 
nodes. Let 𝐻 ∈ℝ𝑛×𝑐 be the representation matrix of nodes after aggregating the features of 𝐿-order neighbors in the graph, and ℎ⃗𝑖 is 
the 𝑖th row of 𝐻 which represents the feature of the 𝑖th node. ℎ⃗𝑖 is computed by the following equation

ℎ⃗𝑖 = 𝜎(
𝐿∑
𝑙=0

𝑚𝑖,𝑙 𝑡⃗𝑖,𝑙), (9)

where 𝜎 is an activation function. In the proposed framework, if we do not update graph topology, 𝜎 is the final nonlinear function 
(softmax). Otherwise, 𝜎 is a direct output.

4.4. Updating graph topology

We know that the quality of node representation produced by graph neural networks is influenced by the graph topology. The 
original edges in the graph may not fully reflect the relationships between nodes. Updating the graph topology during network 
training can sometimes improve the learning of node representation. We assume that the learned node feature may contain highly 
reliable label information. Thus, if a node is particularly similar to one of its neighbors, the weights of the natural edge need to be 
increased to highlight its importance. In this module, we use cosine similarity between the learned node features to enhance the 
graph topology as follows:

𝐴̂𝑖,𝑗 = (1 − 𝜆)𝐴̂𝑖,𝑗 + 𝜆𝑆𝑖,𝑗 , (10)

where

𝑆𝑖,𝑗 = 𝑐𝑜𝑠
(
ℎ⃗𝑖, ℎ⃗𝑗

)
. (11)

𝑆𝑖,𝑗 denotes the similarity score between the 𝑖th and 𝑗th nodes and 𝜆 is a parameter to control the role of updating graph topology.

4.5. Description of algorithm

The overall process of the HGRN framework is summarized in Algorithm 1. If 𝜆 = 0, this means that the graph topology is not 
updated. In this paper, we call the HGRN with 𝜆 = 0 as SHGRN. Its storage cost is  (𝑛𝑓 + |𝐸|+𝐿𝑛𝑐), where 𝑂(𝑛𝑓 ) is the size of the 
original feature matrix 𝑋, |𝐸| is the number of edges, and 𝑂(𝐿𝑛𝑐) is used to save the feature tensor including 𝐿-order matrices after 
feature propagation. If 𝜆 = 0, the computational cost is  (𝑛𝑓𝑐 +𝐿|𝐸|𝑐 +𝐿𝑛𝑐), where 𝑂(𝑛𝑓𝑐) is the cost of feature mapping, 𝑂(𝐿|𝐸|𝑐)
is the cost of feature propagation and 𝑂(𝐿𝑛𝑐) is used for feature aggregation from tensor to the matrix. If 𝜆 > 0, there is an additional ( )
226

step for updating the graph topology. In this case, the time complexity is  𝑛𝑓𝑐 +𝐿|𝐸|𝑐 +𝐿𝑛𝑐 + 𝑛2𝑐 .
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Algorithm 1: The framework of HGRN.

Input: Feature matrix 𝑋, adjacent matrix 𝐴, number of classes 𝑐, neighborhood range (number of layers) 𝐿, parameter 𝜆
Output: Final label feature matrix 𝐻

