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Zero-shot learning (ZSL) methods mainly associate global or region features to semantic 
vectors within a single image, for transferring semantic knowledge from the seen classes to 
unseen ones. However, the interactive region learning among a group of images from different 
categories, which can enhance the discrimination of region features and thus lead to a desirable 
knowledge transfer between seen and unseen classes, is seldom considered. To remedy the above 
challenge, we propose a group-wise interactive region learning (GIRL) model to guarantee a 
comprehensive and explicit region interaction. Specifically, GIRL consists of an attentive region 
interaction (ARI) module and a holistic semantic embedding (HSE) module. ARI utilizes the 
semantic commonalities and differences of group regions to produce refined region features. 
HSE holistically maps these region features to the semantic space for a more stable semantic 
transfer. We also present a semantic consistency loss and a relation alignment loss that can distill 
the refined/original region features and introduce unseen class semantic vectors for training, 
respectively. Extensive experiments demonstrate the effectiveness of GIRL over other methods, 
achieving 68.9%, 42.9%, 75.5%, and 47.8% the Generalized ZSL (GZSL) H scores on CUB, SUN, 
AWA2, and APY. The code is publicly available at https://github .com /TingML /GIRL.

1. Introduction

Zero-shot learning (ZSL) [1–4] aims to classify unseen class images by leveraging the potential semantic relationships between 
seen and unseen ones. To achieve this, existing works introduce class semantic vectors that bridge the semantic gap between the 
seen and unseen classes, making ZSL feasible. The most widely used class semantic vectors are attributes [5] and word2vector [6], 
with attributes serving as the pivotal high-level auxiliary knowledge in ZSL. Apart from addressing the time-consuming nature of 
recognition tasks, ZSL can also handle the challenge of identifying new categories.

The successful ZSL paradigms learn the embedding function from the seen class images to their corresponding semantic vectors. 
However, earlier methods [7–11] rely on aligning global image features with ground-truth semantic vectors in the embedding 
space, leading to an inferior transfer of discriminative knowledge. To overcome this limitation, researchers have further proposed 
region-based methods for mining local discriminative region features. As in Fig. 1 (a), some methods (e.g., APN [12], AREN [13], 
DAZLE [14], DPPN [15], MSDN [16], TransZero [17], AREES [18]) directly identify discriminative local regions and align them with 
their ground-truth semantic vectors. Additionally, as in Fig. 1(b), RGEN [19] advocates for capturing the appearance relationships of 
variant region features. Nonetheless, all the aforementioned methods are merely based on single images to model region relationships 
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Fig. 1. Motivation illustration. The architecture of existing methods vs. ours. (a) The existing methods identify local regions to align directly with the ground truth 
attribute vector. (b) Some methods learn the variant region embedding by capturing these region appearance relationships. The methods of (a) and (b) are merely 
based on single images to model regions. (c) We propose to refine region features by the attentive region interaction among a group of images from different categories, 
and distill the semantic knowledge from the refined region feature to the original ones promoting semantic consistency between the both. “GT” means ground truth 
semantic vector.

and fail to capture intrinsic contrastive cues (semantic commonality and difference) for regions of different images from different 
classes. Considering the semantic commonalities and differences of regions can enhance the discriminative of region features, and 
thus the knowledge transfer from seen to unseen classes is more desirable.

To address the aforementioned challenge, we propose a group-wise interactive region learning (GIRL) model to guarantee a 
comprehensive and explicit region interaction among a group of images from different categories. GIRL can capture crucial con-

trastive cues from regions of different images with different classes, resulting in desirable knowledge transfer from seen to unseen 
classes, as shown in Fig. 1(c). Different from methods modeling regions in a single image, GIRL seeks more semantic information 
between regions based on group data. Especially, group data are achieved by a crafted group construction method to ensure that a 
group contains data whose semantics can complement each other. We apply the attentive region interaction (ARI) module to cap-

ture the semantic differences and commonalities of the corresponding regions by region interaction within a group data. We then 
perform semantic-aware region feature refinement on original region features. Further, the semantic consistency loss is utilized to 
distill semantic knowledge to the original region features, facilitating the model’s localization of precise attribute regions. In other 
words, semantic consistency loss also provides supervised information to the model. Additionally, considering the absence of unseen 
classes in training, we design relation alignment loss to further constrain the visual-semantic alignment relation. In summary, our 
contributions are:

• We propose a group-wise interactive region learning (GIRL) model, which takes advantage of richer semantic information in a 
group of images to boost the discriminability and transferability of region features.

• The attentive region interaction (ARI) module is intended to refine the region features through region interaction in a group. A 
holistic semantic embedding (HSE) module is further incorporated to map these region features to the semantic space for a more 
stable semantic transfer.

• GIRL introduces a semantic consistency loss and a relation alignment loss that can distill the original/refined region features and 
can introduce unseen class semantic vectors for model training.

2. Related works

2.1. Zero-shot learning

Zero-shot learning (ZSL) aims to infer the relationship between the visual and class semantic vectors of the seen classes at the se-

mantic level by fully integrating visual and semantic, and transferring the learned knowledge (semantic relationships) to the unseen 
classes. In ZSL, the direct-embedding methods [7,20,21,10,11], generation-based methods [22,9,23–25], and region-based meth-

ods have all been extensively researched. Direct-embedding methods (e.g., ESZSL [7] and LATEM [20]) establish joint embedding 
spaces to align image features and semantic vectors. ESZSL [7] designs two layers to model the relationships between properties, 
attributes, and classes. However, since these two layers consist of straightforward linear mapping, the relationships learned being 
linear and simple. LATEM [20] improves on this by learning the mappings set of images and text and upgrading the linear mapper 
to a nonlinear one. However, the above methods create simple mapping and primarily concentrate on the model, which leads to 
inferior zero-shot performance. The generation-based methods (e.g., f-CLSWGAN [22] and CE-GZSL [23]) are proposed to train the 
semantic-visual generator to synthesize visual features of unseen classes, converting zero-shot learning into traditional supervised 
2

learning. f-CLSWGAN [22] optimizes the semantic-visual generator utilizing Wasserstein generative adversarial net (WGAN) [26]
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Fig. 2. The overall framework of the proposed method (GIRL). First, we conduct region feature extraction mapping image 𝑥 to generate their region features leverage 
the attribute prototypes  . Then an attentive region interaction module (ARI) is designed to capture and emphasize semantic differences and commonalities through 
the interaction of region features in a group of images to guide semantic-aware region feature refinement. Further, a holistic semantic embedding module (HSE) maps 
the region feature to the semantic space for a more stable semantic transfer.

and classification loss. CE-GZSL [23] trains semantic-visual generators using instance-level and class-level contrastive loss. Although 
generation-based methods display superior zero-shot performance, the reliability of the generated features cannot be guaranteed. 
To mitigate this, additional strategies have been devised to address domain bias, such as generating more visual features of unseen 
classes than seen ones. The direct-embedding methods and the generation-based methods focus on the learning of global features, 
while the region-based methods emphasize mining the fine-grained attribute knowledge of images through the learning of region 
features.

