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a b s t r a c t

Contrastive learning as a self-supervised method has achieved great success. Although it is an instance-
level discriminative method, the model can eventually learn latent semantic class information. Its core
idea is pulling different views of the same instance closer but pushing out different instances. However,
treating an instance as a class hinders the model from learning true latent semantic classes, which is
caused by instances (called hard negatives) that are similar to the anchor but do not belong to the same
semantic class. In this paper, we propose a new contrastive learning framework based on the Student-t
distribution with a neighbor consistency constraint (TNCC) to reduce the effect of hard negatives. In
this framework, we propose to use the loss based on the Student-t distribution as the instance-level
discriminative loss to keep hard negatives far away. Furthermore, we add a new neighbor consistency
constraint to maintain consistency within the semantic classes. Finally, we compare TNCC with recent
state-of-the-art contrastive learning methods on five benchmark datasets to verify the effectiveness of
the proposed framework.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Since the training of deep neural networks relies on large-
cale labeled datasets, many researchers have begun to conduct
ubstantial research on unsupervised methods or self-supervised
ethods. Among them, the key to self-supervised learning (SSL) is
ow to set up a pretext task (e.g., context prediction [1], coloriza-
ion [2], inpainting [3], rotation [4]) so that the model can obtain
seful feature information from a large amount of unlabeled data.
t present, self-supervised learning has achieved encouraging
esults in natural language processing [5,6] and computer vision
n the field of image [7,8] and video [9].

Recently, a particular kind of self-supervised learning method
as become popular, known as instance-level discrimination,
.e., contrastive learning (CL). The core idea of CL methods is
ulling feature embeddings of two transformed versions of the
ame instance (positives) close to each other but pushing em-
eddings of other instances (negatives) apart. For typical CL
ethods, negatives generated through data augmentations are
ritical. On the one hand, they can avoid collapsing solutions
uring the training process. On the other hand, they increase the
omplexity of the learning task so that the model can learn more
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essential features of the instance. In addition, most of the typical
CL methods are based on the InfoNCE loss [10].

It is worth mentioning that although contrastive learning is
an instance-level discriminative method, the model can eventu-
ally learn latent semantic class information of the data [11,12].
In other words, ideally, the final learned result should be that
features of instances within the same semantic class are very
close, but features of instances between different semantic classes
should be far away. However, there are often some negatives with
different semantic classes that are very similar to positives, which
we call hard negatives. To understand this problem intuitively, we
take the cat–dog dataset as an example, which is shown in Fig. 1.
In this figure, the dog in the dark red border is the anchor and
the others are negatives. There are some negatives with the same
semantic class as the anchor (i.e., dogs with light red borders)
and a few hard negatives (i.e., cats with pink borders). These hard
negatives are close to the anchor in the feature space, which will
mislead the model to learn the wrong latent semantic class in-
formation to a certain extent. When performing the downstream
task, such as the classification task, the model’s incorrect concept
of semantic classes will lead to poor classification results.

We believe the reason is that the similarity measure in the
InfoNCE loss is similar to a Gaussian kernel function. This function
is positively correlated with the similarity of feature embeddings.
Under this distribution, the cosine similarity between features
is magnified in the same way, which makes the negatives with
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Fig. 1. An example of hard negatives affecting model training and the
downstream task, such as the classification task.

relatively high similarity to the anchor (i.e., some negatives of the
same semantic class as the anchor and most hard negatives) have
the same effect on the model. In this case, the model’s concept of
latent semantic classes is weakened. In this paper, we propose
a new contrastive learning framework based on the Student-
t distribution with a neighbor consistency constraint (TNCC) to
address this problem. The Student-t distribution has heavier tails
and can more easily produce values below the mean of similarity.
Under this distribution, negatives with high similarity to the
anchor will play a major role in training the model, while other
negatives with relatively high similarity will be less important.
In the later stage of training, the anchor will have high-similarity
negatives with the same semantic class. This makes the model
better learn the semantic classes under the Student-t distribu-
tion. On this basis, we further propose a neighbor consistency
constraint to constrain the semantic class consistency between
specific samples. Finally, our contributions to this paper can be
summarized as follows:

• We replace the InfoNCE loss with the loss based on the
Student-t distribution for contrastive learning. The long-
tailed property of the Student-t distribution is taken advan-
tage of to reduce the importance of the hard negatives.

• We add a new neighbor consistency constraint that uses
particular simple samples and their nearest neighbors to
maintain consistency within the semantic classes.

• We use some experiments to illustrate the effectiveness of
the new contrastive learning framework compared with the
state-of-the-art SSL methods.

The outline of the paper is as follows. In Section 2, we review
some work related to this paper. In Section 3, we introduce
the previous typical contrastive learning method and the related
consistency constraint methods. Then, we present the loss, frame-
work, and algorithm of TNCC in Section 4. The experimental
results are presented in Section 5. The conclusions of this paper
are provided in Section 6.