1 Map 𝑋 to 𝑍 by 𝑍(0) = 𝑓𝜃 (𝑋)
2 while The function loss is not satisfied do

3 for 𝑙 = 0 to 𝐿 do

4 Get the node features of the 𝑙th order by 𝑍(𝑙+1) = 𝐴̂𝑍(𝑙)

5 Generate feature tensor 𝑇 = [𝑍(0) , ⋅, 𝑍(𝐿)]

6 Compute attention coefficient by 𝑚𝑖,𝑙 =
𝑒𝑥𝑝

(
𝑢𝑖 𝑡⃗𝑖,𝑙

)∑
𝑘∈𝑖

𝑒𝑥𝑝
(
𝑢𝑖 𝑡⃗𝑖,𝑘

)
7 Get the node representation by ⃗ℎ𝑖 = 𝜎(

∑𝐿

𝑙=0 𝑚𝑖,𝑙 𝑡⃗𝑖,𝑙)
8 if 𝜆 > 0 then

9 Compute the similarity between nodes 𝑆𝑖,𝑗 = 𝑐𝑜𝑠 
(
ℎ⃗𝑖 , ℎ⃗𝑗

)
10 Update the graph topology by 𝐴̂𝑖,𝑗 = (1 − 𝜆)𝐴̂𝑖,𝑗 + 𝜆𝑆𝑖,𝑗

11 Return 𝐻

5. Theoretical analysis

To explore high-order relationships on a graph for node representation and classification, some spatial methods utilize 
knowledge from multi-hop neighbors. In practice, these methods can be considered as specific instances of our model under certain 
circumstances. We examine the relationship between our model and these methods in detail below.

Relation with SGC. SGC simply collects information from 𝐾-hop neighbors in a graph by using the 𝐾-th power of the normalized 
adjacency matrix in a single-layer neural network, but it fails to consider the significance of information from different-hop neighbors. 
It is equivalent to a part of SHGRN if SHGRN only performs 𝐾 times in Eq. (5) and Eq. (6). The formula of SGC can be expressed as

𝑍(𝐿) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(
𝐴̂𝑙𝑋𝑊

)
. (12)

Relation with APPNP and GPRGNN. APPNP applies a Personalized PageRank matrix for feature propagation to relieve the 
over-smoothing problem, but the fixed hyperparameters are not universal for all datasets. Similarly, this strategy can find traces in 
lazy random walk (with restart) and label propagation. Recently, a novel model called GPRGNN can learn the weight of different 
layers to distribute the proportion from different-hop neighbors. However, sharing a parameter in the same propagation layer will 
lack discrimination for each node. From the perspective of generality, we can prove that GPRGNN is a general form of APPNP as 5.1

and GPRGNN is a special case of our model SHGRN under certain conditions as described in 5.2. Through comparison and analysis, 
we demonstrate that our model SHGRN which operates in the node-wise neighborhood is a more general form to describe neighbor 
relationships.

Theorem 5.1. GPRGNN is a general form of APPNP to adjust the weights of layers after propagation adaptively.

Proof. Define 𝑍(0) as the output after feature mapping and set each model to propagate 𝐿 times for comparison. In APPNP and 
GPRGNN, the coefficient of layers after feature propagation are different as follows:

𝑍
(𝐿)
𝐴𝑃𝑃𝑁𝑃

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(
(1 − 𝛼) 𝐴̂𝑍(𝐿−1) + 𝛼𝑍(0)) , (13)

𝑍
(𝐿)
𝐺𝑃𝑅𝐺𝑁𝑁

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(
𝐿∑
𝑙=0

𝛾𝑙𝑍
(𝑙)

)
. (14)

We can find APPNP is a special case of GPRGNN when 𝛾𝑙 = 𝛼 (1 − 𝛼)𝑙 and 𝛾𝐿 = (1 − 𝛼)𝐿. □

Theorem 5.2. SHGRN is the general version of GPRGNN to adjust neighbor weights for each node adaptively.

Proof. First of all, we need to note that GPRGNN is suitable for layer-level feature processing, whereas SHGRN can process feature 
information according to each node. The formula of GPRGNN can be described as follows:

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐿∑
𝑙=0

𝛾𝑙𝑍
(𝑙)). (15)

We can find that for each node, GPRGNN can learn the same parameters 𝛾𝑙. So, if the output of node 𝑖 need to be obtained, the 
formula can be written as:

𝑧𝑖 = 𝜎(
𝐿∑
𝑙=0

𝛾𝑙𝑧
(𝑙)
𝑖
). (16)
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SHGRN can learn the weights of neighbors for each node as follows:
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ℎ⃗𝑖 = 𝜎(
𝐿∑
𝑙=0

𝑚𝑖,𝑙 𝑡⃗𝑖,𝑙). (17)

We can find that 𝛾𝑙 is fixed in each propagation layer, but 𝑚𝑖,𝑙 is different for each node. Thus, we can conclude that GPRGNN is a 
special form of SHGRN for whole nodes in a layer. The only difference is that the weights of GPRGNN can be negative, whereas the 
weights of SHGRN are between 0 and 1 after normalization. □

