
Information Sciences 647 (2023) 119494

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Multi-actor mechanism for actor-critic reinforcement learning

Lin Li, Yuze Li, Wei Wei ∗, Yujia Zhang, Jiye Liang
Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information
Technology, Shanxi University, Taiyuan, Shanxi, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Reinforcement learning

Multi-actor

Actor-critic

Value estimation

Value estimation is a critical problem in Value-Based reinforcement learning. Most related
studies focus on using multi-critic to reduce estimation bias and seldom consider the multi-actor
impact on value estimation. This paper proposes a multi-actor mechanism (MAM) for Actor-Critic
reinforcement learning that can provide multiple behavior choices in the same state, resulting
in diverse Q-values that provide richer information and enhance exploration capability. MAM
contains two technologies. One is obsolescence technology, which quickly generates high-quality
experience to help the agent find the optimal policy. The other is Q-value weighting technology,
which leverages multiple Q-values to achieve a more accurate value estimation. The proposed
mechanism, MAM, is general and can be applied to any Actor-Critic reinforcement learning
algorithm. Specifically, we embed MAM into DDPG and TD3 and demonstrate that MAM can
mitigate estimation bias, enhance exploration, and yield state-of-the-art results in various MuJoCo
tasks, including the challenging Humanoid-v2 and Walker2d-v2 benchmarks.

1. Introduction

Reinforcement Learning (RL), a paradigm in machine learning, differs from traditional supervised and unsupervised learning. RL
aims to obtain the optimal policy through trial and error [1]. Combining Deep Learning (DL), Deep Reinforcement Learning (DRL)
has recently performed well in many complex tasks [2], such as playing games [3–5], robot control [6,7], financial trading [8],
recommendation [9,10], and so on. However, several challenging issues still prevent DRL from being applied to a broader range of
tasks. The value function’s estimation bias is critical in these challenging issues.

Many popular RL algorithms, such as Deep Q-Network (DQN) [5,11], suffer from overestimation problems, usually caused by the
maximization operation, insufficiently flexible approximation [12], or approximation noise [13]. The essence of temporal difference
learning [1] further exaggerates the estimation bias because using the estimation of a subsequent state to update an estimate of the
value function. To solve this problem, Fox et al. [14] and Lee et al. [15] try to add a penalty or correct the policy. Nachum et al.
[16] apply the smoothed value functions to lower bias. Wang et al. [17] use the advantage function to relieve overestimation. These
improvements above focus on the single critic. Some approaches use multi-critic to reduce the overestimation bias. Double Q-learning
[13] and Double DQN [18] alleviate the overestimation problem by using two critics. Anschel et al. [19] try to minimize estimation
error by averaging multiple Q-values directly. From the literature mentioned above, using multi-critic can effectively alleviate the
overestimation problem. The above approaches focus on the discrete action settings. At the same time, the Deep Deterministic Policy

* Corresponding author.

E-mail addresses: lilynn1116@sxu.edu.cn (L. Li), 202022407033@sxu.edu.cn (Y. Li), weiwei@sxu.edu.cn (W. Wei), 342564535@qq.com (Y. Zhang),
Available online 10 August 2023
0020-0255/© 2023 Elsevier Inc. All rights reserved.

ljy@sxu.edu.cn (J. Liang).

https://doi.org/10.1016/j.ins.2023.119494

Received 10 December 2022; Received in revised form 30 May 2023; Accepted 7 August 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:lilynn1116@sxu.edu.cn
mailto:202022407033@sxu.edu.cn
mailto:weiwei@sxu.edu.cn
mailto:342564535@qq.com
mailto:ljy@sxu.edu.cn
https://doi.org/10.1016/j.ins.2023.119494
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.119494&domain=pdf
https://doi.org/10.1016/j.ins.2023.119494

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Gradient algorithm (DDPG) [20], an Actor-Critic method to solve continuous action tasks, also suffers from overestimation in the
continuous control settings.

