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A B S T R A C T

With the development of graph convolutional network (GCN), which is powerful in graph embedding learning
meanwhile can capture node feature information, deep multi-view graph clustering methods based on graph
autoencoder have emerged as a new stream. Although they achieve satisfactory performance, they still have the
following weaknesses: (1) some of them model the weights for different views in the encoder part by using
attention in the multi-view embedding fusion layer, but fail to consider the weighting in the decoder part
to measure the contributions of different views to the reconstruction loss. (2) Most of them directly conduct
clustering on the multi-view common embedding layer, but fail to guarantee the alignment of clustering results
of different views. To this end, we propose a novel GCN-based deep multi-view graph clustering network with
weighting mechanism and collaborative training (DMVGC). The model is composed of multiple view-specific
graph encoders and a unified graph decoder. Besides the specially-designed attention module in the encoder
part, we construct a reconstruction loss with adaptive weighting mechanism in the decoder part. Additionally,
a collaborative self-training clustering objective is jointly conducted on each view-specific embedding layer
and the common embedding layer, to make the embedding of each view clustering-friendly toward a common
partition. Experiments on several datasets demonstrate the effectiveness of our model.
1. Introduction

Multi-view data are a set of instances that are represented by
heterogeneous features from multiple views. For example, images can
be represented by different visual descriptors; documents may be trans-
lated into multiple languages. The features of different views contain
both consistent and complementary information. Multi-view clustering
is aimed to employ features from multiple views to learn a common
clustering partition, which has been extensively studied (Fang, Li,
Li, Gao, Jia & Zhang, 2023; Fu, Lin, Vasilakos, & Wang, 2020) and
demonstrates better performance than single-view clustering.

In the past decade, various multi-view clustering methods have been
proposed, among which graph-based multi-view methods make up a
large proportion for handling graph-structured data. The multi-view
graph data reflect multiple graph relationships for the same set of
instances, which can be constructed from original multi-view features,
or inherently exist in many real applications. For example, a movie
network has graphs of two views, including co-author relationship
and co-director relationship. Most of existing graph-based methods
either focus on learning a consensus graph followed by spectral clus-
tering (Fan, Huang, Cai, Wang, He & Tang, 2023; Huang, Wang, & Lai,
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2023; Lin, Kang, Zhang, & Tian, 2023; Nie, Li, & Li, 2017; Pan & Kang,
2021; Tang et al., 2020; Wang, Yang, Liu & Fujita, 2019) or try to
learn a consistent graph representation by jointly performing spectral
clustering with multiple graphs (Kumar, Rai, & Daumé, 2011; Nie, Li, &
Li, 2016; Zhao, Kang, Zou, & Wang, 2023). However, these methods are
based on shallow models, which are limited to discover deep relations
in graphs and fail to capture the node feature information.

Graph convolutional network (GCN) (Kipf & Welling, 2017) that
emerged as a new class of deep neural networks can effectively pro-
cess graph data, which is powerful in graph embedding learning by
exploiting both graph structure and node feature information. For un-
supervised graph learning, graph autoencoder (GAE) (Kipf & Welling,
2016) is a commonly-used model to learn deep representations for
graph nodes by reconstructing the graph structure. In recent years, with
GAE increasingly employed as the deep approach to achieve single-
view graph clustering in many works (Li, Zhang, & Zhang, 2022; Wang,
Pan, Hu, Long, Jiang & Zhang et al., 2019; Zhang, Li, Zhang, & Li,
2022), there have been some works extending the GAE-based approach
into the field of multi-view graph clustering. The first attempt is the
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work (Fan et al., 2020) that proposed a one-to-multi graph autoencoder
to employ one informative view to reconstruct multiple graph views,
with jointly optimized with a self-training clustering objective to get
increasingly refined clusters. Afterwards, one of the representative
work (Wang, Chang, Fu, & Zhao, 2023) proposed a multi-to-multi
graph autoencoder for clustering with employing a multi-view mu-
tual information maximization module and a graph fusion network.
Although these models achieve satisfactory performance, they still have
some weaknesses. First, although some of them consider weighting for
different views in the encoder part by using attention in the multi-
view embedding fusion layer, they all equally treat each view in the
decoder part without differentiating the contributions of different views
to the reconstruction loss, which may result in suboptimal performance.
Second, they focus on learning a common graph embedding among
views and directly conduct clustering on the common embedding layer,
without guaranteeing the alignment of clustering results of different
views.

To address the above issues, we propose a novel GCN-based multi-
view graph clustering network, named deep multi-view graph clus-
tering network with weighting mechanism and collaborative training
(DMVGC). The model is composed of multiple view-specific graph
encoders and a unified graph decoder. A specially-designed view-level
attention module is included in the encoder part, and a reconstruction
loss with adaptive weighting mechanism is constructed in the decoder
part. And a collaborative self-training clustering objective is jointly
conducted on each view-specific embedding layer and the common
embedding layer. Specifically, to keep both diversity and consistency
of different views, the model encodes multi-view graphs separately
and decode them jointly through a unified decoder. The forward-
propagation of multiple encoders captures the diversity of views, and
the back-propagation driven by a single unified decoder guarantees the
consistency across views. To measure the importance of different views,
in the encoder part the attention-based weighting mechanism is used to
model the view-level weights in the multi-view fusion layer, and in the
decoder part the adaptive weighting mechanism of the reconstruction
loss is used to measure the contributions of different views to the
back-propagated loss. To make the embedding of each view clustering-
friendly toward a common partition, a common cluster distribution
generated from the common embedding is used as the target to col-
laboratively guide the training of each view-specific distribution. The
network is trained jointly with the reconstruction loss and clustering
loss to simultaneously optimize the graph embedding and clustering
assignments in a unified framework, which mutually benefits both of
them.

The main contributions are summarized as follows:

• A novel GCN-based deep multi-view graph clustering network
is proposed, which employs the weighting mechanism in both
encoder and decoder parts, and constructs a collaborative self-
training clustering objective simultaneously optimized with the
graph embedding learning.

• The optimizing strategy for the proposed model is well designed,
which jointly minimizes the reconstruction loss and clustering
loss with a trade-off factor, and alternatively updates the network
parameters and the view weights.

• Extensive experiments demonstrate that the proposed model out-
performs the state-of-the-art methods and the variant baselines,
and validate the effect of the weighting mechanism and collabo-
rative training in our model.

The rest of the paper is organized as follows. Related works are
reviewed in Section 2. Details of the proposed model are presented
in Section 3. Experimental results are shown in Section 4. Finally,
2

conclusions are given in Section 5.
2. Related works

In this section, we give a brief review of multi-view clustering, and
make a survey about the existing works on multi-view graph clustering
based on shallow approaches as well as GCN-based deep approaches.

2.1. Multi-view clustering

Based on the type of input data, multi-view clustering methods can
be divided into two categories: feature-based methods and graph-based
methods. For feature-based methods, the input data are features where
each data sample is represented by a set of features. In this category,
some methods are based on shallow approaches, such as NMF (non-
negative matrix factorization) based methods (Chen, Huang, Wang, &
Huang, 2020; Huang et al., 2021; Liang, Yang, Li, Sun, & Xie, 2020; Liu,
Wang, Gao, & Han, 2013; Rai, Negi, Chaudhury, & Deshmukh, 2016),
𝑘-means based methods (Cai, Nie, & Huang, 2013; Liu, Cao, Gao, Yu,
& Liang, 2020; Liu, Dou, Yin, Wang, & Zhu, 2016; Xu, Wang, & Lai,
2016), CCA (canonical correlation analysis) based methods (Chaudhuri,
Kakade, Livescu, & Sridharan, 2009; Rasiwasia, Mahajan, Mahadevan,
& Aggarwal, 2014) and subspace clustering based methods (Gao, Nie,
Li, & Huang, 2015; Kang, Lin, Zhu, & Xu, 2022; Wang et al., 2016; Yin,
Wu, He, & Wang, 2015; Zhang et al., 2020). Others are based on deep
approaches, namely DNN (deep neural network) or CNN (convolutional
neural network) based methods (Du, Zhou, Yang, Lü, & Wang, 2021;
Liu, Cao, & Liang, 2022; Xie et al., 2021; Xu et al., 2021, 2023). For the
graph-based methods, the input data are graph structures where data
samples are connected by edges, and features in this case are optional.
In this category, methods can also be divided into shallow methods
and deep methods, which are reviewed in detail in the following two
sections.