Relation with spectral methods. We also discuss some spectral methods using multi-order neighbors for aggregation as follows. 
Consider the normalized graph Laplacian matrix 𝐿 = 𝐼 −𝐷− 1

2𝐴𝐷− 1
2 with eigendecomposition 𝑈Λ𝑈𝑇 , where Λ is a diagonal matrix 

of the eigenvalues of 𝐿 and 𝑈 ∈ ℝ𝑛×𝑛 is a matrix that consists of the eigenvectors of 𝐿. A signal 𝑥 is filtered by 𝑔𝜃(𝐿) = 𝑑𝑖𝑎𝑔(𝜃) as 
𝑔𝜃(Λ) ∗ 𝑥 =𝑈𝑔𝜃(Λ)𝑈𝑇 𝑥, where the parameter 𝜃 ∈ℝ𝑛 is a vector of Fourier coefficients.

[9] proposes polynomial parametrization for localized filters as

𝑔𝜃(Λ) =
𝐾−1∑
𝑘=0

𝜃𝑘Λ𝑘, (18)

where the parameter 𝜃 ∈ ℝ𝐾 is a vector of polynomial coefficients. The filter represented by K-order polynomials of the Laplacian 
includes K-localized neighborhood information.

MGCN [38] proposes a new method with a multi-scale wavelet filter, described by

𝑔𝜃(Λ) =
𝐾∑
𝑘=0

𝜃𝑘𝑔𝑡𝑘 (Λ), (19)

where

𝑔𝑡𝑘 (𝜆𝑗 ) =
{

ℎ(𝜆𝑗 ), if 𝑚 = 0
𝑔(𝑡𝑚𝜆𝑗 ), if 𝑚> 0 (20)

Specifically, the Mexican hat functions are chosen as the filters of the graph wavelet, which are given by

𝑔(𝑡𝑚𝜆𝑗 ) =𝐴(𝑡𝑚𝜆𝑗 )2𝑒
(
1−

(
𝑡𝑚𝜆𝑗

)2)
, ℎ(𝜆𝑗 ) = 𝐵𝑒

(
−
( 𝐶𝜆𝑗
𝜆𝑚𝑎𝑥

)3)
, (21)

where 𝑡𝑚 = 𝑒
𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒

(
𝑙𝑜𝑔

(
𝐷

𝜆𝑚𝑎𝑥

)
,𝑙𝑜𝑔

(
𝐸

𝜆𝑚𝑎𝑥
,𝐾

))
. 𝐴, 𝐵, 𝐶 , 𝐷 and 𝐸 are parameters. MGCN uses the graph wavelet to adjust the search range 

and the value of the filter. The two spectral methods explore graph higher-order information from the perspective of filters. Unlike 
the two methods, SHGRN is a spatial method for multi-order neighborhood aggregation. Furthermore, HGRN can update graph 
topology iteratively based on SHGRN to explore the relationship between nodes. It is a general form to exploit high-order graph 
relationship.

6. Experiment

6.1. Experimental setup

Datasets. We conduct experiments on four homophilic benchmark graphs: CiteSeer, Cora-ML, PubMed and MS Academic graph. 
Furthermore, we also do experiments on four heterophilic benchmark datasets from Geom-GCN [30]: Chameleon and Squirrel 
from Wikipedia network, and webpage dataset WebKB including Cornell and Texas. For homophilic datasets, we follow the same 
experimental procedure as PPNP [21]. Specifically, each experiment is run 100 times on 20 random splits and initializations. 
Additionally, the largest connected component of each graph is utilized and the abstracts of the papers are represented as features 
using a bag-of-words representation. For heterophilic datasets, nodes of each class are randomly split into training, validation, and 
testing sets at a ratio of 0.48:0.32:0.2. It should be noted that the datasets are initially divided into training and testing sets at a ratio 
of 0.8:0.2. Then, the training set is further divided into training and validation sets at the ratio of 0.6:0.4. The homophily of datasets 
is defined as the average ratio of direct neighbors of a node that have the same label as the center node [30]. More intuitively, we 
can express homophily as  = 1|𝑉 | ∑𝑖∈𝑉

∑
𝑗∈𝑖

1𝑙𝑖=𝑙𝑗 ∕|𝑖|, where 𝑖 denotes the direct neighbor of node 𝑖 (have edges), 𝑙𝑖 is the label 
of node 𝑖 and 𝑉 denotes all node collections.