Twin Delayed Deep Deterministic policy gradient (TD3) [21] is a widely-used RL algorithm for continuous control tasks. By taking
the minimization operation of two critics, TD3 relieves the overestimation bias problem in DDPG. However, TD3 can cause an under-

estimation bias at each updating iteration due to the minimization operation. Although this bias is not explicitly propagated during
the updating process, the inaccurate estimation still negatively affects the performance of DL algorithms. Thus, some researchers
study how to balance the overestimation bias and the underestimation bias [22,23]. Others use the softmax operation in updating
value [24], or quasi-median operation [25], or proposes triplet-average deep deterministic policy gradient (TADD) [22] to reduce
the estimation bias. Existing works primarily focus on the improvement of critics, with little attention to the effect of actors on value
estimation. Lyu et al. [26] propose Double Actors Regularized Critics (DARC) to enhance exploration ability by selecting the action
with the larger Q-value from the two actors and relieving the estimation bias using the regularization method. However, the impact
of inaccurate value estimation may be further aggravated by action selection based on maximum Q-value. Besides, collaborative
evolutionary reinforcement learning (CERL) [27] uses a collaborative approach of learners to improve the model’s performance.
However, the CERL algorithm uses a portfolio of TD3 learners, which also suffers from server underestimation bias and neglects the
impact of learner numbers on value estimation.

To explore how the multi-actor can effectively enhance the exploration ability of the agent and achieve accurate value func-

tion estimation, we propose a multi-actor mechanism (MAM) oriented to the Actor-Critic framework in RL. Specifically, the MAM
contains two technologies: obsolescence technology (OT) and Q-value weighting technology (WT). In obsolescence technology, well-

performed actors can generate more high-quality experience to help agents obtain the optimal policy faster. The weighting technique
can mitigate underestimation by weighting the Q-values of actions generated by a different actor in the same state. We first propose
a Multi-Actor Deep Deterministic Policy Gradient (MA-DDPG) based on DDPG, showing the effectiveness of the obsolescence tech-

nology on artificial experiments. Then, we offer a Multi-Actor Twin Delayed Deep Deterministic policy gradient (MA-TD3) based on
TD3 and demonstrate that MA-TD3 can achieve more accurate and stable value estimation. And 8 MuJoCo [28] experiments show
that our method outperforms the existing representative methods.

The main contributions are summarized as follows:

• We propose a multi-actor mechanism (MAM) that can be applied to any Actor-Critic algorithm containing two technologies. One
is an obsolescence technology that enhances the exploration ability and allows the agent to find the optimal strategy faster. The
other is a Q-value weighting technology based on multi-actor, which can relieve both estimation bias and variance.

• We prove that the algorithms embedded in the MAM can achieve a more accurate and stable value estimation.

• We embed the MAM into the typical Actor-Critic algorithms, DDPG and TD3, to propose MA-DDPG and MA-TD3. Numerous
experiments have shown that the algorithms embedded with MAM can improve exploration ability, relieve estimate bias, and
enhance the algorithm’s performance.

2. Preliminaries

RL considers the paradigm of an agent interacting with its environment to learn return-maximizing behavior. RL can be formulated
by a Markov Decision Process (MDP), defined by a tuple 𝑀 = (𝑆, 𝐴, 𝑝, 𝑝0, 𝑅, 𝛾) consisting of a state space 𝑆, an action space 𝐴, a
transition kernel 𝑝, an initial state distribution 𝑝0, a reward function 𝑅, and a discount factor 𝛾 ∈ [0, 1]. The transition kernel is the
probability distribution of transferring to all possible states after executing action 𝐴 in state 𝑆. The cumulative reward is defined as
𝑅𝑡 =

∑𝑇

𝑖=𝑡 𝛾
𝑖−𝑡𝑟(𝑠𝑖, 𝑎𝑖).

In a Value-Based RL algorithm, the state-action function (or Q-function) is defined as 𝑄(𝑠, 𝑎) = 𝐸𝜋 [
∑∞

𝑡=0 𝛾
𝑡𝑟𝑡+1|𝑠0 = 𝑠, 𝑎0 = 𝑎]. The

state-action function is used to evaluate the policy, which means that precise estimated value plays an essential role in learning
a better policy. In most cases, the transition probability function is unknown, and thus Q-function can be approximated using the
following equation:

𝑄(𝑠, 𝑎) = 𝑟+ 𝛾𝐸𝑠′∼𝑆,𝑎′∼𝜋 [𝑄(𝑠′, 𝑎′)]. (1)

2.1. Deep deterministic policy gradient

The DDPG algorithm, which is designed by combining Deep Neural Network (DNN) and Deterministic Policy Gradient (DPG)
[29], uses the deterministic policy instead of the stochastic policy. DDPG is a more efficient method to estimate value functions
than stochastic policy. Besides, it trains a deterministic policy actor by using a learned value estimator critic, which means that
deterministic policy specifies one action with the guidance of a single critic.