Region-based methods ensure the alignment of local features with semantic vectors, further achieving the effective knowledge 
transfer from the seen classes to the unseen ones. APN [12] learns local features of a single image using the attribute prototype 
network and incorporates a visual semantic embedding layer to learn global features. To improve generalization to unseen classes, 
APN [12] decorrelates irrelevant attribute prototypes. The DPPN [15] iteratively refines local features using a prototype progressive 
network. In contrast, RGEN [19] considers the relationship between different local features in a single image and employs a region 
graph mapping network to guarantee the learning of discriminative features. However, these methods establish region relationships 
based on a single image and fail to capture the intrinsic contrast cues of different image regions from different categories. In this 
paper, instead of learning region features in a single image as in previous studies, we investigate the region relationships in a group 
of images to improve the model’s learning of fine-grained local features better.

2.2. Knowledge distillation

Following a teacher-student training structure, the knowledge distillation [27] is designed to utilize a complex and well-

performing teacher model to transfer the “knowledge” to a simple student model, improving the performance of the student model. 
In knowledge distillation, the forms of “knowledge” comprise knowledge of output features, intermediate features, relational fea-

tures, and structural features. The key to knowledge distillation is to effectively transfer knowledge from the teacher model to the 
student model. Widely used knowledge distillation methods comprise knowledge amalgamation [28], mutual distillation [29], and 
self-distillation [30], where self-distillation allows an individual model to enhance performance through knowledge distillation in 
a self-learning process. Knowledge distillation has been utilized in ZSL for distilling the intrinsic semantic knowledge between the 
attribute-based visual features and visual-based attribute features [16]. However, due to the inseparability of some attribute descrip-

tion vectors, MSDN [16] still has trouble learning the fine-grained attribute features. In contrast to MSDN which relies on external 
knowledge, we perform semantic distillation by mining the information in the dataset itself.

3. The proposed approach

3.1. Problem setting and notations

In ZSL problem, suppose that the training set (seen classes) is given, 𝑆 = {(𝑥𝑖, 𝑦𝑖, 𝑎𝑦𝑖 )|𝑥𝑖 ∈𝑆 , 𝑦𝑖 ∈𝑆 , 𝑎𝑦𝑖 ∈𝑆}, where 𝑥𝑖 ∈𝑑1×1

is the 𝑑1-dimensional visual feature and 𝑦𝑖 is the label of 𝑥𝑖 in the training set. 𝑎𝑦𝑖 ∈𝑆 ∈𝑑2×1 is a class semantic vector, which is 
constituted by 𝑑2 attributes. The recognition of unseen classes is the ZSL’s primary goal. So the effectiveness of the model is verified 
by a test dataset 𝑈 = {(𝑥𝑖, 𝑦𝑖, 𝑎𝑦𝑖 )|𝑥𝑖 ∈ 𝑈 , 𝑦𝑖 ∈𝑈 , 𝑎𝑦𝑖 ∈𝑈 }. The seen and unseen label sets are disjoint, i.e., 𝑆 ∩ 𝑈 = ∅, thus, 
𝑆 ∩𝑈 = ∅. With  =𝑆 ∪𝑈 , the goal of ZSL is to learn a prediction: 𝑈 →𝑈 . The test samples come from the both seen and 
unseen classes 𝑈 = {(𝑥𝑖, 𝑦𝑖, 𝑎𝑦𝑖 )|𝑥𝑖 ∈ , 𝑦𝑖 ∈ , 𝑎𝑦𝑖 ∈} leads to generalized ZSL (GZSL). For GZSL, we learn a prediction:  →  , 
 =𝑆 ∪𝑈 ,  =𝑆 ∪𝑈 .

In this paper, we propose group-wise interactive region learning (GIRL), which takes advantage of richer semantic information 
in a group of images to support the model localize fine-grained attribute regions. In Fig. 2, GIRL comprises an attentive region 
interaction (ARI) module and a holistic semantic embedding (HSE) module. ARI refines the original region features through region 
interactions within a group of image data. HSE aligns visual and semantic vectors in latent space for ZSL classification. Furthermore, 
3

group construction is critical in GIRL. The data whose semantics complement each other will be beneficial to the succeeding activities.
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3.2. Group construction

In this section, we describe how to construct groups that are effective for subsequent tasks. First, we explain how to construct a 
batch. We randomly select 𝑁𝑐𝑙 classes for a batch, and for each class, we sample 𝑁𝑠𝑎𝑚 images. Specially, we follow DPPN [15] to 
conduct region feature extraction, which mapping image 𝑥𝑖 to generate their region features by leveraging the attribute prototypes 
 . Define the learnable attributes prototype as  = {𝑝1,⋯ , 𝑝𝑘,⋯ , 𝑝𝑑2 }, 𝑝𝑘 denotes the 𝑘𝑡ℎ attribute, such as the visual representation 
of the “yellow back” shared by all birds. r𝑘

𝑖
= 𝑓 (𝑥𝑖, 𝑝𝑘) ∈𝑅𝑑×1 denotes the 𝑘𝑡ℎ attribute prototype to extract the most relevant region 

features. Based on 𝑑2 prototypes, follow DPPN [15] we obtain region-level visual features 𝑅𝑖 = {𝑟𝑘
𝑖
}𝑑2
𝑘=1. In DPPN, 𝑅𝑖 = 𝑓 (𝑥𝑖, 𝑃 ) =

𝜙(𝑥𝑖ℏ(𝑥T𝑖 𝑃 )), where 𝜙 is a prototype function implemented by two fully-connected (FC) layers, ℏ is a softmax normalization along 
each column.