2.2. Shallow multi-view graph clustering methods

Most existing graph-based multi-view clustering methods are based
on shallow approaches, which mainly employ the technique of spectral
clustering. These methods can be divided into two categories: consen-
sus graph based methods and consensus graph representation based
methods. The first category is to learn a consensus graph among views
and conduct spectral clustering on it. For example, Nie et al. (2017)
proposed a self-weighted multi-view clustering method that weight-
edly combines each single graph learning model to learn a common
graph. Wang, Yang et al. (2019) proposed a graph-based system for
multi-view clustering that automatically weights each view-specific
graph to generate the unified graph. Tang et al. (2020) proposed a
model to learn a unified graph for multi-view clustering via cross-
view graph diffusion. Fan, Huang et al. (2023) proposed an efficient
multi-view clustering approach via unified bipartite graph learning that
jointly learns the view-consensus bipartite graph and the discrete clus-
ter structure. Huang et al. (2023) proposed a fast multi-view clustering
that utilizes the idea of ensemble clustering to formulate a unified
bipartite graph for final graph partitioning via spectral clustering.
The second category is to jointly perform spectral clustering with
multiple graphs to learn the consistent graph representation, usually
referred to eigenvectors in spectral clustering. For example, Kumar
et al. (2011) proposed a co-regularized multi-view spectral clustering
method that jointly optimizes the spectral clustering objective of mul-
tiple views with minimizing the disagreement of different views to
finally obtain the common eigenvectors. Nie et al. (2016) proposed
a auto-weighted multi-graph clustering that jointly performs spectral
clustering with multi-view graphs to learn the common eigenvectors.
Despite acceptable performance of the shallow methods, they are lim-
ited to discover complex relations in graphs and fail to capture node

feature information.
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Table 1
List of mathematical notations.

Symbol Description

𝑁 number of samples
𝑉 number of views
𝐾 number of clusters
𝑨(𝑣) adjacency matrix of graph structure in the 𝑣th view
𝑿(𝑣) node features in the 𝑣th view
𝑫(𝑣) degree matrix of 𝑨(𝑣)

𝑯 (𝑣) view-specific graph embedding for all samples in the 𝑣th view
𝒉(𝑣)
𝑖 view-specific graph embedding for the 𝑖th sample in the 𝑣th view

𝑯 common embedding fused by all views
𝑨 adjacency matrix of the common graph obtained from the decoder
𝜔𝑣 weight for the 𝑣th view
𝑞𝑖𝑗 soft assignment of the 𝑖th sample to the 𝑗th cluster
𝑝𝑖𝑗 auxiliary target distribution derived from 𝑞𝑖𝑗
𝑸 soft assignment matrix with 𝑞𝑖𝑗 as its element in the 𝑖th row and 𝑗th column
𝑷 auxiliary target distribution matrix with 𝑝𝑖𝑗 as its element in the 𝑖th row and 𝑗th column
𝝁(𝑣)
𝑗 centroid of the 𝑗th cluster on the embedding 𝑯 (𝑣)

𝝁𝑗 centroid of the 𝑗th cluster on the embedding 𝑯
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2.3. Deep multi-view graph clustering methods

In recent years, with the development of GCN, deep multi-view
graph clustering methods based on GCN networks have emerged, which
are powerful in graph embedding learning meanwhile can capture node
features. Fan et al. (2020) proposed an one-to-multi graph autoen-
coder clustering model (O2MAC) that uses the embedding from one
informative view to reconstruct multiple graphs. Cheng, Wang, Tao,
Xie, and Gao (2020) proposed a multi-view attribute GCN (MAGCN)
that employs two-pathway encoders to map graph embedding features
and learn view-consistency information. However, O2MAC can only
deal with multi-view graphs with single-view features and MAGCN
aims at single graph with multi-view features. Later works target for
dealing with multi-view graphs with multi-view features. For exam-
ple, Wang et al. (2023) proposed a consistent multi-graph embedding
clustering framework that employs a multi-view mutual information
maximization module and a graph fusion network to learn a view
consistent representation. Lin, Chen, Zhu, Wang, and Zhang (2022)
employed the mutual information maximization module and specific
information reconstruction module to enhance the deep multi-view
graph clustering. Xia, Wang, Yang, Gao, Han and Gao (2022) pro-
posed a multi-view graph embedding clustering network that uses the
cluster labels learned by subspace clustering module to self-supervise
the learning of node representation and the view-consensus coefficient
matrix. Xia, Wang, Gao, Yang, and Gao (2022, 2023) focused on two-
view graph embedding clustering that uses the pseudo-label to guide
inter- and intra-cluster contrastive learning. The study on GCN-based
deep multi-view graph clustering is still at the initial stage, and there
are still many aspects need to be explored and improved. In this
paper, we focus on the improvements on weighting mechanism and
collaborative training for deep multi-view graph clustering.

3. Proposed model

3.1. Notations

Consider a multi-view graph dataset consisting of 𝑁 samples rep-
esented by multiple graphs from 𝑉 different views, which are to
e partitioned into 𝐾 clusters. The multi-view graph dataset can be
epresented by {𝑨(𝑣),𝑿(𝑣)}𝑉𝑣=1, where 𝑨(𝑣) ∈ R𝑁×𝑁 represents the
djacency matrix of graph structure in 𝑣th view, and 𝑿(𝑣) ∈ R𝑁×𝑑(𝑣)

epresents the node features in the 𝑣th view. In real applications, the
raph structure 𝑨(𝑣) can be inherent or constructed from node features,
nd the node features 𝑿(𝑣) of different views can be different or the
ame. The main mathematical notations used in the paper are listed in
able 1.
3

.2. The framework of DMVGC

As shown in Fig. 1, the network of the proposed model contains two
arts: the multi-view graph encoder and the unified graph decoder. For
he encoder part, multiple graph convolution encoders are constructed,
nd each encoder corresponds to one view to encode both graph
tructure and node features. Then the outputs of different encoders
re fused into a common embedding with a view-level attention mod-
le which can automatically learn weights for different views. For
he decoder part, the common embedding is fed into a single inner
roduct decoder to learn a common graph by jointly reconstructing
he graphs of different views. The adaptive weighting mechanism is
mployed to automatically learn the weight for each view-specific
econstruction loss. To align the clustering results of different views, a
ollaborative self-training clustering objective is incorporated by using
common distribution obtained from the common embedding to guide

he distributions of each view-specific embedding.

.2.1. Multi-view graph encoder with view-level attention
To fully exploit the diverse information of multiple views, we assign

ach view a GCN encoder to map the graph structure and node features
nto the graph embedding features. Specifically, for the 𝑣th view, the

GCN mapping 𝐺𝐶𝑁(𝑿(𝑣),𝑨(𝑣)) → 𝑯 (𝑣) transforms the graph 𝑨(𝑣) and
node features 𝑿(𝑣) into the 𝑚-dimensional graph embedding 𝑯 (𝑣) ∈
R𝑁×𝑚. For the 𝑙th GCN layer, the graph embedding 𝑯 (𝑣)

(𝑙) is output
through the following transformation

𝑯 (𝑣)
(𝑙) = 𝜎((𝑫(𝑣))−

1
2 𝑨(𝑣)(𝑫(𝑣))−

1
2 𝑯 (𝑣)

(𝑙−1)𝑾
(𝑣)
(𝑙) ), (1)

here 𝑫(𝑣) ∈ R𝑁×𝑁 is the degree matrix of 𝑨(𝑣), 𝑾 (𝑣)
(𝑙) is the trainable

eights of the 𝑙th layer for the 𝑣th view, and 𝜎(⋅) is the activation
unction. A two-layer GCN is applied for each encoder. Setting 𝑨̂(𝑣) =
𝑫(𝑣))−

1
2 𝑨(𝑣)(𝑫(𝑣))−

1
2 and 𝑿(𝑣) = 𝑯 (𝑣)

(0), the final transformation for the
𝑣th view is obtained as the following form

𝑯 (𝑣) = 𝜎2(𝑨̂
(𝑣)𝜎1(𝑨̂

(𝑣)𝑿(𝑣)𝑾 (𝑣)
(1))𝑾

(𝑣)
(2)), (2)

here 𝜎1 is the ReLU activation function (Nair & Hinton, 2010) for the
irst layer, and 𝜎2 is the linear activation function for the second layer.