2. Related work

Data augmentation strategies and frameworks are essential for
CL methods, so we review these two related contents. In addition,
we have compiled relevant literature on Student-t distribution
research.

Data augmentation strategies can be divided into strategies
or positives and negatives. For positives, data augmentations
2

are widely used [13–15], such as image cropping, rotation, color
jittering, and Sobel filtering. Augmented instances can effectively
improve the difference between positives and force the model to
learn semantically invariant content between very different pos-
itives. It can greatly improve the feature extraction performance
of the CL model. In addition, in the video field, Han et al. [16]
proposed a sampling method of selecting matching samples from
different views to form positives and proposed a new method
of self-supervised collaborative training. Ding et al. [17] used
contrastive learning to solve the person reidentification problem
and used a similar threshold to dynamically select reliable similar
images as positives.

For negatives, Kalantidis et al. [18] proposed two methods
to generate new hard negatives at the feature embedding level.
Chuang et al. [19] proposed a biased contrastive loss to correct
the sampling bias, hoping to reduce the impact of false negatives
as much as possible without labels. Given the characteristics
of two disjoint datasets in the novel class discovery problem,
Zhong et al. [20] proposed mixing specific labeled samples with
unlabeled samples in the feature embedding space to generate
new samples. Ho et al. [21] introduced the idea of adversarial ex-
amples into CL and used adversarial examples to generate harder
pairs of positives and negatives. Robinson et al. [22] proposed a
new sampling method to obtain harder negatives and avoid false
negatives through the defined ‘‘hardness’’. Wang et al. [23] de-
signed a negative generator trained against the encoder network
in an adversarial manner to generate hard negative samples for
contrastive learning in unpaired image-to-image translation.

Contrastive learning frameworks include the loss function
and the specific Siamese network. In the CL method, which uses
negatives, the framework usually uses the InfoNCE loss. Wu
et al. [11] proposed using a memory bank to store instance-
level class feature embedding [24] and used noise contrastive
estimation (NCE) loss [25] to simplify the calculation process.
Aiming at the problem of inconsistent feature embeddings in the
memory bank, He et al. [26] proposed using queues to dynami-
cally store and update feature embeddings and used a momentum
update method to stabilize the Siamese network during the
training process. Chen et al. [27] proposed a simple weight-
sharing Siamese network framework, which utilized sufficient
data augmentations, large batch sizes, and a new projection space
to greatly improve the CL model’s performance.

However, instance-level contrastive learning methods treat an
instance as a class, which hinders the model from learning the
true latent semantic class. To solve this problem, Cai et al. [28]
assumed that feature embeddings obeyed a Gaussian distribution
and calculated the upper bound of the InfoNCE loss with the mean
and covariance of the samples, thereby introducing dependencies
among different query-key pairs. Wei et al. [29] added a consis-
tency constraint that used KL divergence to make each similarity
distribution between the positive and negatives consistent. Fan
et al. [30] proposed using dual thresholds (i.e., absolute similarity
and relative similarity) to augment positives in the contrastive
learning process.

Recently, there have been some new methods that only use
positives. Caron et al. [31] introduced the idea of online clustering
into the CL method (i.e., comparing the cluster assignment of
multiple images). Grill et al. [32] proposed using an asymmetric
Siamese network to predict the output of one view from another
view, where one branch of the network is a momentum encoder,
and its loss is the mean square error (MSE). Based on this work,
Chen and He [33] removed the momentum encoder to further
analyze the reason why the CL method using only positives is
effective. However, regardless of whether negatives are used, the
existing CL methods usually require a large batch size.

Student-t distributions have an important property: tail
heaviness, which has been used in many aspects of deep learning.
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Table 1
Definitions of main symbols.
Notation Description