Then the group data is constructed in a batch. We compare the visual features, 𝑅𝑖, within a batch by calculating their Euclidean 
distance from one another. Based on the similarity of region features, for each image we construct a group of data (𝑅𝑖, 𝑅+

𝑖
, 𝑅−

𝑖
)

containing the region feature 𝑅𝑖, the feature 𝑅+
𝑖

from the same class most similar to 𝑅𝑖, and the feature 𝑅−
𝑖

from a different class 
most similar to 𝑅𝑖. The commonality of 𝑅𝑖 and 𝑅+

𝑖
reflects finer-grained information, and the semantic differences of 𝑅𝑖 and 𝑅−

𝑖
can 

play a complementary role to 𝑅𝑖. Utilizing information on the semantic commonality and differences among regions is critical in 
ZSL, as it can improve the distinguishability and transferability of regional features.

3.3. Attentive region interaction module

The central idea behind ARI is to leverage the interactions of the regions in a group to obtain refined region features. Humans 
can easily discern the differences or similarities between image regions and utilize these contrasting cues to strengthen their under-

standing of regions. Inspired by human behavior, we incorporate two branches into ARI: co-attention-based interaction (CAI) and 
dif-attention-based interaction (DAI). These branches simulate the way humans interact and understand visual information.

Co-attention-based Interaction. First, we perform 𝑅𝑖 and 𝑅+
𝑖

regions interaction to gain the commonalities of intra-pairs in a 
group data,

𝐶𝑖 = (𝑅𝑖 +𝑅+
𝑖
))∕2. (1)

The vector emphasizes class-related region features (e.g. the throat region features of yellow throat vireo are all yellow). Then we 
propose to compare 𝑅𝑖 and 𝐶𝑖, as the comparison can yield valuable semantic contrastive clues. By this, we can gain a more nuanced 
understanding of the differences between the two.

Γ𝑖 =𝑅𝑖 ⊗𝐶T
𝑖 , (2)

where ⊗ means tensor product. Thus, Γ𝑖 is an attention feature reflecting the semantic relationship between 𝑅𝑖 and 𝐶𝑖. This atten-

tional feature further emphasizes the importance of discriminative regions.

Finally, we perform region refined guided by the attention feature. We utilize the following formula for region refinement and 
refer to this operation as ResA:

𝑅ref1
𝑖 =𝑅𝑖 + Γ𝑖 ⊗ 𝑅𝑖. (3)

In this regard, our objective is to derive attention features from the interaction of related regions within the group, utilize this 
attention feature to extract distinct semantic information, and subsequently refining the regions.

Dif-attention-based Interaction. In this branch, we perform 𝑅𝑖 and 𝑅−
𝑖

regions interaction,

𝐷𝑖 = (𝑅𝑖 −𝑅−
𝑖 )∕2. (4)

𝐷𝑖 is able to indicate the differences in region features (e.g. the distinctive region feature that differentiates the bird warning siren
from the yellow throat vireo is the throat color).

Subsequently, we compare 𝑅𝑖 and 𝐷𝑖 to identify contrasting clues between them and determine the significance of the contrasting 
information.

Υ𝑖 =𝑅𝑖 ⊗𝐷T
𝑖 . (5)

Υ𝑖 is a discriminative attention that emphasizes the different relationship between 𝑅𝑖 and 𝐷𝑖, and this difference is an important 
complementary information for 𝑅𝑖. Finally, we perform region feature refinement on 𝑅𝑖 by the operation ResA:

𝑅ref2
𝑖 =𝑅𝑖 +𝐷𝑖 + 𝛼Υ𝑖 ⊗ 𝑅𝑖, (6)

where 𝛼 is a hyper-parameter. Our objective is to derive discriminative attentive features by leveraging the interactions between 
4

inter-pairs within the group, thus guiding the refinement of semantic-aware region features.
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3.4. Holistic semantic embedding module

By fully interacting with the group data, we obtain refined region features 𝑅ref1
𝑖

and 𝑅ref2
𝑖

. Together with the original region 
features 𝑅𝑖, we utilize a linear layer with parameter 𝑊 further maps them to the semantic space,

𝜓(𝑥𝑖) =𝑅𝑖𝑊 . (7)

Correspondingly, 𝑅ref1
𝑖

and 𝑅ref2
𝑖

are mapped to 𝜓(𝑥𝑖)1 and 𝜓(𝑥𝑖)2, respectively.

3.5. Model optimization

To effectively optimize the performance of our GIRL model, we design the attribute alignment loss, classification loss, semantic 
consistency loss and relation alignment loss to train GIRL.

Attribute Alignment Loss. We develop the attribute alignment loss constrained GIRL to ensure that GIRL can precise mapping 
visual features to their corresponding semantic vectors. The visual features are mapped to the semantic space through a linear layer 
with parameter 𝑊 to obtain the representation 𝜓(𝑥𝑖), we next compute the similarity between 𝜓(𝑥𝑖) and the ground-truth attribute 
vector 𝑎𝑦𝑖 , attend to maximize this similarity,

ar = −
∑

𝑥𝑖∈ ,𝑦𝑖∈𝑆

𝜓(𝑥𝑖) × 𝑔(𝑎𝑦𝑖 )
T. (8)

The function 𝑔(⋅) in GIRL serves as a semantic mapping tool, accomplished through a straightforward fully connected layer that maps 
the semantic vectors into the latent space.