Our settings of homophilic datasets are the same as PPNP [21] for fairness purposes. For data splits, we use visible settings in 
which 1500 nodes are sampled for the citation graphs and 5000 nodes are sampled for MS Academic. It should be noted that the 
visible set includes both the training and validation sets. The remaining nodes form the test set. Furthermore, the training set consists 
of 20 nodes per class and the validation set consists of 500 nodes. For fair comparison, the same early stopping mechanism is adopted 
across all methods. For heterophilic datasets, the handling of node features and the adjacency matrix is done in the same manner as 
Geom-GCN [30]. The Adam optimizer and cross-entropy loss are used for all datasets, and both models are initialized using Glorot 
Initialization. The details of dataset statistics are summarized in Table 1.

Baselines. We compare HGRN with eight models: GCN [20], GAT [34], SGC [40], MixHop [1], PPNP (& APPNP) [21], JKNet 
[43] and GPRGNN [7]. For HGRN(SHGRN), we use a variant of two-layer MLP without bias and set 𝐿2 regularization to 5 × 10−3 on 
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the first layer for feature mapping. Then the hidden representation is transformed using the ReLU nonlinear function. The second 
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Table 1

Dataset statistics.

Dataset Classes Features Nodes Edges Label rate Homophily

CiteSeer 6 3703 2110 3668 0.057 0.71

Cora-ML 7 2879 2810 7981 0.050 0.80

PubMed 3 500 19717 44324 0.003 0.79

MS Academic 15 6805 18333 81894 0.016 0.83

Texas 5 1703 183 309 0.475 0.06

Cornell 5 1703 183 295 0.475 0.11

Chameleon 4 2325 2277 36101 0.480 0.25

Squirrel 4 2089 5201 217073 0.480 0.22

layer maps directly to the label feature. After conducting a line search on hyper-parameters, the number of propagation layers is set 
to 11, 15, 10, and 5 respectively for the different graph structures in homophilic datasets. For all heterophilic datasets, 1 propagation 
layer is set. In addition, the dropout rate of edges is set to 0.5 for all datasets except HGRN in CiteSeer 0.4. For the feature, we set 
the dropout rate to 0 for Citeseer, Cora-ML datasets and PubMed, and 0.5 for Ms-academic. For different layers, the dropout rate 
is set to 0.2 for Citeseer and Cora-ML datasets, 0.4 for PubMed, and 0 for Ms-academic. For all heterophilic datasets, the dropout 
rate of features is set to 0.5 and the dropout rate of layers is set to 0.2. Regarding the learning rate, we set 0.01 for all datasets. For 
HGRN, the hyperparameter 𝜆 = 0.004 on Cora-ML and PubMed, 𝜆 = 0.005 on CiteSeer and 𝜆 = 0.001 on Ms-Academic. We set 
the patience 𝑝 = 150 and the maximum of 𝑛 = 10000 epochs for homophilic datasets due to the slow convergence of the model. In 
addition, we set the patience 𝑝 = 100 and the maximum of 𝑛 = 2000 epochs for all heterophilic datasets on all models.