To measure the importance of each view, we include a view-level
ttention module to learn the weights for the embeddings of different
iews and weightedly fuse them into a common embedding. In order
o consider the view as a whole, instead of the common way that
ssigns each sample of each view a attention weight, we average the
eights of all view-specific samples as the importance of the whole
iew. Specifically, the view-specific importance 𝛽(𝑣) is computed as
ollows

(𝑣) = 1
𝑁
∑

𝒖𝑇 tanh(𝑾 𝑎𝒉
(𝑣)
𝑖 + 𝒃), (3)
𝑁 𝑖=1
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Fig. 1. The framework of the proposed DMVGC.
where 𝑾 𝑎 is the network weight matrix, 𝒃 is the bias vector, and 𝒖 is
the attention vector, which are all learnable parameters in the attention
module. Then we normalize the importance of each view by softmax
function to obtain the view-specific attention 𝛼(𝑣) as follows

𝛼(𝑣) =
𝑒𝑥𝑝(𝛽(𝑣))

∑𝑉
𝑣=1 𝑒𝑥𝑝(𝛽(𝑣))

. (4)

Using the attention on each view, the common embedding 𝑯 is ob-
tained by fusing the view-specific embedding as follows

𝑯 =
𝑉
∑

𝑣=1
𝛼(𝑣)𝑯 (𝑣). (5)

3.2.2. Unified graph decoder with adaptive weighting mechanism
The common embedding is fed into a single inner product decoder

to generate a adjacency matrix 𝑨 of the common graph, which is
computed by

𝑨 = 𝜑(𝑯𝑯⊤), (6)

where 𝜑(⋅) is the sigmoid function. To keep the unity of different views,
the common graph is jointly reconstructed by graphs of different views
with weighting mechanism, which can be expressed by

𝐿𝑟 =
∑𝑉

𝑣=1 𝜔
𝜏
𝑣𝑙𝑜𝑠𝑠(𝑨

(𝑣),𝑨), (7)

where the loss function 𝑙𝑜𝑠𝑠(⋅) is the binary cross-entropy between the
view-specific target graph 𝑨(𝑣) and the output graph 𝑨. The recon-
struction loss for each view is assigned with a learnable weight 𝜔𝑣 to
measure the importance of each view to the total loss. The weight is
adaptively learned based on the loss of each view, which is described
in Section 3.3.2. The exponent 𝜏 is a hyper-parameter used to control
the distribution of the weights.

3.2.3. Clustering objective with collaborative training
To align the clustering results of different views, we incorporate a

self-training clustering objective by using a target cluster distribution
generated from the common embedding to jointly guide the cluster
distribution of each view-specific embedding. This makes the embed-
ding of each view more clustering-friendly toward a common partition.
Specifically, following van der Maaten and Hinton (2008), we first
obtain a centroid-based soft assignment 𝑞𝑖𝑗 of the common embedding
𝒉𝑖 with respect to the cluster centroid 𝝁𝑗 as follows

𝑞𝑖𝑗 =
(1 + ‖𝒉𝑖 − 𝝁𝑗‖

2∕𝛼)−
𝛼+1
2

∑ 2 − 𝛼+1
, (8)
4

𝑗′ (1 + ‖𝒉𝑖 − 𝝁𝑗′‖ ∕𝛼) 2
where 𝛼 is the degree of freedom of the Student’s t-distribution. Follow-
ing Xie, Girshick, and Farhadi (2016) we set 𝛼 = 1 in the experiments.
Then an auxiliary target distribution 𝑝𝑖𝑗 derived from the current soft
assignment 𝑞𝑖𝑗 is defined as

𝑝𝑖𝑗 =
𝑞2𝑖𝑗∕𝑓𝑗

∑

𝑗′ 𝑞
2
𝑖𝑗′∕𝑓𝑗′

, (9)

where 𝑓𝑗 =
∑

𝑖 𝑞𝑖𝑗 are the soft frequencies per cluster. By raising 𝑞𝑖𝑗
to its second power and normalizing it with the soft frequencies per
cluster, the target distribution 𝑝𝑖𝑗 actually strengthens the role of highly
confident assignments of 𝑞𝑖𝑗 . Then we obtain the soft assignment 𝑞(𝑣)𝑖𝑗
from each view-specific embedding as follows

𝑞(𝑣)𝑖𝑗 =
(1 + ‖𝒉(𝑣)𝑖 − 𝝁(𝑣)

𝑗 ‖

2∕𝛼)−
𝛼+1
2

∑

𝑗′ (1 + ‖𝒉(𝑣)𝑖 − 𝝁(𝑣)
𝑗′ ‖

2∕𝛼)−
𝛼+1
2

. (10)

Then we use the common target 𝑝𝑖𝑗 to jointly guide the optimization
of each view-specific distribution 𝑞(𝑣)𝑖𝑗 , by jointly minimizing the KL
divergence loss between the common distribution 𝑝𝑖𝑗 and each view-
specific distribution 𝑞(𝑣)𝑖𝑗 . The objective function is defined as follows

𝐿𝑐 =
𝑉
∑

𝑣=1
KL(𝑷 ‖𝑸(𝑣)) + KL(𝑷 ‖𝑸)

=
𝑉
∑

𝑣=1

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑝𝑖𝑗 𝑙𝑜𝑔

𝑝𝑖𝑗
𝑞(𝑣)𝑖𝑗

+
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑝𝑖𝑗 𝑙𝑜𝑔

𝑝𝑖𝑗
𝑞𝑖𝑗

,

(11)

where the loss between the distribution 𝑞𝑖𝑗 and the target 𝑝𝑖𝑗 is also
included, to strengthen the consistency among views. By iteratively
forcing the distribution 𝑸(𝑣) of each view approaching to the common
target distribution 𝑷 with respect to the network weights, the soft
assignments of samples in each view will increasingly become similar.

3.2.4. Total objective
To simultaneously learn the graph embedding and get gradually

refined clustering predictions in a unified process, the reconstruction
loss and clustering loss can be jointly reduced by minimizing the total
objective

𝐿 = 𝐿𝑟 + 𝜆𝐿𝑐 , (12)

where 𝜆 > 0 is a trade-off parameter between 𝐿 and 𝐿 .
𝑟 𝑐
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3.3. Optimization procedure

3.3.1. Pre-training and initialization
In order to obtain the well-initialized network before optimizing the

total objective, we pre-train the model by only using the reconstruction
loss 𝐿𝑟, with the weight 𝜔𝑣 of each view is initialized as 1∕𝑉 . After
re-training, we perform standard 𝑘-means (MacQueen et al., 1967) on
he common embedding 𝑯 and on the view-specific embedding 𝑯 (𝑣) to
btain initial cluster centroids {𝝁𝑗}𝐾𝑗=1 and {𝝁(𝑣)

𝑗 }𝐾𝑗=1 respectively.