n Number of instances

k Range of simplest samples

m Number of simplest samples

T = {ta(·)}pa=1 Family of augmentations

f (·) Base encoder network

gp(·) Feature projection head

gn(·) Class projection head

X = {xi}ni=1 Dataset of n instances

Xa The a-th view of X

H = {hi}
n
i=1 Set of representations

Ha The a-th view of H

Z = {zi}ni=1 Set of feature embeddings

Za The a-th view of Z

Z e
= {zei }

m
i=1 Set of feature embeddings for simplest

samples

Z en
= {zeni }

m
i=1 Set of feature embeddings of the nearest

negative neighbor of zei
C = {ci}ni=1 Set of class embeddings

C e
= {cei }

m
i=1 Set of class embeddings for simplest samples

C en
= {ceni }

m
i=1 Set of class embeddings of the nearest

negative neighbor of cei

Maaten and Hinton [34] presented a modification to stochastic
neighbor embedding (SNE) [35] that used a Student-t distribution
to show high-dimensional data in a low-dimensional latent space
by assigning a place in a two-dimensional map to each data
point. This modification is much faster to optimize because of
the Student-t distribution instead of the Gaussian noise. To solve
the instability of variational autoencoder (VAE) training caused
by the zero-variance problem, Takahashi et al. [36] proposed
using a Student-t distribution as the decoder distribution, which
is robust to the error between the data point and its decoded
mean. In addition, because labeled data in the medical field are
scarce and expensive, Ahmad et al. [37] used the GAN with an
auxiliary classifier, which samples the noise vector from a heavy-
tailed Student-t distribution instead of a random noise Gaussian
distribution to improve the diversity in the generated images.

3. Preliminary

In this section, we first give definitions of the main symbols
sed in this paper in Table 1. Then, we review previous methods
elated to our method in detail, specifically divided into the
nstance-level contrastive loss (i.e., InfoNCE) and the consistency
onstraint loss.
Typical contrastive learning with InfoNCE. Typical

ontrastive learning methods adopt InfoNCE or its variants for
iscriminating different instances, which encourages the pos-
tives to be pulled closer in the feature space yet the nega-
ives to be pushed away. Specifically, given a training set X =

x1, x2, . . . , xn} of n instances, we generate two correlated views
X1, X2), which can be written as Xa

= ta(X), where ta is
randomly selected from the family of augmentations T . Then,
we use a base encoder network f (·) to extract representations
(H1,H2) and mapping (H1,H2) to feature embeddings (Z1, Z2)
in the feature space through the feature projection head gp(·),
.e., Za

= gp(f (Xa)). For convenience, we denote (zi, zj) as a
ositive pair (i.e., correlated feature embeddings). With similarity
easured by the dot product, the InfoNCE loss is defined as:

LInfoNCE = −
1
2n

2n∑
log

exp(zi · zj/τ )∑
exp(z · z /τ )

, (1)

i=1 i̸=k i k p

3

where τ is a temperature hyperparameter and z is distributed on
the hypersphere through ℓ2 normalization.

Consistency constraint loss. In research of novel class dis-
covery (NCD) [20,38], there is a consistency regularization term,
which enforces the network to produce similar predictions for
an instance x1i and its correlated instance x2i . Specifically, in the
NCD task, there are labeled dataset Dl and unlabeled dataset
Du, containing C l and Cu classes, respectively. Given instances
X , we can obtain correlated views (X1, X2), where Xa

= ta(X).
Then, we obtain their feature embeddings (Z1, Z2) through a base
encoder network f (·) and a feature projection head gp(·), the same
as above. Finally, the mean squared error (MSE) is used as the
consistency constraint loss:

LMSE =
1
C l

C l∑
i=1

(g l
i (z

l1) − g l
i (z

l2))
2
+

1
Cu

Cu∑
j=1

(gu
j (z

u1) − gu
j (z

u2))
2
,

(2)
here g(·) is a linear classifier. It should be noted that the
onsistency constraint is for related views such as the positive
air in contrastive learning.

. Our method

In this section, we introduce our TNCC method. More specif-
cally, Section 4.1 introduces the loss of TNCC, and Section 4.2
escribes the framework and the specific algorithm of TNCC.

.1. TNCC loss

The loss of TNCC is divided into two parts. The first con-
traint is an instance-level contrastive learning loss based on
he Student-t distribution (CLT), and the other constraint is a
eighbor consistency constraint (NCC) that is used to evaluate the
ifference in semantic class information between instances. Note
hat the neighbor information is unreliable in the early training.
hus, we set a coefficient w that gradually increases with the
raining epoch to obtain better performance as in [38]. The overall
bjective function for TNCC can be expressed as:

LTNCC = LCLT + wLNCC. (3)

The contrastive learning loss based on the Student-t distri-
ution. In typical contrastive learning, the learned latent features
f instances are mapped onto a hypersphere over which the
robability distribution is assumed to be uniform. The similarity
easure (i.e., e(

zi ·zj
τ )) in LInfoNCE is similar to a Gaussian kernel

function. The cosine similarity between features is magnified by
1
τ

times in the same way. This makes anchors’ relatively high
imilarity negatives, including some negatives of the same se-
antic class as the anchor and most hard negatives, have almost

he same effect on the model. During typical contrastive learning,
ard negatives will get closer to the anchor, as shown in Fig. 2(a).
hen there are a large number of hard negatives, the model
ill be affected in learning true latent semantic information.
herefore, we use the Student-t distribution with one degree of
reedom to define a new instance-level contrastive loss (CLT),
hich is described as follows:

LCLT = −
1
2n

2n∑
i=1

log
(1 +

zi − zj
2)