Classification Loss. The classification loss is proposed to further bootstrap GIRL by getting more discriminative visual features 
and enlarging the class boundaries. In detail, a linear layer with parameter 𝑉 maps the visual feature 𝜓(𝑥𝑖) into the class embedding 
space, 𝑞𝑖 = 𝜓(𝑥𝑖)𝑉 . Thus we obtain the class logit 𝑞𝑖 of feature and subsequently utilize the cross entropy loss 𝑐𝑙 as a classification 
constraint.

cl = −
∑
𝑖∈|𝑁|

𝑦′𝑖 × ln 𝑞T𝑖 , (9)

where |𝑁| is the sample number in training set, 𝑦′
𝑖

is the one-hot vector of 𝑦𝑖.
Semantic Consistency Loss. The semantic consistency loss aims to distill the distinct semantic information from the refined 

region features to original region features, boosting the semantic consistency between both. 𝑅ref1
𝑖

and 𝑅ref2
𝑖

are refined region features. 
Mapping these features into the latent space, 𝑅𝑖, 𝑅ref1

𝑖
and 𝑅ref2

𝑖
is represented as 𝜓(𝑥𝑖), 𝜓(𝑥𝑖)1 and 𝜓(𝑥𝑖)2, respectively. Then the 

class logit is generated by computing the dot product between the projected visual feature and all class semantic embeddings. For 
𝜓(𝑥𝑖), the class logit is 𝑝(𝑥𝑖) = {𝜓(𝑥𝑖) × 𝑔(𝑎1)T, ⋯ , 𝜓(𝑥𝑖) × 𝑔(𝑎|𝑁𝑠|)

T}. Analogously, 𝜓(𝑥𝑖)1 and 𝜓(𝑥𝑖)2 are 𝑝(𝑥)1 and 𝑝(𝑥𝑖)2. |𝑁𝑠| is the 
number of seen classes. In GIRL, semantic consistency loss is intended to guide 𝑝(𝑥𝑖) using 𝑝(𝑥𝑖)1 and 𝑝(𝑥𝑖)2, formulated as:

scl = 1
scl +2

scl =
∑
𝑥𝑖∈

(𝐷𝐾𝐿(𝑝(𝑥𝑖)||𝑝(𝑥𝑖)1) (10)

+𝐷𝐾𝐿(𝑝(𝑥𝑖)||𝑝(𝑥𝑖)2)),

where 𝐷𝐾𝐿(𝑝||𝑝′) =∑|𝑁𝑠|
𝑐=1 𝑝𝑐 log(

𝑝𝑐
𝑝′𝑐
).

Relation Alignment Loss. In ZSL and GZSL, a major concern is the bias problem that arises since only the seen classes images 
are utilized during training. To mitigate this issue, we propose a relation alignment loss. First, we utilize the product to calculate the 
relation 𝑆 =𝑆 ×𝑈 T

, 𝑆 ∈𝑅|𝑁𝑠|×|𝑁𝑢| between the attribute semantic vectors of seen classes 𝑆 and the unseen classes 𝑈 . Semantic 
relations are utilized as ground truth values to guide the predicted probability of visual features further. The relation alignment loss 
is formulated as:

ral =
∑
𝑥𝑖∈

|𝑁𝑢|∑
𝑗=1

𝑠𝑦𝑖𝑗 log 𝜉𝑖𝑗 + (1 − 𝑠𝑦𝑖𝑗 ) log(1 − 𝜉𝑖𝑗 ), (11)

where 𝜉𝑖𝑗 = 𝜓(𝑥𝑖)𝑎𝑢𝑗
T, 𝑎𝑢

𝑗
∈𝑈 , |𝑁𝑢| is the number of unseen classes. 𝜉𝑖𝑗 is the softmax-layer normalization of 𝜉𝑖𝑗 , 𝑦𝑖 is the label of 𝑥𝑖, 

also is the column location in 𝑆, 𝑠𝑦𝑖𝑗 tends to reflect the relationship between 𝑥𝑖 and 𝑎𝑢
𝑗
. The relation alignment loss is similar to RGEN 

[13] but differs from it: for the class relation 𝑆, RGEN utilizes least square regression (LSR) whereas we employ a straightforward 
product computation, this makes our method more simpler.

Finally, the total loss function of GIRL for end-to-end model training with four losses is as follows:

 =ar +ce + 𝜆1scl + 𝜆2ral, (12)
5

where 𝜆1 and 𝜆2 are the hyperparameters.
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Table 1

GZSL results (%) on CUB, SUN, AWA2, and APY. The best and the second best results are marked in red and blue. † denotes the GZSL results of DPPN without finetune 
the backbone. (For interpretation of the colors in the tables, the reader is referred to the web version of this article.)

Methods CUB SUN AWA2 APY

Au As H Au As H Au As H Au As H

Direct-Embedding Methods

ESZSL (ICML 2015) [7] 12.6 63.8 21.0 11.0 27.9 15.8 5.9 77.8 11.0 2.4 70.1 4.6

SJE (CVPR 2015) [34] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4 3.7 55.7 6.9

SYNC (CVPR 2016) [8] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0 7.4 66.3 13.3

LATEM (CVPR 2016) [20] 15.2 57.3 24.0 14.7 28.8 19.5 11.5 77.3 20.0 0.1 73.0 0.2

ALE (TPAMI 2016) [21] 23.7 62.8 34.4 21.8 33.1 26.3 14.0 81.8 23.9 4.6 73.7 8.7

FGN+WL (WACV 2022) [35] 49.4 51.8 50.6 46.3 28.7 35.5 45.8 83.4 59.2 17.9 73.3 28.7

GatingAE (TIP 2022) [10] 58.1 54.9 56.4 38.1 45.4 41.4 81.3 57.3 67.2 - - -

BGSNet (TMM 2023) [11] 60.9 73.6 66.7 45.2 34.3 39.0 61.0 81.8 69.9 31.0 54.9 39.7

Generation-Based Methods

𝑓 -CLSWGAN (CVPR 2018) [22] 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 32.9 61.7 42.9

cycle-CLSGAN (ECCV 2018) [36] 45.7 61.0 52.3 49.4 33.6 40.0 56.9 64.0 60.2 29.3 51.2 37.3

CADA-VAE (CVPR 2019) [9] 51.6 53.5 52.4 47.2 35.7 40.6 55.8 75.0 63.9 30.3 61.3 40.6

𝑓 -VAEGAN-D2 (CVPR 2019) [37] 48.4 60.1 53.6 45.1 38.0 41.3 57.6 70.6 63.5 - - -

CE-GZSL+SDFA2 (AAAI 2022) [38] 59.2 59.6 54.0 46.2 32.6 38.2 59.3 75.0 66.2 21.5 85.1 34.3

TDCSS (CVPR 2022) [39] 44.2 62.8 51.9 - - - 59.2 74.9 66.1 - - -

ICCE (CVPR 2022) [25] 67.3 65.5 66.4 - - - 65.3 82.3 72.8 45.2 46.3 45.7

ABA-GAN (TMM 2023) [40] 59.8 53.8 56.6 39.4 44.2 41.7 66.8 62.9 64.8 65.0 35.9 46.3

Region-Based Methods

AREN (CVPR 2019) [13] 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7 30.0 47.9 36.9