To ensure a fair comparison of performance among models, the number of hidden units in all models is set to 64. The early 
stopping criterion on homophilic datasets uses the patience of p = 100 and the maximum of n = 10000 epochs. The dropout rate is 
set to 𝑑 = 0.5 except GAT 𝑑 = 0.6. We apply learning rate 𝑙𝑟 = 0.01 except GAT 𝑙𝑟 =0.005. For 𝐿2 regularization, GCN, GAT, JKNet 
and MixHop use 𝜆 = 5 × 10−4, and PPNP, APPNP and GPRGNN apply 𝜆 = 5 × 10−3 on first linear layer. In detail, for GAT, the first 
layer consists of 𝐾 = 8 attention heads computing 𝐹 ′ = 8 features each (for a total of 64 features), followed by an exponential 
linear unit (ELU) [8] nonlinearity. For SGC, we use one layer to transform features and then propagate 5 times to get final results 
with 𝐿2 regularization 𝜆 = 0. For JKNet, we set the concatenation variant with three layers as the original paper. MixHop uses two 
layers which can concatenate three hops for each layer to combine features of different orders. PPNP and APPNP follow the original 
paper completely. For feature propagation, the dropout rate is 𝑑 = 0.5 for the adjacency matrix. And we set teleport probability 𝛼 = 
0.1 on Cora-ML, CiteSeer and PubMed, 𝛼 = 0.2 on Ms-academic. For APPNP, we set the number of power iteration steps to 𝐾 = 10. 
GPRGNN applies the same parameters as APPNP except for teleport probability. We use initializations with 𝛼 = 0.1 for all datasets.

6.2. Experimental results

Prediction performance. For homophilic datasets, we compare the models with eight methods. The results show that HGRN and 
SHGRN consistently outperform the compared methods in terms of accuracy. Different models have diverse feature combinations, 
resulting in varying prediction capabilities. Our goal is to learn better feature representation. The experimental results are 
summarized in Table 2. All experiments are carried out according to the algorithm of the original paper. The highest prediction 
accuracy for each dataset in the table has been bold. The results show that our model surpasses the state-of-the-art baseline models. 
There is an interesting phenomenon that GCN outperforms GAT in several datasets. It indicates that the edge weights learning of GAT 
may be not optimal and can sometimes lead to performance degradation. Models like APPNP and GPRGNN that can utilize high-order 
information tend to have superior classification ability compared to shallow models. The results also demonstrate that selecting a 
suitable measurement method for weight distribution calculation can enhance representation learning. Our method outperforms other 
depth graph neural networks, demonstrating its ability to effectively learn better neighbor weights for neighborhood aggregation.

For heterophilic datasets, we compare SHGRN with GCN, GAT, SGC, JKNet, APPNP and GPRGNN under 100 random splittings 
of datasets. Due to the low homophily, the performance of all models on heterophilic datasets is usually not good enough. The 
results in Table 3 show that GPRGNN and our method SHGRN attain state-of-the-art performance on heterophilic datasets. The 
performance of SHGRN and GPRGNN is comparable on all datasets. The experimental results indicate that GPRGNN is well-suited 
for node classification in heterophilic datasets, but not as much in homophilic datasets. Our model SHGRN also outperforms other 
graph neural networks of the same type, such as SGC and APPNP. Therefore, it can be concluded that our weight learning method 
is effective. In the experimental results, bold text indicates the best results, while underlined bold text represents results within the 
confidence interval of the top result. The results reveal that GAT struggles to learn appropriate edge weights in heterophilic datasets, 
resulting in the lowest performance among all models. As the optimization of graph topology update by HGRN relies on the accuracy 
of SHGRN, low accuracy would cause the graph update to move in the incorrect direction. Hence, HGRN was not considered a 
comparison model.

t-SNE visualization. To demonstrate the improvement of graph node representation through multi-order neighborhood 
aggregation, we use t-SNE to visualize the results of MLP, GCN, and our algorithm on the Cora-ML dataset in Fig. 3. It is important to 
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note that the 2-layer MLP variant is generated from Eq. (4). In the MLP visualization (Fig. 3a), most node representations are distinct. 
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Table 2

The accuracy results for the homophilic datasets are calculated by bootstrapping with a 95% 
confidence level based on 100 runs. Note that some models were unable to run on certain datasets 
due to memory constraints, as indicated by “-”. Under strict experimental conditions, both HGRN 
and SHGRN demonstrate better performance than other compared models across all datasets.