−1∑
i̸=k (1 + ∥zi − zk∥2)

−1 , (4)

here (zi, zj) is a positive pair. Since the Student-t distribution
ith one degree of freedom has heavier tails, it can more easily
roduce values below the mean of similarity. Under the Student-
distribution, negatives with high similarity to the anchor will
lay a major role in training the model, while other negatives
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Fig. 2. Comparison of typical contrastive learning methods with CLT. Circles and
squares represent instances of the two semantic classes. The red square is the
hard negative. (a) Typical contrastive learning methods gradually bring the red
square closer to the side of the circle. In contrast, (b) CLT exploits the long tail
to gradually move the hard negatives away.

with relatively high similarity will be less important. This is
equivalent to having a hidden threshold to ensure that fewer
reliable negatives are more effective. Therefore, during the CLT
optimization process, the anchor will have high-similarity nega-
tives with the same semantic class as in Fig. 2(b). This enables the
model to effectively learn the concepts of semantic classes under
the Student-t distribution. Another advantage of LCLT is that it
equires no hyperparameters.

The neighbor consistency constraint for the simplest sam-
les. During the training process, we observed a phenomenon: in
ach batch, there are always some samples whose feature embed-
ings are far from most other feature embeddings. We call these
articular samples ‘‘the simplest samples’’, which are denoted
s Z e. To be more intuitive, we count the farthest negatives of
ach sample (the anchor) in the first batch within different train-
ng epochs of the CLT model on the CIFAR-10 dataset. Detailed
xperimental settings are provided in Section 5.3. As shown in
ig. 3, the Y -axis represents the frequency of this instance as the
arthest negative. Augmented instances represent the instances in
he batch that are used to train the model. For the convenience of
bservation, we add their corresponding original instances in the
ext line. We can see that the farthest negatives are concentrated
n a few instances. Interestingly, the semantic classes of most of
he farthest negatives are the same, such as ‘‘frog’’, ‘‘automobile’’,
nd ‘‘horse’’. We consider these samples to be well identifiable by
he model during instance-level contrastive learning.

Therefore, we add the neighbor consistency constraint that
ses these discriminative simplest samples to impose consis-
ency constraints on the nearest neighbor, further enhancing the
onsistency of semantic classes. Considering the credibility and
roportion of the simplest samples, we set up the limitation of
istance and quantity when selecting these samples. Specifically,
e first add the top-k furthest negatives of each sample to the
implest samples Z e. Then, we count the number of occurrences
f each simplest sample and keep only the top-m most frequent
4

simplest samples. Next, we add the nearest negative neighbor of
each simplest sample to Z en. Finally, we project Z e and Z en into the
lass space through the class projection gn(·) for the consistency
onstraint:

LNCC =
1
m

m∑
i=1

(cei − ceni )2, (5)

where cei = softmax(gn(zei )) and ceni are the same. As shown in
Fig. 4, circles and triangles represent instances of two semantic
classes, and blue circles and triangles represent the simplest sam-
ples. The instances in the dashed box are the simplest sample and
its nearest negative neighbor. The green box represents that the
simplest sample has the same class as its nearest neighbor, and
the red box represents that the simplest sample has a different
class from its neighbor. After the process of NCC, neighbors of the
same class as the simplest sample hardly move, while the other
neighbors whose class is different from the simplest sample are
pushed away. In addition, since the simplest samples contribute
little to the instance-level contrastive loss, NCC also improves the
utilization of these samples.

4.2. TNCC framework and algorithm

As shown in Fig. 5, the TNCC framework can be divided into
two parts, corresponding to two losses. The former part is con-
sistent with the typical contrastive learning framework, except
that we use the loss LCLT. The latter part is the NCC module,
where we add the semantic class consistency constraint. In more
detail, we first augment instances X to obtain relevant views
(X1, X2), and then we obtain feature embeddings (Z1, Z2) through
the base encoder network f (·) and the feature projection head
p(·). We calculate the loss LCLT with Eq. (4). Next, we filter
ut qualified simplest samples Z e in the current batch and find
heir nearest negative neighbors Z en. Furthermore, we obtain class
mbeddings by projecting Z e and Z en into the class space through
class projection head gn(·). Finally, we calculate the loss LNCC
ith Eq. (5) and the overall loss LTNCC with Eq. (3). The overall
lgorithm flow is shown in Algorithm 1.