3.3.2. Joint optimization
After pre-training and initialization, we optimize the total objective

function of Eq. (12) with respect to the network parameters 𝑾 =
{𝑾 (𝑣)}𝑉𝑣=1,𝑾 𝑎, 𝒃, 𝒖}, the cluster centroids {𝝁𝑗}𝐾𝑗=1, {𝝁

(𝑣)
𝑗 }𝐾𝑗=1, and the

iew weights 𝜔𝑣. In each iteration of the optimization, the cluster cen-
roids {𝝁𝑗}𝐾𝑗=1, {𝝁

(𝑣)
𝑗 }𝐾𝑗=1 and network parameters 𝑾 are simultaneously

pdated by using stochastic gradient descent (SGD), then the view
eight 𝜔𝑣 is updated with Lagrangian multiplier method.
Computing the target distribution 𝑷 : The target distribution 𝑷

hat works as the supervised signal should be firstly computed by
q. (9). Since it depends on the self-generated distribution 𝑸, to avoid
nstability of the self-training process, we update 𝑷 every 𝑇 epochs.
Fixing 𝜔𝑣 and updating 𝑾 , {𝝁𝑗}𝐾𝑗=1 and {𝝁(𝑣)

𝑗 }𝐾𝑗=1 : The gradients
f 𝐿𝑐 with respect to the cluster centroids 𝝁(𝑣)

𝑗 and 𝝁𝑗 are computed as

𝜕𝐿𝑐

𝜕𝝁(𝑣)
𝑗

= −𝛼 + 1
𝛼

∑

𝑖
(1 +

‖𝒉(𝑣)𝑖 − 𝝁(𝑣)
𝑗 ‖

2

𝛼
)−1(𝑝𝑖𝑗 − 𝑞(𝑣)𝑖𝑗 )(𝒉(𝑣)𝑖 − 𝝁(𝑣)

𝑗 ),

𝜕𝐿𝑐
𝜕𝝁𝑗

= −𝛼 + 1
𝛼

∑

𝑖
(1 +

‖𝒉𝑖 − 𝝁𝑗‖
2

𝛼
)−1(𝑝𝑖𝑗 − 𝑞𝑖𝑗 )(𝒉𝑖 − 𝝁𝑗 ).

(13)

Since the reconstruction loss 𝐿𝑟 is irrelevant to cluster centroids 𝝁(𝑣)
𝑗

nd 𝝁𝑗 , the gradients of the total loss 𝐿 with respect to 𝝁(𝑣)
𝑗 and 𝝁𝑗 are

qual to the gradients of the 𝐿𝑐 with respect to 𝝁(𝑣)
𝑗 and 𝝁𝑗 , as shown

as follows
𝜕𝐿
𝜕𝝁(𝑣)

𝑗

=
𝜕𝐿𝑐

𝜕𝝁(𝑣)
𝑗

, 𝜕𝐿
𝜕𝝁𝑗

=
𝜕𝐿𝑐
𝜕𝝁𝑗

. (14)

hen the cluster centroids 𝝁(𝑣)
𝑗 and 𝝁𝑗 are updated by

(𝑣)
𝑗 = 𝝁(𝑣)

𝑗 − 𝜂 𝜕𝐿
𝜕𝝁(𝑣)

𝑗

,𝝁𝑗 = 𝝁𝑗 − 𝜂 𝜕𝐿
𝜕𝝁𝒋

, (15)

here 𝜂 is the learning rate. The gradient of the total loss 𝐿 with respect
o the network parameters 𝑾 can be computed as

𝜕𝐿
𝜕𝑾

=
𝜕𝐿𝑟
𝜕𝑾

+ 𝜆
𝜕𝐿𝑐
𝜕𝑾

, (16)

hich can be obtained by standard back-propagation through the
etwork. Then the network parameters 𝑾 are updated by

= 𝑾 − 𝜂 𝜕𝐿
𝜕𝑾

. (17)

Fixing 𝑾 , {𝝁𝑗}𝐾𝑗=1 and {𝝁(𝑣)
𝑗 }𝐾𝑗=1 and updating 𝜔𝑣: The weight 𝜔𝑣

an be updated by using the Lagrangian multiplier method. We denote

𝑣 = 𝑙𝑜𝑠𝑠(𝑨(𝑣),𝑨). (18)

hen we get the Lagrangian function of Eq. (7) with respect to 𝜔𝑣 and
as the follows

(𝜔𝑣, 𝛾) =
𝑉
∑

𝑣=1
𝜔𝜏
𝑣𝐷𝑣 + 𝛾(

𝑉
∑

𝑣=1
𝜔𝑣 − 1). (19)

aking derivative with respect to 𝜔𝑣 yields
𝜕𝐿(𝜔𝑣, 𝛾) = 𝜏𝜔𝜏−1𝐷𝑣 + 𝛾. (20)
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𝜕𝜔𝑣
𝑣

etting this derivative to zero, combined with the constraint on the
eights, we get the equation set

⎧

⎪

⎨

⎪

⎩

𝜏𝜔𝜏−1
𝑣 𝐷𝑣 + 𝛾 = 0,

∑𝑉
𝑣=1 𝜔𝑣 = 1.

(21)

olving this equation set with respect to 𝜔𝑣 and 𝛾, the closed-form
olution of 𝜔𝑣 is obtained as following expression

𝑣 = 1
∑𝑉

𝑣′=1(
𝐷𝑣
𝐷𝑣′

)
1

𝜏−1

, 𝜏 > 1. (22)

n this expression, we can see that the smaller the loss 𝐷𝑣 of a view is,
he larger the weight 𝜔𝑣 on this view will be. A smaller 𝐷𝑣 of a view
eflects that the common graph is closer to the graph of this view, which
eans this view contributes more to the generation of the common

raph and thereby should be given a larger weight.
After iteratively updating the above parameters for a specific num-

er of iterations, the final clustering result is obtained from the final
ptimized 𝑸, and the cluster label 𝛿𝑖 for the 𝑖th sample can be obtained
y

𝑖 = argmax
𝑗

𝑞𝑖𝑗 . (23)

The above optimization procedure is summarized in Algorithm 1.
Algorithm 1 The DMVGC.
Input: Multi-view dataset {𝑿(𝑣),𝑨(𝑣)}𝑉𝑣=1; number of clusters 𝐾; trade-
off parameter 𝜆; exponent 𝜏; number of training epochs 𝐸; Updating
interval 𝑇 ; view weight 𝜔𝑣 = 1∕𝑉 .
Output: Cluster labels {𝛿𝑖}𝑁𝑖=1.
Initialize: Network parameters 𝑾 pre-trained by minimizing Eq. (7);
Initial cluster centroids {𝝁𝑗}𝐾𝑗=1 and {𝝁(𝑣)

𝑗 }𝐾𝑗=1.
ethod:

1: for 𝑒 = 0 : 𝐸 − 1 do
2: if 𝑒%𝑇 == 0 then
3: Calculate soft assignment distribution 𝑸 by Eq. (8);
4: Calculate target distribution 𝑷 by Eq. (9);
5: end if
6: Update 𝝁(𝑣)

𝑗 and 𝝁𝑗 by Eq. (15);
7: Update 𝑾 by Eq. (17);
8: Update 𝜔𝑣 by Eq. (22);
9: end for
0: Calculate the final optimized 𝑸 by Eq. (8);
1: Get the cluster labels {𝛿𝑖}𝑁𝑖=1 with final 𝑸 by Eq. (23).

4. Experiments

We implement the proposed model in Python with Tensorflow
1.12.0, and evaluate its performance on six real datasets. We first
describe the experimental settings, and then present the experimental
results in detail.

4.1. Experimental settings

4.1.1. Datasets descriptions
We conduct the experiments on two types of multi-view datasets.

One type is multi-view graphs with common features (Cora, Citeseer
and IMDB). The other type is multi-view features with no pre-defined
graphs (Mfeat, Scene, Reuters), and the graph for each view is con-
structed from sample features. The detailed information about these
datasets are shown as the following.

• Cora1 is a citation network dataset about scientific publications,
which consists of 2708 documents classified into seven classes.

1 https://relational.fit.cvut.cz/dataset/CORA

https://relational.fit.cvut.cz/dataset/CORA
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Table 2
Datasets details of multi-view graphs with common features.

Datasets Nodes Classes Views Edges1 Edges2 Features

Cora 2708 7 2 5429 6391 1433
Citeseer 3312 6 2 4598 4894 3703
IMDB 3287 3 2 23736 4217 1232
Table 3
Datasets details of multi-view features with no pre-defined graph.