LFGAA (ICCV 2019) [41] 36.2 80.9 50.0 18.5 40.0 25.3 27.0 93.4 41.9 - - -

DAZLE (CVPR 2020) [14] 56.7 59.6 58.1 52.3 24.3 33.2 60.3 75.7 67.1 - - -

RGEN (ECCV 2020) [19] 60.0 73.5 66.1 44.0 31.7 36.8 67.1 76.5 71.5 48.1 30.4 37.2

APN (NeurIPS 2020) [12] 65.3 69.3 67.2 41.9 34.0 37.6 57.1 72.4 63.9 - - -

† DPPN (NeurIPS 2021) [15] 60.4 66.1 63.1 45.0 36.2 40.2 61.8 86.8 72.2 35.6 58.7 44.3

I2DFormer (NeurIPS 2022) [42] 35.3 57.6 43.8 - - - 66.8 76.8 71.5 - - -

ERPCNet (TCSVT 2022) [43] 67.1 69.6 68.4 47.2 31.9 38.1 59.1 82.0 68.7 32.7 49.3 39.3

AREES (TNNLS 2022) [18] 53.6 56.9 55.2 51.3 35.9 42.2 57.9 77.0 66.1 34.3 69.3 46.0

MSDN (CVPR 2022) [16] 68.7 67.5 68.1 52.2 34.2 41.3 62 74.5 67.7 - - -

TransZero (AAAI 2022) [17] 69.3 68.3 68.8 52.6 33.4 40.8 61.3 82.3 70.2 - - -

GIRL (Ours) 66.2 71.8 68.9 47.9 38.8 42.9 68.5 84.3 75.5 37.0 67.6 47.8

3.6. Zero-shot prediction

Considering that attentive region interaction module is a plug-and-play module and that the group construction cannot be done 
since the label is unknown, the module should not be included in test stage. During the test phase, the embedding 𝜓(𝑥𝑖) of 𝑥𝑖 in the 
latent space is obtained by the network. We predict its label by following:

𝑦∗𝑖 = arg max
𝑦𝑖∈𝑈 ∕

𝜓(𝑥𝑖) × 𝑔(𝑎𝑦𝑖 ), (13)

𝑦𝑖 ∈𝑈∕ corresponds to ZSL/GZSL.

4. Experiment

4.1. Datasets

We conducted extensive experiments on four ZSL benchmarks, i.e., Caltech-USCD Birds-200-2011 (CUB) [31], SUN [32], Animals 
with Attributes2 (AWA2) [1], and Attribute Pascal and Yahoo (APY) [33] to verify the validity of GIRL. CUB contains 11788 images 
of 200 fine-grained birds classes, of which 150 are seen and 50 are unseen classes, and the class semantic vectors are 312 attributes. 
SUN contains 14340 images of 717 fine-grained scene classes, of which 645 are seen and 72 are unseen classes, with the class 
semantic vectors are 102 attributes. AWA2 is a coarse-grained dataset compared to CUB and SUN, which contains 37322 images of 
50 animal classes, of which 40 are seen and 10 are unseen classes, and the class semantic vectors are 85 attributes. APY consists 
of 15339 images categorized into 32 classes, with 20 being seen and 12 being unseen classes. The dataset is coarse-grained and 
comprises 64 attribute-based class semantic vectors.

4.2. Evaluation

In this paper, we validate the proposed method under both ZSL and GZSL settings. For ZSL, the test dataset contains only unseen 
6

classes, so the evaluation criterion is the average class accuracy of unseen classes Acc. For GZSL, the test dataset contains both seen 
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Table 2

ZSL results (%) on CUB, SUN, AWA2, and APY. The best and the second best results are marked in red and blue. 
† denotes the ZSL results of DPPN obtained by using the code released by the authors.

Methods CUB SUN AWA2 APY

Acc Acc Acc Acc

Direct-Embedding Methods

ESZSL (ICML 2015) [7] 53.9 54.5 58.6 38.3

SJE (CVPR 2015) [34] 53.9 53.7 61.9 32.9

SYNC (CVPR 2016) [8] 55.6 56.3 46.6 23.9

LATEM (CVPR 2016) [20] 49.3 55.3 55.8 35.2

ALE (TPAMI 2016) [21] 54.9 58.1 62.5 39.7

FGN+WL (WACV 2022) [35] 62.3 64.4 69.1 39.9

BGSNet (TMM 2023) [11] 73.3 63.9 69.1 43.8

Generation-Based Methods

𝑓 -CLSWGAN (CVPR 2018) [22] 57.3 60.8 68.2 -

cycle-CLSGAN (ECCV 2018) [36] 58.4 60.1 66.3 38.6

CADA-VAE (CVPR 2019) [9] 59.8 61.7 63.0 35.7

𝑓 -VAEGAN-D2 (CVPR 2019) [37] 61.0 64.7 71.1

ICCE (CVPR 2022) [25] 78.4 - 72.7 49.5

ABA-GAN (TMM 2023) [40] 62.0 62.5 72.0 44.6

Region-Based Methods

AREN (CVPR 2019) [13] 71.8 60.6 67.9 36.9

LFGAA (ICCV 2019) [41] 67.6 61.5 68.1 -

DAZLE (CVPR 2020) [14] 66.0 59.4 67.9 -

RGEN (ECCV 2020) [19] 76.1 63.8 73.6 37.2

APN (NeurIPS 2020) [12] 72.0 61.6 68.4 -

† DPPN (NeurIPS 2021) [15] 72.6 64.6 68.9 -

I2DFormer (NeurIPS 2022) [42] 45.4 - 76.4 -

ERPCNet (TCSVT 2022) [43] 72.5 63.1 71.8 43.5

AREES (TNNLS 2022) [18] 65.7 64.3 73.6 44.2

MSDN (CVPR 2022) [16] 76.1 65.8 70.0 -

TransZero (AAAI 2022) [17] 76.8 65.6 70.1 -

GIRL (Ours) 75.2 66.5 73.9 48.5

and unseen classes, and the evaluation metrics comprise Au, As, and H. As/Au is the class average accuracy of seen/unseen classes, 
H is defined as H = 2 × (As × Au)∕(As + Au). A higher H means a higher class average accuracy of seen and unseen classes, the more 
balanced the accuracy of the two, i.e., the better the model is able to handle the domain bias problem.