Algorithm 1 The TNCC algorithm.
Input: range of simplest samples k; number of simplest samples
m; batch of different augmented samples {x1i }

n
i=1, {x

2
i }

n
i=1; base en-

oder network f (·); feature projection head gp(·); class projection
ead gn(·)
Output: the well trained encoder network f (·)
1: for i = 1 to n do
2: h1

i = f (x1i ), h
2
i = f (x2i )

3: z1i = gp(h1
i ), z

2
i = gp(h2

i )
4: calculate the loss LCLT by Eq. (4)
5: for i = 1 to 2n do
6: add the top-k furthest negatives of zi to simplest samples

Z e

7: keep the top-m most frequent simplest samples in Z e and
select their nearest negative neighbors Z en

8: C e
= gn(Z e), C en

= gn(Z en)
9: calculate the loss LNCC by Eq. (5)
0: optimize the network with the loss LTNCC by Eq. (3)

11: return the encoder network f (·)

5. Experiments

In this section, we compare our method with some advanced
CL methods under datasets (CIFAR-10, CIFAR-100, STL-10,
ImageNet-100, Voc2007) and verify the effectiveness of each
module of the framework through ablation experiments.
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Fig. 3. The farthest negative of each anchor in the first batch within different training epochs of the CLT model on the CIFAR-10 dataset.
Fig. 4. A schematic representation of the NCC based optimization process.
Fig. 5. The TNCC framework.
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.1. Experimental setup

In our experiments, we use the following datasets:

• CIFAR-10 and CIFAR-100. The CIFAR-10 and CIFAR-100 [39]
datasets consist of 60,000 32 × 32 color images, specifically,
50,000 training images and 10,000 test images. There are
10 classes, with 6,000 images per class in CIFAR-10. And
CIFAR-100 has 100 classes containing 600 images each.

• STL-10. The STL-10 [40] dataset is derived from the
ImageNet-1k dataset, with 96 × 96 resolution images in 10
classes. It contains 100,000 unlabeled images for unsuper-
vised learning. In addition, there are 1,300 labeled images
for each class, including 500 training images (10 pre-defined
folds), and 800 test images per class.

• ImageNet-100. ImageNet-100, i.e. IN-100, is a subset of
the ImageNet-1k dataset [41] from ImageNet Large Scale
Visual Recognition Challenge 2012. It contains random 100
classes. Each class contains 1,300 training images and 50 test
images.

• Voc2007. The Voc2007 [42] dataset contains 9,963 images,
specifically, 5,011 training images, and 4,952 test images.
Voc2007 contains a total of 20 classes, and the number of
5

samples in each class is inconsistent. The sizes of each image
are inconsistent, roughly 500 × 375 (horizontal image) or
375 × 500 (vertical image).

Setting. To facilitate comparison with other CL methods, we
se the same experimental settings where possible in our ex-
eriments, including the backbone network and the batch size.
pecifically, we uniformly use ResNet-50 as the backbone, ex-
ept that the first convolutional layer of DCL [19] and HCL [22]
as been slightly changed, according to the network settings
f the original paper. For the batch size, we set it to 64 on
he IN-100 dataset and 32 on other datasets. We use the Adam
ptimizer [43], and the learning rate is set according to the paper
r the best value, as shown in Table 2. Then, we reproduced some
ecent CL methods based on the codes and parameter setting
ethods provided in the paper. For the Voc2007 dataset, we

rain models for 500 epochs, and for other datasets, we train
hem for 400 epochs. In the NCC, the range of simplest samples
and the number of simplest samples m are set as shown in

Table 3. The hidden layer dimension of the feature projection
head gp(·) is 2048, and the feature embedding size is 64, 128,
or 256. The class embedding size is set as the number of classes
in the dataset. In other methods, latent-space features are ℓ
2
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Table 2
Learning rate schedule.
Method MoCo MoCo v2 SimCLR BYOL DCL HCL TNCC(ours)

LR 0.03 0.03 0.0003 0.0002 0.001 0.001 0.0003

Table 3
Hyperparameter settings of NCC on each dataset, the range of simplest samples
k, and the number of simplest samples m.
Method CIFAR-10 CIFAR-100 STL-10 IN-100 Voc2007

k 10 5 8 10 2
m 8 10 14 10 5

normalized, unless otherwise specified. In MoCo [26] and MoCo
v2 [44], we set the temperature τ = 0.07, the memory bank size

= 65536, and the momentum m = 0.999. In SimCLR [27], we
et the temperature τ = 0.5. In DCL [19], we set the temperature
= 0.5 and the positive class prior τ+

= 0.1. In HCL [22], we
set the temperature τ = 0.5. The positive class prior τ+ and
he concentration parameter β are set following [22] on different
atasets. In BYOL [32], we set the exponential moving average
arameter τ = 0.99.
Image transformation details. For SimCLR [27], BYOL [32],

nd our TNCC, we first extract crops with a random size from 0.2
o 1.0 of the original area and then scale these crops to 224 × 224.
ext, we apply horizontal flipping with probability 0.5, color
ittering with configuration (0.8, 0.8, 0.8, 0.2) with probability
.8, and grayscaling with probability 0.2. Last but not least, when
esting, we only resize the image to 224 × 224.