Datasets Nodes Classes Views Features1 Features2 Features3 Features4 Features5

Mfeat 2000 10 3 216 76 240 – –
Scene 2688 8 3 512 432 256 – –
Reuters 1200 6 5 2000 2000 2000 2000 2000
Each document in the citation network is described by a bag-of-
word feature vector. For our multi-view graph learning, in addi-
tion to the original citation graph, we use 𝑘-NN algorithm (Fix
& Hodges, 1989) to construct an additional graph view from the
feature vectors by setting 𝑘 = 3, which makes the number of edges
most approximate to the original graph. And two views share the
common bag-of-words features.

• Citeseer2 is also a citation network dataset about scientific pub-
lications, which consists of 3312 documents classified into six
classes. It also contains one original citation graph and bag-of-
words features. We use the same way as Cora to construct an
additional graph view by 𝑘-NN algorithm with setting 𝑘 = 2.

• IMDB3 is a movie network from the IMDB dataset which con-
tains 3287 movies. Graphs of two views are extracted including
co-actor (movies are acted by the same actor) relationship and co-
director (movies are directed by the same director) relationship.
Movie features are the bag-of-words features of plots shared by
two views.

• Mfeat4 consists of multiple published features extracted from
2000 handwritten digit (0–9) images, with 200 images per digit.
We use three published features to construct the multi-view
dataset: profile correlations, Fourier coefficients of the character
shapes, and pixel averages in 2 × 3 windows.

• Scene (Monadjemi, Thomas, & Mirmehdi, 2002) contains 2688
outdoor scene images over 8 categories: coast, mountain, forest,
street, inside city, open country, highways and buildings. For each
image, three different visual features including gist features, color
moments and HOG features are extracted as three views.

• Reuters5 consists of documents which are written in five different
languages and their translations. All the documents are classi-
fied into six categories. We choose the subset that are written
in English and translated in all the other 4 languages (French,
German, Spain, Italian). Each language can be regarded as a view.
Following the work Bisson and Grimal (2012), 1200 documents
are randomly sampled over six categories in a balanced manner,
with the dimensions of words vector reduced to 2000 by applying
𝑘-medoids algorithm.6

Detailed information about these datasets is summarized in Tables 2
and 3.

4.1.2. Implementation details
For the datasets that have multi-view features with no pre-defined

graph, we construct each view-specific graph using 𝑘-NN algorithm
based on the similarities among samples. For the datasets Mfeat and

2 https://relational.fit.cvut.cz/dataset/CiteSeer
3 https://www.imdb.com
4 https://archive.ics.uci.edu/ml/datasets/Multiple+Features
5 https://archive.ics.uci.edu/ml/datasets
6

6

http://membres-lig.imag.fr/grimal/data.html
Scene, since the features are continuous and relatively lower dimen-
sional, we apply Gaussian kernel to compute similarities among sam-
ples. For the dataset Reuters, since the features are very sparse and high
dimensional, we apply cosine similarity to compute similarities among
samples. For all these three datasets, we set 𝑘 = 9 nearest neighbors to
generate the 𝑘-NN graph for each view.

For the network settings of the proposed model, the dimensions
of the two-layer GCN encoder for each view are set to 32 and 16
respectively, and hyperparameters 𝜆 and 𝜏 are set to 𝜆 = 1.0 and 𝜏 = 16
for all datasets, based on the analysis in Section 4.2.6. We train the
network with Adam optimizer (Kingma & Ba, 2015) and set the learning
rate to 0.001 for Citeseer, Cora and IMDB and 0.01 for Mfeat, Scene
and Reuters . For the pre-training phase, the network is trained for 400
epochs. For the joint optimization phase, the network is fine-tuned for
100 epochs. And we set the updating interval 𝑇 = 5 for Citeseer, IMDB
and Mfeat and 𝑇 = 20 for Cora, Scene and Reuters. For the cluster
centroids initialization in the joint optimization phase, we randomly
select 𝐾 samples as the initial cluster centroids, and perform 𝑘-means
on the initial common embedding and each view-specific embedding to
obtain the initial cluster centroids for the subsequent training.

4.1.3. Baseline methods
The proposed method DMVGC is compared with several state-of-

the-art methods including CoregSC, AWGL and SwMC that only use
multi-view graphs, LMSC and MKKM that only use multi-view features,
and GMNMF, O2MAC, CMGEC and MVGC that use both multi-view
graphs and features. Since the datasets Citeseer, Cora and IMDB only
have single-view features, LMSC and MKKM are only performed on
the datasets Mfeat, Scene and Reuters that have multi-view features.
Additionally, DMVGC is compared with BSV/WSV that represents the
best and worst results of the variant single-view method on each single-
view data, and DMVGA that performs multi-view graph embedding
learning and clustering in two-step manner.

(1) Methods only using multi-view graphs

• CoregSC (Kumar et al., 2011): A multi-view clustering method
by using the co-regularized idea on spectral clustering of multiple
views.

• AWGL (Nie et al., 2016):An automatically weighted multi-view
spectral clustering method.

• SwMC(Nie et al., 2017): A self-weighted multi-view clustering
with multiple graphs.

(2) Methods only using multi-view features

• LMSC (Zhang et al., 2020): A multi-view subspace clustering
method based on latent representation.

• MKKM (Liu et al., 2016): A multiple kernel 𝑘-means clustering
method with matrix-induced regularization.

(3) Methods using both multi-view graphs and features

• GMNMF (Rai et al., 2016): A graph regularized nonnegative

matrix factorization based multi-view clustering method.

https://relational.fit.cvut.cz/dataset/CiteSeer
https://www.imdb.com
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets
http://membres-lig.imag.fr/grimal/data.html
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• O2MAC (Fan et al., 2020):A GCN-based deep model that conducts
multi-view graph clustering based on the one-to-multi graph au-
toencoder that encodes one most informative view and extracts
the shared representations by all views.

• CMGEC (Wang et al., 2023): A GCN-based deep model that
conducts multi-view graph clustering based on a novel consistent
multiple graph embedding clustering framework.

• MVGC (Xia, Wang, Yang et al., 2022):A GCN-based deep model
that uses the learned clustering labels to self-supervise the learn-
ing of node representation and the view-consensus coefficient
matrix.

• DMVGA: A variant of DMVGC, which does not include the self-
training clustering loss in the objective function. Instead, the
embedding is trained with reconstruction loss only, then followed
by 𝑘-means performed on the embedding, in two-step manner.

(4) Single-view clustering

• BSV/WSV: A single-view variant of DMVGC, which is a single-
view graph autoencoder (Kipf & Welling, 2016) jointly trained
with the self-training clustering. We report the best single-view
results and the worst single-view results for each dataset.

For the state-of-the-art methods, we follow the experimental settings
n their papers. For the variant method BSV/WSV, we set its encoder
etwork with the same settings as the view-specific encoder network of
MVGC, and set it with the same trade-off parameter as DMVGC. For

he variant method DMVGA, we set it with the same network settings
s DMVGC, and perform 𝑘-means on the embedding obtained from

the pre-trained network. For fair comparisons, all graph-based methods
employ the same graph construction approach (𝑘-NN with 𝑘 = 9) as
DMVGC on Mfeat, Scene and Reuters, and all methods involving 𝑘-
means operation apply random initialization. Except for SwMC that we
only run once since it has no random initializations, we perform all
methods 10 times and report the average clustering performance. The
clustering performance is measured by three clustering evaluation met-
rics including NMI (normalized mutual information), ACC (accuracy)
and ARI (adjusted rand index).