4.3. Implementation details

GIRL utilizes ResNet-101 [44], pre-trained on ImageNet, as its backbone for extracting visual features without fine-tuning. We 
utilize adam optimizer [45] with hyperparameters (momentum = 0.9, weight decay = 1e −4). For CUB, SUN, AWA2, and APY, the 
learning rates are 2e −4, 1e −4, 4e −4, and 2e −4, the batchsize 𝑏 are 32, 64, 64, and 20, respectively. In our model, the input image 
is 448 × 448 following [19,15]. More detailed information about the hyperparameters and implementation details can be found in 
Section 4.5.

4.4. Comparison with state-of-the-art methods

Generalized Zero-Shot Learning We first compare GIRL with the current state-of-the-art methods, which comprise direct-

embedding methods, generation-based methods, and region-based methods in the GZSL setting. From Table 1, we can conclude 
the following:

i) GIRL outperforms the state-of-the-art methods on four datasets. H score is marginally superior to TransZero [17] on CUB, with 
a mere 0.1% increase. However the latter utilizes external information, i.e., additional word embedding. Compared to the direct-

embedding methods and generation-based methods, our method improves by at least 2.2%. Without external information, GIRL 
constructs group data and designs intra-group data interactions to improve the model’s localization of fine-grained attribute features.

ii) For SUN, GIRL obtains the top-1 accuracy of H = 42.9%, which exceeds the best current result H = 42.2% of AREES [18]

by 0.7%. RGEN [19], DPPN [15], TransZero [17], and MSDN [16] are most relevant to our approach, which are all devoted to 
mining discriminative region knowledge. Compared to these methods, our method has 6.1%, 2.7%, 2.1%, and 1.6% improvements, 
respectively. The results fully illustrate that GIRL uses its own dataset information to design semantic consistency loss and relational 
alignment loss, further boosting the discriminability and transferability of region features.

iii) GIRL obtains the top-1 accuracy of H = 75.5%, which exceeds the best current result H = 72.8% by 2.7% on AWA2. When 
7

compared to the approaches that are comprised in the region-based methods, our H score outperforms TransZero [17] by 5.3%, 
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Fig. 3. The effects of 𝑁𝑐𝑙 and 𝑁𝑠𝑎𝑚 on CUB and AWA2, in terms of H, As, Au.

RGEN [19] by 4.0%, and DPPN [15] by 3.3%. In contrast to these methods, GIRL guarantees the discriminability and transferability 
of regional features through the interaction of regional features in group data.

iv) GIRL obtains the top-1 accuracy of H = 47.8%, which exceeds the best current result H = 46.3% by 1.5% on APY. RGEN [19]

and DPPN [15] are most relevant to our approach, which are all devoted to mining discriminative region knowledge. Our method 
has 10.6% and 3.5% improvements, respectively. GIRL improves the localization of fine-grained features through the interaction of 
regions between different images.

v) For a fair comparison with the APN [12] and DPPN [15], we present the results without fine-tuning the ResNet-101. On all 
four datasets, our H scores outperform methods that do not rely on external information (e.g. APN [12], DPPN [15], AREN [13], 
and RGEN [19]). This result demonstrates that the mining of information from group data can also facilitate the localization of 
fine-grained attribute features without external information.

vi) RGEN [19] constructs region interactions in a single image. Our H score is superior to RGEN [19] on all four datasets. This 
can be attributed to the fact that GIRL has a tendency to capture additional and crucial semantic contrastive cues by utilizing region 
interaction in group data compared to RGEN. [19]. Such cues are important for ZSL to boost the discriminability and transferability 
of local features.

Zero-Shot Learning In Table 2, we also record the comparison results of GIRL with other state-of-the-art methods in the ZSL 
setting. We can conclude the following from Table 2:

i) For the coarse-grained dataset AWA2, compared to RGEN [19], GIRL obtains a subtle gain of over 0.3%. DPPN [15], TransZero 
[17], and MSDN [16] are relevant to GIRL, compared to these methods, GIRL demonstrates respective improvements of 5.0%, 
3.8%, and 3.9%. GIRL focus more on the interaction between regions in different samples, and this interaction can provide more 
discriminative information to the model.

ii) For the fine-grained dataset SUN, our method obtains a competitive performance, yielding the best performance of 66.5%, 
outperforming the current best method MSDN [16] by 0.7%. This result demonstrates that our method can learn discriminative 
region features and ensures that the learned knowledge can be transferred to unseen classes.

iii) On CUB, GIRL achieves slightly worse performance than TransZero, which employs attribute description vectors. However, 
GIRL leverages its own information to extract discriminative features. On APY, GIRL outperforms existing region-based methods, 
demonstrating its effectiveness in learning discriminative local regions.

4.5. Ablation study

Effects of 𝑁𝑐𝑙 and 𝑁𝑠𝑎𝑚. In GIRL, we randomly select 𝑁𝑐𝑙 classes for a batch, and each class is sampled with 𝑁𝑠𝑎𝑚 images. In 
Fig. 3, (𝑁𝑐𝑙, 𝑁𝑠𝑎𝑚) = (16, 4) represents that we randomly selected 16 classes, and each class randomly selected 4 samples in a batch. 
The best H is obtained at (16, 2) and (32, 2) for CUB and AWA2, respectively.

Effects of 𝜆1 and 𝜆2. In GIRL, 𝜆1 and 𝜆2 adjust the parameters of scl and ral. For CUB and AWA2, the 𝜆1 is within {1e −7, 1e −
6, 1e −5, 1e −4, 1e −3, 1e −2, 1e −1}, and the 𝜆2 is within {1e −7, 1e −6, 1e −5, 1e −4, 1e −3, 1e −2, 1e −1}. ar and ce are more important 
in the overall loss function, so for scl and ral, we adjust the parameters starting from 𝜆1 = 1e −7. In Fig. 4, for CUB and AWA2, the 
overall trend is relatively stable. GIRL gets the best results at 𝜆1 = 1e −1, 𝜆2 = 1e −6 on CUB. This shows that the loss scl is important 
with respect to ral. The scl distill the distinct semantic information from the refined region features to the original region features, 
boosting the model’s localization of precise attribute regions. For AWA2, GIRL gets the best results at 𝜆1 = 1e −3, 𝜆2 = 1e −6. Similarly, 
this result proves that scl is more important and the loss of ral alleviates the bias problem to some extent.