For other methods, considering the differences in the network,
.e., DCL [19] and HCL [22], or differences in augmentations be-
ween MoCo [26] and MoCo v2 [44], we follow the augmentation
ettings in the original paper, both during training and testing.
Evaluation protocol. Following the widely adopted linear

valuation protocol, we only use the well-trained frozen back-
one network (i.e., ResNet50) with fixed parameters to extract
eature embeddings. Then, we use these sample features of the
raining set to train a supervised linear classifier for 500 epochs.
inally, we test the classification accuracy on the testing set. For
he optimizer used in the training of the classifier, most methods
se the Adam optimizer and set the learning rate according to
he paper. However, MoCo and MoCo v2 use the SGD optimizer
ollowing the paper setting.

.2. Experimental results

We test our model performance in terms of its classification
bility and transfer ability. The specific experimental results are
s follows:
Comparison with the state of the art. Through experiments,

e found that TNCC works well when the feature embedding size
s small. For ease of comparison, we test the classification accu-
acy of all methods under different feature embedding size set-
ings. Table 4 shows our classification results. It can be seen that
ach method has a different preference for feature embedding
ize on different datasets, while TNCC fluctuates relatively more
nder different feature dimensions, i.e., on the CIFAR-100 and
oc2007 datasets. The CIFAR-100 dataset contains 100 classes,
nd the Voc2007 dataset contains 20 classes. We think the reason
s that the Euclidean distance is used in the CLT module to
easure the similarity between examples without ℓ2 normal-

zation, as in LInfoNCE . The Euclidean distance between samples’
eature embeddings may be quite different in each dimension,
hich makes the CLT module sensitive to the feature dimension.
owever, in general, our method is better than previous work,
xcept for the result on CIFAR-100, which is close to BYOL.
6

Table 4
Classification accuracy (Acc) under linear evaluation on the CIFAR-10, CIFAR-100,
and STL-10 datasets. Mean average precision (mAP) on the Voc2007 dataset. Dim
means feature dimensions.
Method Dim CIFAR-10 CIFAR-100 STL-10 Voc2007

Acc Acc Acc mAP

MoCo [26]

128

77.02 52.01 80.97 –
MoCo v2 [44] 84.39 60.90 85.63 –
SimCLR [27] 89.16 62.65 87.40 61.13
DCL [19] 87.03 57.27 82.98 53.67
HCL [22] 87.51 58.80 83.82 55.45
TNCC(ous) 89.97 62.53 89.62 60.02

BYOL [32] 256 88.70 64.23 87.36 56.89
TNCC(ous) [22] 89.79 62.42 89.85 61.33

MoCo [26]

64

77.37 50.66 81.51 –
MoCo v2 [44] 84.81 60.70 86.43 –
SimCLR [27] 88.53 62.80 88.16 60.71
DCL [19] 86.26 57.93 82.92 53.96
HCL [22] 87.80 59.55 84.11 54.20
BYOL [32] 88.13 64.21 87.34 57.68
TNCC (ours) 90.67 64.37 90.11 61.75

Table 5
Results of transfer learning across the CIFAR-10, CIFAR-100, and
STL-10 datasets with ResNet50. The source dataset is used to train
the model, and the target dataset is used to test the classification
accuracy (Acc).
Source Target Method Acc

CIFAR-10
CIFAR-100 SimCLR [27] 59.81

TNCC (ours) 61.64

STL-10 SimCLR [27] 72.59
TNCC (ours) 76.53

CIFAR-100
CIFAR-10 SimCLR [27] 83.16

TNCC (ours) 83.86

STL-10 SimCLR [27] 70.21
TNCC (ours) 70.92

STL-10
CIFAR-10 SimCLR [27] 84.15

TNCC (ours) 84.78

CIFAR-100 SimCLR [27] 57.24
TNCC (ours) 58.23

In addition, we found that the performance of the linear clas-
sifier of some models decreased during the long training process.
For example, the accuracy of HCL is 60.98 when training a linear
classifier on the CIFAR-100 dataset for 100 epochs, and the accu-
racy decays to 58.80 when it is trained to 500 epochs. Conversely,
the linear classifier of SimCLR is stable over long training epochs.
We think it is fair since the parameters of all pretrained models
are fixed during the whole testing process, and all the linear
classifiers are trained with the same epochs.