4.1.4. Evaluation metrics
The mathematical definitions about the clustering evaluation met-

rics NMI, ACC and ARI are given in the this section. Firstly, the assigned
cluster labels are best mapped to the true labels by Munkres algo-
rithm (Munkres, 1957). Suppose the true label of each sample belongs
to {𝑌1, 𝑌2,… , 𝑌𝑘}, where 𝑘 is the number of clusters. The contingency
able is given in Table 4. Then the three evaluation metrics are defined
s follows

𝑀𝐼 =
−2

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝑛𝑖𝑗 𝑙𝑜𝑔(

𝑛𝑖𝑗𝑛
𝑛𝑖⋅𝑛⋅𝑗

)
∑𝑘

𝑖=1 𝑛𝑖⋅𝑙𝑜𝑔(
𝑛𝑖⋅
𝑛 ) +

∑𝑘
𝑗=1 𝑛⋅𝑗 𝑙𝑜𝑔(

𝑛⋅𝑗
𝑛 )

, (24)

𝐶𝐶 = 1
𝑛

𝑘
∑

𝑖=1
𝑛𝑖𝑖, (25)

𝑅𝐼 =

∑

𝑖𝑗 𝐶
2
𝑛𝑖𝑗

− [
∑

𝑖 𝐶
2
𝑛𝑖⋅

∑

𝑗 𝐶
2
𝑛⋅𝑗
]∕𝐶2

𝑛

1
2 [
∑

𝑖 𝐶2
𝑛𝑖⋅

+
∑

𝑗 𝐶2
𝑛⋅𝑗
] − [

∑

𝑖 𝐶2
𝑛𝑖⋅

∑

𝑗 𝐶2
𝑛⋅𝑗
]∕𝐶2

𝑛

. (26)

or each of them, the higher the value is, the better the clustering
erformance is. For all methods, we report the average results with the
tandard deviation of 10 executions.

.2. Experimental results

.2.1. Clustering performance comparisons
The clustering evaluation metrics on six datasets are shown in Ta-

les 5 and 6. For each dataset, the best result among all methods under
ach metric is indicated in bold, and the second best result is indicated
ith both italics and underline. It can be seen that DMVGC outperforms
7

Table 4
The contingency table.

True label Assigned label

𝑌1 𝑌2 ⋯ 𝑌𝑘 Sums

𝑌1 𝑛11 𝑛12 ⋯ 𝑛1𝑘 𝑛1⋅
𝑌2 𝑛21 𝑛22 ⋯ 𝑛2𝑘 𝑛2⋅
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑌𝑘 𝑛𝑘1 𝑛𝑘2 ⋯ 𝑛𝑘𝑘 𝑛𝑘⋅
Sums 𝑛⋅1 𝑛⋅2 ⋯ 𝑛⋅𝑘 𝑛

the baseline methods on most datasets, except for a few results slightly
lower than certain other methods. Especially for the dataset Mfeat,
all three metrics of DMVGC are lower than MVGC which iteratively
uses the spectral clustering labels to self-supervise the learning of deep
representation. This two-step self-supervision mechanism based on hard
labels benefits for the dataset with inherently better cluster separability,
since more samples are likely to obtain accurate clustering labels in
the initial stages thereby will propagate more correct information to
produce increasingly more accurate results. On the contrary, for the
dataset with inherently poor cluster separability, more inaccurate labels
supervise the learning and dominate the network to produce inferior
results. Therefore, MVGC performs exceptionally well on the dataset
Mfeat which exhibits inherently good cluster separability, but performs
much poorer than our method on the datasets Citeseer, Cora, IMDB
and Reuters. According to the results of WSV and BSV on all datasets,
it can be observed that DMVGC based on multi-view information
outperforms the variant single-view model WSV and BSV. Furthermore,
on all datasets, DMVGC by jointly performing graph embedding learn-
ing and self-training clustering improves the clustering performance
over DMVGA that performs graph embedding extraction and 𝑘-means
lustering in two-step manner.

We also conduct the non-parametric tests for different methods
except for LMSC and MKKM that do not perform on all datasets)
ver all datasets under each metric. We first employ Friedman test
o test difference degree among methods. The probability values in
riedman test for NMI, ACC and ARI are 1.133 × 10−4, 3.731 × 10−6 and

4.072 × 10−6 respectively, which are all less than the significant level
0.1, demonstrating a significant difference among different methods.
Then we conduct Nemenyi test and Wilcoxon signed-rank test under
each metric to test whether DMVGC significantly outperforms each
baseline method. The numerical results are shown in Table 7, and the
CD diagram (Critical Difference diagram) visualization for Nemenyi
test is shown in Fig. 2. For the numerical results, the value less than
the significant level 0.1 demonstrates a significant improvement of
DMVGC over the baseline method. For the CD diagram, the average
ranking of each method over all datasets is marked along the axis,
and any two methods are significantly different if the distance of their
average rankings exceeds the critical distance (unconnected by red
line). For Nemenyi test, both the numerical results and CD diagram
indicate that, under each metric, DMVGC has significant improvements
against the methods CoregSC, AWGL, SwMC that only use multi-view
graphs, and the method WSV that uses the worst single view. According
to the rankings of methods shown in CD diagrams, we can see that
DMVGC and its variant method DMVGA rank the first and the second
respectively, and all GCN-based multi-view graph clustering methods
including DMVGC, DMVGA, O2MAC, CMGEC and MVGC rank in the
top five. Even the GCN-based single-view model BSV ranks ahead of
the shallow multi-view methods. Since the number of the compared
methods is much higher than the number of the datasets, the capability
of the Nemenyi test may be limited. Thus we also conduct the Wilcoxon
signed-rank test, which is used to compare the differences between
paired methods. From Table 7, it can be seen that, for Wilcoxon signed-
rank test, DMVGC has significant improvement over almost all baseline
methods under all metrics.
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Table 5
Clustering performance comparisons on datasets that are composed of multi-view graphs with common features.

Dataset Method NMI ACC ARI

Citeseer

CoregSC 0.1122(0.0748) 0.2988(0.0655) 0.0806(0.0659)
AWGL 0.0101(0.0018) 0.2131(0.0008) 0.0005(0.0004)
SwMC 0.0349(0.0000) 0.2135(0.0000) 0.0006(0.0000)
GMNMF 0.3953(0.0006) 0.6553(0.0009) 0.4026(0.0010)
O2MAC 0.3685(0.0116) 0.6255(0.0172) 0.3716(0.0158)
CMGEC 0.3001(0.0194) 0.5488(0.0262) 0.2756(0.0274)
MVGC 0.3520(0.0486) 0.5747(0.0887) 0.3156(0.0789)
WSV 0.2221(0.0315) 0.4852(0.0429) 0.2040(0.0348)
BSV 0.2617(0.0282) 0.5000(0.0474) 0.2189(0.0388)
DMVGA 0.4130(0.0044) 0.6691(0.0128) 0.4248(0.0089)
DMVGC 0.4380(0.0064) 0.6908(0.0124) 0.4570(0.0114)

Cora

CoregSC 0.1821(0.0169) 0.3459(0.0162) 0.0571(0.0208)
AWGL 0.1861(0.0789) 0.3493(0.0623) 0.0745(0.0878)
SwMC 0.1076(0.0000) 0.3146(0.0000) 0.0071(0.0000)
GMNMF 0.4202(0.0030) 0.5039(0.0241) 0.2910(0.0262)
O2MAC 0.4747(0.0161) 0.6280(0.0259) 0.3953(0.0196)
CMGEC 0.4319(0.0174) 0.6051(0.0300) 0.3660(0.0229)
MVGC 0.4217(0.0581) 0.5466(0.0448) 0.2632(0.0744)
WSV 0.2981(0.0185) 0.5037(0.0299) 0.2437(0.0185)
BSV 0.4502(0.0285) 0.5877(0.0400) 0.3541(0.0398)
DMVGA 0.5186(0.0082) 0.6858(0.0273) 0.4553(0.0148)
DMVGC 0.5359(0.0079) 0.6934(0.0235) 0.4702(0.0139)