Effects of 𝛼. In the dif-attention-based Interaction (DAI) module, 𝛼 reflects the importance of the feature Υ(𝑥𝑖) ⊗𝑅(𝑥𝑖) in region 
feature refinement. We show the As, Au, and H results when the value is within {1e −8, 1e −7, 1e −6, 1e −5, 1e −4, 1e −3, 1e −2, 1e −1} under 
GZSL setting on SUN and AWA2. Fig. 5 shows that a relatively large 𝛼 can get improved accuracy. For SUN and AWA2, 𝛼 = 1e −2 is 
suitable to yield satisfactory results and the overall change trend is stable.

Component Analysis. To make it easier to grasp the mechanism of GIRL, we performed a component analysis to verify the 
8

importance of each individual component. The ARI module, which consists of the DAI and CAI modules, is a part of GIRL. We also 
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Fig. 4. Effects of 𝜆1 and 𝜆2 on CUB and AWA2 in terms of H.

Fig. 5. Effects of 𝛼 on SUN and AWA2, in terms of H, As, Au.

Table 3

Component analysis on SUN, AWA2 and APY.

Methods SUN AWA2 APY

Au As H Au As H Au As H

baseline 44.0 33.9 38.3 60.9 84.0 70.6 36.7 58.6 45.2

GIRL w/o ARI 45.1 33.9 38.7 62.3 83.4 71.3 37.3 59.0 45.7

GIRL w/o DAI 44.9 35.4 39.6 61.5 86.5 71.9 38.1 59.0 46.3

GIRL w/o CAI 48.3 36.1 41.7 63.8 83.4 72.3 35.5 65.7 46.1

GIRL w/o 𝐿𝑠𝑐𝑙 49.5 35.6 41.4 64.6 83.9 73.0 38.2 57.3 45.9

GIRL w/o 𝐿2
𝑠𝑐𝑙

47.6 36.2 41.1 67.1 81.7 73.6 35.5 65.7 46.1

GIRL w/o 𝐿1
𝑠𝑐𝑙

49.5 36.0 41.7 65.7 85.1 74.1 34.5 65.7 46.0

GIRL w/o 𝐿𝑟𝑎𝑙 47.6 37.3 41.8 66.9 85.1 74.8 35.6 67.6 46.6

GIRL (full) 47.9 38.8 42.9 68.5 84.3 75.5 37.0 67.6 47.8

confirm the significance of 𝐿scl, 𝐿1
scl, 𝐿

2
scl, and 𝐿ral in the loss function. The baseline is the model of GIRL without all components 

mentioned in Table 3, the H value decreases by 4.6%, 4.9%, and 2.6% compared to GIRL (full) on SUN, AWA2, and APY. GIRL without 
ARI drops by 4.2%, 4.2%, and 2.1%. ARI can improve the model’s localization of fine-grained discriminative region features through 
the interaction of the region in the group. The DAI and CAI modules can enhance feature discriminative by learning semantic 
commonalities and differences among regions. 𝐿scl plays a key role in GIRL, aiming to distill discriminative semantic knowledge 
from refined region features to original ones. Assuming no 𝐿scl, the H value would drop by 1.5%, 2.5%, and 1.9% on SUN, AWA2, 
and APY. 𝐿2

scl has a greater impact on the overall model relative to 𝐿1
scl, due to the importance of different region knowledge for the 

localization of discriminative region features. 𝐿ral has a greater impact on the overall model, GIRL without 𝐿ral decreases by 1.1%, 
0.7%, and 1.9% compared to its full model on SUN, AWA2, and APY.

Group Construction. In this section, we discuss how to perform group construction in a batch. A group should contain samples 
9

that semantically complement each other, and for the selection of these samples, we explore different strategies:



Information Sciences 642 (2023) 119135T. Guo, J. Liang and G.-S. Xie

Table 4

Effects of group construction on SUN, AWA2 and APY.

Methods CUB AWA2 APY

Au As H Au As H Au As H

RS 64.7 70.4 67.3 63.1 84.1 72.1 34.5 65.7 45.3

CRS 64.5 71.7 67.9 67.1 84.3 73.7 36.2 65.7 46.7

SCSS 66.2 71.9 69.0 68.5 84.3 75.6 37.0 67.6 47.8

Table 5

Results of GZSL with input size 224 × 224 on CUB, SUN, and AWA2. The best result is bolded.

Methods CUB SUN AWA2

Au As H Au As H Au As H

DAZLE [14] 56.7 59.6 58.1 52.3 24.3 33.2 60.3 75.7 67.1

AREN [13] 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7

LFGAA [41] 36.2 80.9 50.0 18.5 40.0 25.3 27.0 93.4 41.9

RGEN [19] 60.0 73.5 66.1 44.0 31.7 36.8 67.1 76.5 71.5

APN [12] 65.3 69.3 67.2 41.9 34.0 37.6 57.1 72.4 63.9

GIRL 65.8 69.1 67.4 49.5 32.4 39.2 59.0 80.4 68.0

Table 6

Results of GZSL under the setting of without post-processing on CUB, SUN, and AWA2.

Methods CUB SUN AWA2

Au As H Au As H Au As H

SJE [34] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4

SYNC [8] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0

DAZLE [14] 42.0 65.3 51.1 21.7 31.9 25.8 25.7 82.5 39.2

AREN [13] 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7

LFGAA [41] 36.2 80.9 50.0 18.5 40.0 25.3 27.0 93.4 41.9

GIRL 47.9 80.5 60.1 18.9 43.4 26.3 31.8 95.1 47.7

i) Random selection within a batch (RS). We randomly select three samples as a group.

ii) Class-wise random selection (CRS). For sample 𝑅(𝑥), samples are randomly selected among intra/inter classes to form the 
group.

iii) Selection by class and sample similarity (SCSS). For sample 𝑅(𝑥), the most similar samples among intra/inter classes are 
randomly selected to form a group. We have performed experimental validation on CUB and AWA2.