Transfer learning. To verify whether TNCC can learn trans-
ferable features, we evaluate transfer learning performance with
the CIFAR-10, CIFAR-100, and STL-10 datasets in linear evaluation
settings. Specifically, we use the model trained on one dataset to
test the classification accuracy of the other two datasets. Table 5
shows the results of our comparison with SimCLR. It can be seen
that the transferable features learned by our method are better
than SimCLR throughout the transfer learning test. In particular,
our model trained on the CIFAR-10 dataset has the greatest im-
provement in transfer ability. We believe that a large amount
of noise-free training data is crucial for the transfer ability of
contrastive learning. This also means that our method has room
for improvement when there is little training data for each class
or when the training data contain irrelevant data.
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Table 6
Ablation comparison results among SimCLR and TNCC.
Method CIFAR-10 CIFAR-100 STL-10 Voc2007

Acc Acc Acc mAP

SimCLR [27] 88.53 62.80 88.16 60.71
CLT (ours) 89.61 63.81 89.83 61.40
NCC(ours) 40.57 14.83 29.44 –
TNCC (ours) 90.67 64.37 90.11 61.75

Table 7
Experimental results with different batch sizes on CIFAR-10.
Method Batch size

16 32 64 128

SimCLR [27] 87.16 88.53 89.81 90.16
CLT (ours) 88.69 89.61 – –
TNCC (ours) 88.75 90.67 90.40 –

Table 8
Classification accuracy on the ImageNet-100 dataset. Top-
1 and top-5 correspond to the accuracy of a linear
classifier.
Method Top 1 Top 5

MoCo [26] 55.02 80.96

SimCLR [27] 69.03 90.21

CLT (ours) 68.17 89.82
TNCC (ours) 68.66 89.77

5.3. Ablation studies

Since TNCC consists of two parts, CLT and NCC, we conduct
ore detailed ablation experiments to verify the effectiveness
f each module of the framework. Table 6 shows the ablation
omparison results among the TNCC and SimCLR modules. Ta-
les 7 and 8 show the effect of different batch sizes, i.e., different
egative sample sizes.
Effect of the contrastive learning loss based on the Student-

distribution. Since our loss function is based on the Student-
distribution, it avoids the temperature hyperparameter τ in
InfoNCE by taking advantage of the long tail of the Student-t
istribution. That is, there are no hyperparameters in CLT. In
ddition, CLT does not perform ℓ2 normalization on the feature
mbedding, so we test the effect of using different BN layers in
he projection head gp(·) on CIFAR-10, CIFAR-100, and STL-10. The
esults are shown in Fig. 6. From the figure, it can be observed
hat no BN layers give the worst effect, and adding one BN layer
nly after the first linear layer makes the model steadily improve.
n the case that the BN layer is added after both linear layers, it
nly has a large improvement on the STL-10 dataset. Considering
hat STL-10 and IN-100 are the subsets of IN-1K, we set gp(·) to
he structure of the linear layer, BN layer, ReLU, linear layer, and
N layer on STL-10 and IN-100. For other datasets, we add only
ne BN layer after the first linear layer.
Effect of the neighbor consistency constraint for simplest

amples. First, we intuitively show the farthest negative from
he anchor in one batch on the CIFAR-10 dataset, as shown in
ig. 3. In the experiment, we set the manual seed to 42 so
hat the samples in the first batch of each epoch are the same.
hen, we use the model trained with LCLT for different epochs to
xtract features of samples in the first batch. The batch size is
et to 32, so there are 64 anchors in one batch, and each anchor
as 62 negatives because the anchor itself and its augmentation
orm a positive pair. Interestingly, the model seems to have a
trong identification for some kinds of instances (such as frogs,
utomobiles, and horses). Based on the above phenomenon, we
esigned the NCC module.
7

Fig. 6. The effect of the BN layer in the CLT module.

However, LNCC used alone to train the model will cause col-
apsed solutions (e.g., outputting the same feature embedding
or all images [32]) due to the Siamese network and the MSE
oss. During training, it can be observed that the training loss
apidly approaches 0, but the model does not learn any useful
epresentation. As shown in Table 6, the performance of the
odel trained with LNCC is poor, and the classification accuracy

depends entirely on the linear classifier. The backbone network
is no different from a randomly initialized model. Therefore, it is
important to ensure that the model does not collapse.

Based on the CLT module, the NCC module can steadily par-
ticipate in the training of the model. The improved performance
of NCC is the most obvious in the CIFAR-10 dataset, as shown
in Table 6, which is consistent with our intuition. Since NCC
implicitly adds the semantic class constraint to specific sam-
ples, it can enhance the consistency of semantic classes between
samples. In CIFAR-10, there are only ten semantic classes and a
large number of indistinguishable samples of cats and dogs, cars
and trucks. The more hard negatives there are, the better the
improved performance of NCC.