CiteSeer Cora-ML PubMed MS Academic

GCN 74.20 ± 0.47% 83.19 ± 0.27% 77.95 ± 0.38% 92.09 ± 0.08%

GAT 75.07 ± 0.45% 83.90 ± 0.25% 77.79 ± 0.65% 91.55 ± 0.13%

JKNet 72.13 ± 0.44% 81.88 ± 0.32% 77.38 ± 0.40% 89.81 ± 0.17%

MixHop 73.87 ± 0.42% 82.24 ± 0.30% 77.35 ± 0.41% 92.36 ± 0.09%

SGC 72.11 ± 0.39% 81.37 ± 0.28% 76.65 ± 0.36% 89.37 ± 0.13%

PPNP 75.74 ± 0.29% 85.15 ± 0.25% - -

APPNP 75.82 ± 0.26% 85.01 ± 0.24% 79.66 ± 0.34% 93.17 ± 0.07%

GPRGNN 75.45 ± 0.33% 84.86 ± 0.32% 79.27 ± 0.35% 92.63 ± 0.08%

SHGRN 76.13 ± 0.26% 85.68 ± 0.22% 80.39 ± 0.27% 93.35 ± 0.06%

HGRN 76.25 ± 0.28% 85.79 ± 0.21% 80.42 ± 0.28% 93.31 ± 0.06%

Table 3

The average accuracy of heterophilic datasets with uncertainties shows the 95% confidence level 
calculated by bootstrapping under 100 runs. Under a rigorous experimental setup, SHGRN matches 
or outperforms the compared models on all datasets.

Texas Cornell Chameleon Squirrel

GCN 59.22 ± 1.51% 62.27 ± 1.54% 36.23 ± 0.53% 26.22 ± 0.27%

SGC 54.38 ± 1.54% 56.62 ± 1.73% 36.20 ± 0.94% 25.03 ± 0.28%

GAT 54.41 ± 1.99% 55.11 ± 1.62% 27.88 ± 0.84% 23.89 ± 0.48%

JKNet 58.03 ± 1.35% 62.49 ± 1.46% 34.51 ± 0.59% 26.41 ± 0.50%

APPNP 59.43 ± 1.49% 57.59 ± 1.57% 37.28 ± 0.53% 27.05 ± 0.32%

GPRGNN 77.03 ± 1.70% 79.92 ± 1.38% 44.23 ± 0.52% 29.95 ± 0.29%

SHGRN 77.84 ± 1.81% 79.49 ± 1.27% 44.46 ± 0.48% 29.70 ± 0.31%

Fig. 3. The t-SNE visualization of MLP, GCN and SHGRN outputs on the Cora-ML dataset.

However, the model output is spread out and the class boundaries are not clearly defined. In the GCN visualization (Fig. 3b), the 
output is more compact compared to MLP and the model performance has greatly improved. In the SHGRN visualization (Fig. 3c), 
the model has reduced misclassification compared to GCN, resulting in closer proximity of node features of the same class. The results 
demonstrate that GCNs can be applied to a variety of graph-structured data, and the effective utilization of high-order information 
in graphs can improve node representation even further.

The impact of neighborhood range. It is known that as the depth of GCN and GAT increases, they may experience 
over-smoothing, resulting in a decline in performance. Thus, they are unable to gather information from a wider neighborhood 
range, leading to insufficient representation capacity. As demonstrated in Fig. 4, our model has been proven through experiments to 
maintain high accuracy even with an increasing number of propagation layers, effectively avoiding over-smoothing. As the number 
of layers increases, the prediction accuracy of SGC remains stable but significantly lower compared to our model. In addition, we find 
an interesting phenomenon where GCN and GAT models exhibit the steepest decline in performance when the number of layers falls 
within the range of 5 to 7. Furthermore, we found several unique features of our model. Firstly, as the number of layers increases, 
the model’s performance will increase until reaching a peak, then slightly decrease and generally stabilize. This is a common trend 
among models, which typically have a specific number of layers (parameters) that result in optimal performance. Additionally, we 
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introduce a novel idea that incorporating dropout in the propagation layers (new tensor) can enhance performance and robustness. 
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Fig. 4. Comparison of the test accuracy of various models as the number of propagation layers increases. The comparison involves three datasets (Cora-ML, CiteSeer, 
and PubMed) and four models (GCN, GAT, SGC, and SHGRN). In SGC and SHGRN, the layers represent the feature matrix after feature propagation, allowing for the 
exploration of neighbors from various distances.