As can be seen from the Table 4, first, the group construction using the third strategy can achieve better results. The common 
information between the most similar samples is more obvious, which contribute to feature refinement. The differences between the 
most similar samples of different classes can train GIRL to get obvious subtle differences and leverage these differences to refine the 
original region features. Second, when constructing groups within a batch, the time complexity of group construction with the third 
strategy is 𝑂(𝑏2), and the time complexity of class-wise random selection is 𝑂(𝑏), 𝑏 is the batch size. Considering the time complexity 
and accuracy together, we choose the third strategy as our group construction technique.

Results of Input Size 224 × 224. In GIRL, we follow the settings of current state-of-the-art methods DPPN [15], TransZero [17], 
MSDN [16], etc., with an input image size of 448 × 448. For a fair comparison, the input size is modified to 224 × 224 in GIRL. In 
Table 5, GIRL outperforms the current methods by 0.2% and 1.6% on the two fine-grained datasets CUB and SUN, and achieves the 
second best result on AWA2. The experimental results demonstrate the effectiveness of our method.

Comparison without Post-Processing. Some current methods utilize post-processing, e.g. calibration stacking [46] or domain 
detector [47] to alleviate the domain bias problem. In this paper, we follow DPPN [15] to alleviate the domain bias problem using 
post-processing. For a fair comparison with other methods, in this section, we further do some experiments, i.e., GIRL compares with 
other methods without the post-processing. In Table 6, our method outperforms the current state-of-the-art methods by 8%, 0.5%, 
and 5.8% on CUB, SUN, and AWA2. This result shows that our method can enhance fine-grained attribute localization in zero-shot 
learning through inter-region interactions, and enhance the transferability of semantic knowledge.

Results of with Finetuning. In ZSL, finetuning ResNet-101 [44] is a solution to alleviate the domain bias problem. DPPN has 
achieved better results with finetuning ResNet-101 [44]. We give the results of GIRL without fine-tuning in Table 1. The GZSL results 
of SUN and AWA2 are still superior to the DPPN with fine-tuning by 1.9% and 2.5%. In Table 7, the GIRL results with finetuned 
ResNet-101 superior to DPPN on SUN and AWA2. It is superior to the existing method by 2.1% on SUN and by 2.6% on AWA2 than 
DPPN. Our algorithm is slightly lower than DPPN on CUB, but from the Table 1, our algorithm is significantly superior to DPPN 
10

without finetuning the ResNet-101 on CUB.
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Table 7

The results of GIRL with Finetuning on CUB, SUN, and AWA2. The best result is bolded.

Methods CUB SUN AWA2

Au As H Au As H Au As H

RGEN [19] 60.0 73.5 66.1 44.0 31.7 36.8 67.1 76.5 71.5

DPPN [15] 70.2 77.1 73.5 47.9 35.8 41.0 63.1 86.8 73.1

GIRL 69.8 76.6 73.0 46.9 39.8 43.1 68.0 85.3 75.7

Table 8

GZSL results using soft spatial attention for region feature extraction on CUB, SUN, and AWA2.

Methods CUB SUN AWA2

Au As H Au As H Au As H

SJE [34] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4

SYNC [8] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0

AREN [13] 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7

GIRL 47.9 80.5 60.1 18.9 43.4 26.3 31.8 95.1 31.9

Fig. 6. Visualization of attribute localization for the baseline and GIRL to prove the necessity of region interaction in the group on CUB.

The region feature extraction methods. We extract the region feature attribute features following the DPPN [15]. We follow 
AREN [13] to extract attribute features using soft spatial attention. In Table 8, the GIRL result is superior to AREN. On the fine-grained 
datasets CUB and SUN, GIRL exceeds AREN by 8% and 0.8%, respectively. On the coarse-grained dataset AWA2, it outperforms AREN 
by 5.2%. The above results show that comprehensive and explicit region interaction among a group of images from different categories 
can enhance the discrimination of region features and thus lead to a desirable knowledge transfer between seen and unseen classes.

4.6. Qualitative results

To intuitively exhibit the advantages of region interaction in groups for learning fine-grained attribute features, we visualize 
the results of attribute localization at different models. In Fig. 6, the comparison between baseline (mentioned in the Component 
Analysis) and GIRL demonstrate the importance of region interaction for attribute localization. Our method (GIRL) is accurate and 
fine for attribute localization compared to baseline, further boosting the discriminability of local features.

To further demonstrate GIRL can boost the discriminability of local features, we visualize the results of fine-grained attribute 
localization under different models. In Fig. 7, A (GIRL without DAI) and B (GIRL without CAI) show the importance of differential 
attention-based and common attention-based regional interactions on attribute localization, respectively. GIRL is accurate in terms 
of fine-grained attribute localization compared to models A and B.

In Fig. 8, we display the t-SNE [48] visualization of unseen class features for APN [12], TransZero [17], DPPN [15], and our GIRL 
on AWA2. The distribution of unseen classes derived by GIRL has more distinct class boundaries than the other three methods. It 
demonstrates GIRL can transfer semantic knowledge to unseen classes and guarantee the class separability of unseen classes through 
the interaction of regions in a group.

5. Conclusion

In this paper, we propose group-wise interactive region learning (GIRL) for tackling ZSL and GZSL. GIRL consists of atten-

tive region interaction (ARI) module and holistic semantic embedding (HSE) module. ARI captures the semantic differences and 
commonalities of the corresponding regions by region interaction in a group data, and then refines original region features. HSE 
holistically maps these region features to the semantic space for a more stable semantic transfer. We introduce semantic consis-
11

tency loss to promote semantic distillation from refined region features to original region features. The relational alignment loss 
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Fig. 7. Visualization of attribute localization on A (GIRL without DAI), B (GIRL without CAI), and GIRL to verify the importance of each module in ARI, further prove 
the necessity of the interactive region learning among a group of images from different categories.

Fig. 8. t-SNE of unseen test images for APN [12], TransZero [17], DPPN [15] and GIRL on AWA2.

further introduces unseen class semantic vectors into the training. For ZSL and GZSL, GIRL yields some state-of-the-art results. ARI 
being a plug-and-play module, in future work, we will introduce this idea of group data interaction to other tasks e.g. fine-grained 
classification and zero-shot segmentation.
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