In addition to the above analysis, we test the effect of k and m
n the NCC module on CIFAR-10. Specifically, we first fix m = 10
nd increase k from 2 to 10 to study the effect of the range of
implest samples on the modular performance. Then, we fix k =

0 and increase m from 2 to 10 to study the effect of the number
f simplest samples. The results are shown in Fig. 7. The number
f simplest samples is critical for NCC, and too much or too little
ill lead to incorrect guidance for the model. However, overall, it

s robust, as we can see that the performance of the framework
fter adding NCC is only worse than that of CLT when m = 2. The

range of the simplest samples does not appear to be very regular.
We believe this is due to the data itself and experimental settings,
such as the number of semantic classes and the batch size.

Effect of different batch sizes. We test the classification ac-
curacy of the SimCLR model and our CLT module and TNCC model
at batch sizes of 16, 32, 64, and 128 on the CIFAR-10 dataset.
The results are shown in Table 7. It can be seen that the model
trained with LCLT has excellent classification performance with
few negatives. However, when the batch size is set to 64 or larger,
the process of training the model using LCLT becomes unstable.
Specifically, there are cases where the loss suddenly becomes
Nan. We tried to reduce the learning rate of the Adam optimizer,
normalize the feature embeddings, and add a very small number,
such as 1e − 12, to the calculation of the Student-t distribution.
When the batch size is 64, reducing the learning rate works well
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Fig. 7. The effect of the NCC module.
Fig. 8. Cosine similarity of positive pairs and negative pairs for embeddings trained on CIFAR-10 with SimCLR, CLT, and TNCC.
n IN-100, as shown in Table 8, but not on CIFAR-10. Moreover,
NCC can be trained stably, although there is a certain drop in
erformance. We believe that the nearest neighbor consistency
onstraint in the NCC module plays a crucial role. However, the
NCC model will also become unstable if the batch size is set
o 128. The NCC module can alleviate the instability of the CLT
odule under large batch sizes, but it cannot fundamentally solve

t. Studying why CLT becomes unstable and how to solve this
roblem is one of our future works.

.4. Verification experiments

To verify whether our model has learned the concept of
emantic classes, we conduct an experiment on the CIFAR-10
ataset to plot the histograms of cosine similarities of positive
airs and negative pairs for the learned representations. We set
he batch size to 32 and the manual seed to 42. There are 64
ositive pairs and 3968 negative pairs (i.e., 64 × 62) in each
8

batch. To avoid randomness, we count the first ten batches. We
load the SimCLR, CLT, and TNCC models trained for 400 epochs
for similarity statistics. Then, we convert the value of cosine
similarity to [0, 1] by (cos + 1)/2. We divide [0, 1] equally into
ten intervals and count the number of similarity values in each
interval. The result is shown in Fig. 8.

It can be intuitively seen that the cosine similarity of positive
pairs in CLT and TNCC is almost all in [0.9, 1], while in SimCLR, it
is distributed in [0.6, 1]. The cosine similarity of negative pairs
in SimCLR is centered at [0.3, 0.7], which means that the vast
majority of negatives are pushed away equally by the anchor,
even if they have the same class label as the anchor. In con-
trast, the cosine similarity of negative pairs in CLT and TNCC is
distributed in various intervals, indicating that the anchor has
different penalties for different negatives. This is exactly the
result we want.

Based on the TNCC model, we looked at the negatives in the
first batch where the similarity to the anchor was in [0.9, 1].
The first four anchors and their high-similarity negatives are
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Fig. 9. The first four anchors and their high-similarity negatives in the first batch
are based on TNCC. Images in the figure are augmented images in the batch.
For the convenience of observation, we add the corresponding label above the
images.

visualized in Fig. 9. Since the augmented images in batches may
be illegible, we add corresponding labels to the images. Negatives
with the same label as the anchor are boxed in green; conversely,
those in red are negatives with different labels. We found that the
model has a strong ability to recognize instances of mechanical
classes, such as ‘‘ship’’ and ‘‘automobile’’, as all negatives with
the same label as the anchor have high similarity. The model’s
recognition of animal classes is relatively weak. For example,
in ‘‘bird’’, there are instances of ‘‘dog’’, ‘‘horse’’, ‘‘airplane’’, and
‘‘frog’’. However, there are also some negatives whose labels are
the same as those of the anchor. This proves that our method
enables the model to effectively learn the concepts of semantic
classes.

6. Conclusions

In this paper, we propose a new contrastive learning frame-
ork (TNCC) to reduce the effect of hard negatives and en-
ble the model to learn the concept of semantic classes. Specif-
cally, we first use a loss based on the Student-t distribution
CLT) as an instance-level contrastive loss, exploiting its long-
ailed property to keep hard negatives away. Then, we add a
eighbor consistency constraint (NCC) to constrain the semantic
lass consistency between the simplest samples and their nearest
eighbors. The results of linear evaluation and transfer learning
re comparable to or superior to the state-of-the-art methods.
urthermore, we conduct ablation experiments and verification
xperiments to verify the effectiveness of each module and the
verall framework.
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