Fig. 5. Sensitivity analysis of 𝜆 on three datasets (Cora-ML, CiteSeer and PubMed).

Table 4

The relationship between WLNP and the label 
rate in each dataset.

Dataset WLNP Label rate

CiteSeer
12 3.41%

16 4.55%

Cora-ML
12 2.99%

16 3.99%

PubMed
12 0.18%

16 0.24%

MS Academic
12 0.98%

16 1.31%

In heterophilic datasets, we discovered that SHGRN achieves optimal performance when the propagation layer is set to one. In other 
words, using only the node’s own features and those of its direct neighbors provides the highest accuracy. This is due to the fact that 
increasing the number of layers leads to the introduction of numerous noisy features through propagation, which negatively impacts 
the original features.

The impact of label rates. To examine the effects of models with varying labeling rates, particularly lower labeling rates, we 
have established a performance comparison of each model under different labeling rates. The experiment of the above standard is to 
set 20 labeled nodes per class in homophilic datasets. For convenience, we refer to the number of labeled nodes per class as WLNP. 
In Table 5, we also tested with 12 and 16 labeled nodes per class (the highest prediction in each dataset is bolded). The relationship 
between WLNP and the label rate in each dataset is depicted in Table 4. The experimental results indicate that PPNP, GPRGNN, 
and our model perform well even when the labeling rate decreases. We can conclude that models with multiple propagations are 
beneficial for feature representation learning, even when the labeling rate is low. Our model adaptively learns high-order graph 
information to achieve better feature representation for each dataset. Despite a decrease in the labeling rate, our model still has 
superior prediction accuracy compared to other models. In contrast, the simple SGC model performs poorly under different labeling 
rates due to its inability to learn the importance of the neighborhood. This highlights the role played by the neighbor importance 
distribution used by PPNP (APPNP), GPRGNN, and HGRN (SHGRN) in feature combination and representation.

Sensitivity analysis. To examine the impact of the HGRN hyperparameter 𝜆 on our experiments, we conduct a sensitivity 
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analysis on three datasets: Cora, CiteSeer, and PubMed. As seen in Fig. 5, the experiment results show that the accuracy peaks at 
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Table 5

The average accuracy, along with its uncertainty (represented by 95% confidence level), was 
calculated through 100 runs using the bootstrapping method. Each class has 12 to 16 labeled 
labels. For convenience, we refer to the number of labeled nodes per class as WLNP.

WLNP CiteSeer Cora-ML PubMed MS Academic

GCN
12

16

72.71±0.38

73.40±0.47

81.49±0.30

82.17±0.28

76.58±0.53

77.43±0.45

91.55±0.10

91.92±0.09

GAT
12

16

73.91±0.32

74.60±0.42

82.63±0.34

83.25±0.37

75.09±0.84

77.00±0.85

91.06±0.26

91.34±0.15

JKNet
12

16

71.24±0.42

71.57±0.47

80.55±0.33

81.26±0.31

75.34±0.63

77.18±0.42

89.27±0.27

89.54±0.21

MixHop
12

16

72.12±0.42

73.34±0.39

80.17±0.34

81.08±0.32

74.67±0.48

76.60±0.52

91.36±0.13

91.96±0.09

SGC
12

16

70.89±0.38

71.50±0.35

79.82±0.25

80.49±0.26

74.25±0.45

75.86±0.49

88.85±0.16

89.28±0.15

PPNP
12

16

74.85±0.32

75.18±0.36

84.06±0.29

84.42±0.29

-

-

-

-

APPNP
12

16

75.13±0.30

75.36±0.30

83.64±0.31

84.30±0.28

77.53±0.42

78.99±0.43

92.10±0.11

92.41±0.07

GPRGNN
12

16

74.28±0.31

74.77±0.34

83.48±0.29

84.23±0.29

77.69±0.45

78.80±0.42

92.14±0.11

92.43±0.10

SHGRN
12

16

75.28±0.24

75.71±0.28

83.95±0.33

84.97±0.25

78.40±0.42
79.64±0.36

92.59±0.10

93.10±0.07

HGRN
12

16

75.49±0.23
75.81±0.27

84.12±0.30
84.98±0.26

78.35±0.42

79.76±0.40
92.62±0.08
93.09±0.07

Table 6

The average training time per epoch. SHGRN is comparable to APPNP and GPRGNN and faster than the 
advanced attention network GAT.