IMDB

CoregSC 0.0063(0.0015) 0.3876(0.0017) 0.0045(0.0010)
AWGL 0.0027(0.0015) 0.3874(0.0016) 0.0007(0.0008)
SwMC 0.0943(0.0000) 0.3623(0.0000) 0.0047(0.0000)
GMNMF 0.0308(0.0060) 0.4174(0.0188) 0.0156(0.0079)
O2MAC 0.0846(0.0143) 0.4897(0.0216) 0.0961(0.0172)
CMGEC 0.0494(0.0060) 0.4448(0.0197) 0.0450(0.0100)
MVGC 0.0112(0.0005) 0.3887(0.0035) 0.0070(0.0006)
WSV 0.0138(0.0079) 0.3893(0.0183) 0.0138(0.0092)
BSV 0.0318(0.0107) 0.4153(0.0156) 0.0302(0.0097)
DMVGA 0.0703(0.0020) 0.4488(0.0050) 0.0552(0.0008)
DMVGC 0.0846(0.0044) 0.5107(0.0195) 0.1047(0.0087)
Fig. 2. Critical difference diagram under each metric.
4.2.2. Effect of weighting mechanism
To see the effect of two weighting mechanisms: the attention mod-

ule for the embedding fusion and the adaptive weighting for the
joint reconstruction, we evaluate the performance of three variant
models: the proposed model without attention module (DMVGC-a),
the proposed model without adaptive weights on reconstruction loss
(DMVGC-w), and the proposed model without both attention module
and adaptive weights (DMVGC-aw). For DMVGC-a, we remove the
attention module and set the view-specific attention 𝛼(𝑣) = 1∕𝑉 . For
8

DMVGC-w, we remove the adaptive weights 𝜔𝑣 and construct the re-
construction loss as 𝐿𝑟 =

∑𝑉
𝑣=1 𝑙𝑜𝑠𝑠(𝑨

(𝑣),𝑨). The clustering performance
of these variant models are shown in Table 8. It can be seen that
the proposed model outperforms all variant models on all datasets,
except for the NMI metric of DMVGC slightly lower than DMVGC-a on
IMDB. This indicates that both the attention module and the adaptive
weighting for the reconstruction loss can enhance the performance of
the proposed model, which demonstrates the effectiveness of these two
weighting mechanisms.
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Table 6
Clustering performance comparisons on datasets that are composed of multi-view features with no pre-defined graphs.

Dataset Method NMI ACC ARI

Mfeat

LMSC 0.7887(0.0113) 0.8269(0.0469) 0.7324(0.0249)
MKKM 0.7876(0.0022) 0.8673(0.0016) 0.7427(0.0031)
CoregSC 0.9188(0.0216) 0.9401(0.0597) 0.9058(0.0542)
AWGL 0.8528(0.0244) 0.7861(0.0549) 0.7406(0.0648)
SwMC 0.8903(0.0000) 0.8660(0.0000) 0.8184(0.0000)
GMNMF 0.8717(0.0286) 0.8573(0.0668) 0.8123(0.0631)
O2MAC 0.9199(0.0241) 0.9527(0.0426) 0.9120(0.0456)
CMGEC 0.8875(0.0297) 0.9125(0.0534) 0.8563(0.0570)
MVGC 0.9429(0.0016) 0.9749(0.0006) 0.9447(0.0014)
WSV 0.4462(0.1468) 0.4068(0.1580) 0.2866(0.1471)
BSV 0.8971(0.0294) 0.9053(0.0744) 0.8642(0.0705)
DMVGA 0.9183(0.0119) 0.9530(0.0332) 0.9111(0.0316)
DMVGC 0.9359(0.0097) 0.9638(0.0288) 0.9314(0.0282)

Scene

LMSC 0.5227(0.0086) 0.6810(0.0364) 0.4533(0.0125)
MKKM 0.4736(0.0042) 0.6218(0.0036) 0.3981(0.0033)
CoregSC 0.5426(0.0177) 0.6447(0.0505) 0.4541(0.0249)
AWGL 0.5264(0.0007) 0.5786(0.0004) 0.3674(0.0012)
SwMC 0.0394(0.0000) 0.1574(0.0000) 0.0000(0.0000)
GMNMF 0.4263(0.0115) 0.5339(0.0292) 0.3140(0.0114)
O2MAC 0.4467(0.0247) 0.5519(0.0368) 0.3372(0.0342)
CMGEC 0.5674(0.0072) 0.7058(0.0057) 0.4737(0.0094)
MVGC 0.5622(0.0038) 0.7003(0.0351) 0.4793(0.0146)
WSV 0.3219(0.0100) 0.4316(0.0234) 0.2161(0.0203)
BSV 0.4216(0.0683) 0.5285(0.1082) 0.3221(0.0837)
DMVGA 0.5560(0.0099) 0.6845(0.0303) 0.4652(0.0183)
DMVGC 0.5735(0.0109) 0.6936(0.0315) 0.4810(0.0199)

Reuters

LMSC 0.1816(0.0031) 0.3950(0.0070) 0.1287(0.0038)
MKKM 0.2845(0.0007) 0.4941(0.0012) 0.2066(0.0008)
CoregSC 0.2149(0.0038) 0.3600(0.0125) 0.1122(0.0046)
AWGL 0.1900(0.0209) 0.2682(0.0373) 0.0469(0.0317)
SwMC 0.1310(0.0000) 0.2258(0.0000) 0.0066(0.0000)
GMNMF 0.2812(0.0081) 0.4208(0.0152) 0.1716(0.0073)
O2MAC 0.3207(0.0263) 0.5310(0.0358) 0.2490(0.0234)
CMGEC 0.3560(0.0269) 0.5583(0.0391) 0.2632(0.0278)
MVGC 0.2960(0.0105) 0.4268(0.0131) 0.1872(0.0124)
WSV 0.3028(0.0259) 0.5212(0.0463) 0.2327(0.0228)
BSV 0.3173(0.0320) 0.5226(0.0440) 0.2395(0.0313)
DMVGA 0.3653(0.0349) 0.5780(0.0536) 0.3009(0.0367)
DMVGC 0.3769(0.0415) 0.5887(0.0580) 0.3138(0.0367)
Table 7
Nemenyi test (NT) and Wilcoxon signed-rank test (WT) for indicating the significant difference of DMVGC with each baseline method
over all datasets under each metric. The probability values in the table indicate the significance degree, and the value less than the
significance level 0.1 demonstrates a significant improvement of DMVGC over this baseline method.

Method NMI ACC ARI

NT WT NT WT NT WT

CoregSC 0.0330 0.0277 0.0380 0.0277 0.0158 0.0277
AWGL 0.0012 0.0277 0.0021 0.0277 0.0010 0.0277
SwMC 0.0099 0.0464 0.0010 0.0277 0.0010 0.0277
GMNMF 0.1184 0.0277 0.2004 0.0277 0.1052 0.0277
O2MAC 0.9000 0.0431 0.9000 0.0277 0.9000 0.0277
CMGEC 0.7626 0.0277 0.9000 0.0464 0.7896 0.0277
MVGC 0.6543 0.0464 0.7896 0.1159 0.6272 0.0747
WSV 0.0099 0.0277 0.0158 0.0277 0.0084 0.0277
BSV 0.3160 0.0277 0.2425 0.0277 0.2905 0.0277
DMVGA 0.9000 0.0277 0.9000 0.0277 0.9000 0.0277
4.2.3. Analysis for collaborative training
To demonstrate that the collaborative training for clustering of

DMVGC can gradually align the clustering results of different views
during the training process, we randomly select a sample from Mfeat
dataset and visualize its cluster distribution 𝒒(𝑣)𝑖 of each view-specific
mbedding and the cluster distribution 𝒒𝑖 of the common embedding
uring the training process. As shown in Fig. 3, the view-specific dis-
ributions 𝒒(1)𝑖 , 𝒒(2)𝑖 and 𝒒(3)𝑖 in the first three columns and the common

distribution 𝒒𝑖 in the last column along rows of epoch 0, 25, 50, 75,
100 are presented. Before the collaborative training (in epoch 0), the
cluster with the highest probability in 𝒒(1)𝑖 is the 9-th cluster while the
highest probability in others lies in the 8th cluster. This indicates that
the cluster assignment of the first view is not aligned with other views.
9

Then after starting the collaborative training, the probability of the 8th
cluster in each view gradually rises with training epochs. Finally in
epoch 100, the probability of the 8th cluster in 𝒒(1)𝑖 also becomes the
highest, meaning that the cluster assignment of the first view achieves
alignment with other views. This demonstrates the effectiveness of the
collaborative training in our model.

4.2.4. Clustering performance during training
To observe how the clustering performance of DMVGC changes

during the optimization process, we plot the changing curve of the NMI
metric over the training epochs for each dataset, as shown in Fig. 4. The
curve for each dataset shows an overall ascending trend despite some
fluctuations, until rising to a certain level, then it fluctuates around
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Table 8
Clustering performance comparisons of DMVGC with the variant models.

Dataset Method NMI ACC ARI

Citeseer
DMVGC 0.4380(0.0064) 0.6908(0.0124) 0.4570(0.0114)
DMVGC-a 0.3867(0.0367) 0.6320(0.0506) 0.3853(0.0545)
DMVGC-w 0.2819 (0.0401) 0.5425(0.0394) 0.2594(0.0452)
DMVGC-aw 0.2794 (0.0208) 0.5361(0.0204) 0.2595(0.0195)

Cora
DMVGC 0.5359(0.0079) 0.6934(0.0235) 0.4702(0.0139)
DMVGC-a 0.4936(0.0236) 0.6493(0.0303) 0.4261(0.0337)
DMVGC-w 0.4538(0.0303) 0.6198(0.0560) 0.3814(0.0456)
DMVGC-aw 0.4387(0.0256) 0.6091(0.0336) 0.3621(0.0279)

IMDB
DMVGC 0.0846(0.0044) 0.5107(0.0195) 0.1047(0.0087)
DMVGC-a 0.0870(0.0072) 0.4905(0.0137) 0.0961(0.0105)
DMVGC-w 0.0707(0.0049) 0.4641(0.0118) 0.0636(0.0063)
DMVGC-aw 0.0696(0.0075) 0.4617(0.0143) 0.0653(0.0077)

Mfeat
DMVGC 0.9359(0.0097) 0.9638(0.0288) 0.9314(0.0282)
DMVGC-a 0.9376(0.0123) 0.9594(0.0347) 0.9257(0.0356)
DMVGC-w 0.9286(0.0177) 0.9488(0.0440) 0.9122(0.0459)
DMVGC-aw 0.9256(0.0179) 0.9542(0.0350) 0.9147(0.0372)

Scene
DMVGC 0.5735(0.0109) 0.6936(0.0315) 0.4810(0.0199)
DMVGC-a 0.5514(0.0153) 0.6573(0.0460) 0.4455(0.0095)
DMVGC-w 0.5540(0.0371) 0.6775(0.0613) 0.4576(0.0380)
DMVGC-aw 0.5552(0.0264) 0.6729(0.0510) 0.4580(0.0324)

Reuters
DMVGC 0.3769(0.0415) 0.5887(0.0580) 0.3138(0.0367)
DMVGC-a 0.3687(0.0346) 0.5781(0.0513) 0.3043(0.0336)
DMVGC-w 0.3478(0.0248) 0.5765(0.0435) 0.2979(0.0239)
DMVGC-aw 0.3717(0.0203) 0.5786(0.0446) 0.3031(0.0275)
Fig. 3. Cluster distributions of a randomly selected sample from Mfeat on each view-specific embedding and common embedding during the collaborative training process.
10
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Fig. 4. The NMI over training epochs for each dataset.
this level. These results show that our model works toward a desired
direction.

4.2.5. Visualization
(1) Visualization of gradients
The underlying assumption of the self-training clustering module

of DMVGC is that the initial highly confident assignments are mostly
correct and contribute more gradients to the back-propagation network
training. To verify this assumption for our task, we plot the magnitude
of the gradient of 𝐿𝑐 with respect to each embedded point 𝒉𝑖, i.e. | 𝜕𝐿𝑐

𝜕𝒉𝑖
|,

against its soft assignment 𝑞𝑖𝑗 , for a random chosen cluster 𝑗 for each
dataset, at the start of KL divergence minimization, as shown in Fig. 5.
We observe that points with higher confidence (larger 𝑞𝑖𝑗) are more
likely to contribute higher gradient (with higher |

𝜕𝐿𝑐
𝜕𝒉𝑖

|), which will
back propagates through the GCN encoder of each view, making the
11
learned embedded points become increasingly cluster-discriminative.
Additionally, we best map the cluster assignments of the initial em-
bedded points with the true labels, and color the points with right
predictions as blue and color the points with wrong predictions as
red. We can see that the number of right points is much greater than
the number of wrong points, and most of the right points are in the
high confidence area while most of the wrong points are in the low
confidence area. Therefore, the right points will dominate the training
process to increasingly produce refined clusters.

(2) Visualization of embedding features
We visualize the original features of the first view for Mfeat dataset

and the common graph embedding features of DMVGC during the train-
ing process in the epoch 0, 50 and 100, by using 𝑡-SNE method (van der
Maaten & Hinton, 2008). As shown in Fig. 6, the visualization in epoch
0 represents the embedding features pre-trained with the reconstruction
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Fig. 5. Gradients visualization at the start of KL divergence minimization.

Fig. 6. 𝑡-SNE visualization for embedding features of DMVGC on the Mfeat dataset during training.
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Fig. 7. The parameter effect of 𝜏 and 𝜆 on Citeseer and Cora.
Fig. 8. The parameter effect of 𝑘 on Mfeat and Reuters.
loss only, followed by visualizations for the embedding features in sub-
sequent epoch 50 and 100, in which the self-training clustering module
is included. It is obvious that the clusters are becoming increasingly
well-separated as the training proceeds, which corresponds with the
ascending trend of the NMI curve over epochs as shown in Fig. 4(d).

4.2.6. Parameter analysis
(1) Parameter effect of 𝜏 and 𝜆
In our model, there are two hyper-parameters 𝜏 and 𝜆 that should be

set properly. In our experiments, we tune 𝜏 and 𝜆 from {2, 4, 8, 16, 32}
and {0.01, 0.1, 1, 10, 100} respectively. The NMI results under different
values of 𝜏 and 𝜆 on the datasets Citeseer and Cora are shown in
Fig. 7. For the parameter 𝜏, larger 𝜏 value generally produces higher
performance, and the performance becomes stable when 𝜏 ≥ 16. For
the parameter 𝜆, we can see that our model performs stably over a wide
range of values. Therefore, in our experiments, we set 𝜏 = 16 and 𝜆 = 1
for all datasets.

(2) Parameter effect of 𝑘
For the 𝑘-NN graph construction for the data with no pre-defined

graph, the number of the nearest neighbors 𝑘 is a critical parameter
that may greatly influence the performance of our model. To see the
effect of 𝑘, we tune 𝑘 from 3 to 15 with step size 2 to construct graphs
on the datasets Mfeat and Reuters, and report the NMI results under
each value of 𝑘. From Fig. 8, we can see that when 𝑘 is relatively
small the performance rises with the increasing of 𝑘. Until reaching to
a relatively stable level, the performance fluctuates around this level or
even declines, since with 𝑘 continues to increase, the separability of the
graph may not improve but even deteriorate. And the larger the 𝑘, the
more edges of the graph, which takes more time for the optimization.
Therefore in our experiments, we set 𝑘 to a moderate value as 𝑘 = 9 for
all datasets that have no pre-defined graphs.
13
5. Conclusion

In this paper, we propose a GCN-based deep multi-view graph
clustering network with weighting mechanism and collaborative train-
ing. The forward propagation of multiple encoders and the back-
propagation driven by the unified decoder incorporate both the diver-
sity and unity of different views into the learned common embedding.
The weighting mechanisms are employed in both encoder and decoder
parts to measure the importance of different views, and a collaborative
training objective for clustering is simultaneously optimized with the
graph embedding to align the clustering results of different views.
Experimental results on six datasets verifies the effectiveness and ratio-
nality of our method, and demonstrates the superiority of our method
over the state-of-the-art methods. For future studies, we can focus
on improving the collaborative training and weighting mechanism to
make the model applicable to the problem of incomplete multi-view
clustering.
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