CiteSeer Cora-ML PubMed MS Academic

GCN 11.56 ± 0.20 ms 13.73 ± 0.18 ms 24.47 ± 0.14 ms 35.90 ± 0.15 ms

GAT 134.99 ± 1.53 m 205.78 ± 1.73 ms 1009.51 ± 3.79 ms 1510.90 ± 7.26 ms

JKNet 43.89 ± 0.62 ms 51.14 ± 0.62 ms 97.72 ± 1.39 ms 634.57 ± 2.25 ms

MixHop 17.33 ± 0.30 ms 22.95 ± 0.33 ms 68.47 ± 0.93 ms 85.15 ± 0.26 ms

SGC 10.26 ± 0.18 ms 11.09 ± 0.09 ms 10.43 ± 0.13 ms 23.95 ± 0.09 ms

PPNP 13.63 ± 0.27 ms 16.67 ± 0.16 ms - -

APPNP 13.59 ± 0.23 ms 15.25 ± 0.20 ms 25.44 ± 0.22 ms 41.57 ± 0.15 ms

GPRGNN 16.92 ± 0.28 ms 17.54 ± 0.80 ms 29.53 ± 0.83 ms 43.94 ± 0.38 ms

SHGRN 14.05 ± 0.25 ms 16.87 ± 0.25 ms 28.07 ± 0.19 ms 40.60 ± 0.47 ms

HGRN 14.25 ± 0.22 ms 17.15 ± 0.21 ms 28.18 ± 0.22 ms 43.40 ± 0.15 ms

smaller values of 𝜆 and tends to decrease as 𝜆 increases. This indicates that the optimal edge weights may be around the graph 
Laplace matrix so changing the edge weights by fine-tuning is a feasible way to explore the neighborhood for aggregation. To further 
improve performance, future work will focus on adjusting edges by adding or removing edges, specifically removing inter-class edges 
and increasing intra-class edges.

Efficiency analysis. Despite using the attention mechanism to learn weights from multi-hop neighbors, our model does not 
significantly increase computational costs. We compare the average running time per epoch for different models in Table 6. To 
ensure fair comparison and reduce the overall computational cost, all models utilize sparse matrices (including the initial feature 
matrix and adjacency matrix) for feature mapping and propagation processing. Although sparse GCN is fast in training time, it is 
not the fastest. Our model, HGRN, has a similar training time per epoch to APPNP and GPRGNN. Our model, as well as APPNP 
and GPRGNN, have several propagation layers, but their training time is not excessively high. This is due to the use of dimension 
reduction in feature mapping for propagation, which reduces the training cost. As a result, GCN (2 layers) does not run faster than 
SGC, which has 5 layers. Moreover, compared with the complex GAT model which also uses the attention mechanism, SHGRN and 
HGRN can not only ensure the improvement of performance but also reduces the consumption of training time.

7. Conclusion

In this paper, we present an attention-based graph convolutional network model to combat over-smoothing in GCN. It aggregates 
features from multi-order neighbors and uses an attention mechanism to examine the node feature relationships. Compared to 
conventional graph attention models, our model optimally leverages high-order information to represent nodes. Additionally, we 
introduce a new strategy that iteratively updates the graph with small step sizes to improve edge weights. Furthermore, we provide 
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a theoretical analysis exploring the relationship between our proposed model (HGRN) and existing models. Experimental results 
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demonstrate the efficacy of our proposed model compared to other graph models. In conclusion, edge weight adjustment impacts 
neighborhood aggregation, but for heterophilic graphs (where nodes tend to connect with different classes), the presence or absence 
of edges holds greater significance. In future work, we plan to investigate adding intra-class edges and reducing inter-class edges to 
reconfigure the graph structure.
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