Let 𝜃, 𝜃′, 𝜙 and 𝜙′ denote the parameters of critic 𝑄, target critic 𝑄′, actor 𝜋, and target actor 𝜋′, respectively. The update equation
of the critic is as follows:

𝐿(𝜃) =𝐸(𝑠,𝑎,𝑟,𝑠′)∼𝐵[(𝑦−𝑄(𝑠, 𝑎;𝜃))2], (2)

where 𝑦 = 𝑟 + 𝛾𝑄′(𝑠′, 𝜋′(𝑠′; 𝜙′); 𝜃′) is the target value based on the target critic network, and 𝐵 is the replay buffer that stores the past
2

transitions. The chain rule of gradient propagation to update the actor is:

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

▽𝜙𝐽 (𝜙) =𝐸𝑠∼𝑝𝜋 [▽𝑎𝑄(𝑠, 𝑎;𝜃)|𝑎=𝜋(𝑠;𝜙)▽𝜙𝜋(𝑠;𝜙)], (3)

where 𝑝𝜋 is a transition probability function based on 𝜋. Besides, DDPG uses a soft target update for better stability of the learning
process:

𝜙′ = 𝜏𝜙+ (1 − 𝜏)𝜙′, 𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′, (4)

where 𝜏 is a small enough constant that can adjust the update speed.

Although DDPG performs well on some continuous control tasks, it still cannot solve the overestimation problem due to the
gradient ascent [21,22,25].

2.2. Twin delayed deep deterministic policy gradient

The TD3 is a popular RL algorithm that uses the Actor-Critic framework to learn a deterministic policy. It overcomes overestima-

tion in the DDPG by applying two critics for value estimation and taking the minimum between two estimates for target updating.
Similar to the DDPG, the TD3 still utilizes the same loss as Equation (2) but 𝑦 = 𝑟 +𝛾𝑚𝑖𝑛𝑖=1,2𝑄

′
𝑖
(𝑠′, 𝜋′(𝑠′; 𝜙′); 𝜃′

𝑖
), where 𝑄′

1, 𝑄
′
2 represent

two target critics corresponding to a pair of independent critics 𝑄1 and 𝑄2. The update function of the actor in the TD3 is also the
same as the one in DDPG, but it chooses a fixed one of the two critics to guide the actor’s update.

The TD3 has two additional tricks to improve its performance. One is delaying policy updates, which makes the algorithm more
stable. Another is target policy smoothing regularization, which adds noise to the target policy and effectively relieves over-fitting.
Those trick makes the TD3 alleviate the overestimation problem and outperforms the DDPG. However, Wu et al. [22] and Wei et al.
[25] propose that TD3 still has an underestimation problem even when the approximations are unbiased due to the minimization
operation.

3. Multi-actor mechanism

This section introduces MAM and its two core technologies, obsolescence technology and Q-value weighting technology. We show
that obsolescence technology enhances the ability of exploration by allowing well-performing actors to generate more experience
to enrich the experience pool. And we theoretically prove that the Q-value weighting technology based on multi-actor can alleviate
estimation bias and variance.

In MAM, there are 𝐾 independent actors 𝜋1, … , 𝜋𝐾 , and the number of critics varies in different algorithms. When MAM is
embedded in a single critic algorithm DDPG, there are 𝐾 critics 𝜃1, … , 𝜃𝐾 . The update function of critics is as follows:

𝐿(𝜃𝑘) =𝐸(𝑠,𝑎,𝑟,𝑠′)∼𝐵[(𝑦−𝑄(𝑠, 𝑎;𝜃𝑘))2], (5)

where 𝑦 = 𝑟 + 𝛾𝑄′
𝑘
(𝑠′, 𝜋′

𝑘
(𝑠′)), and 𝑄′

𝑘
represents target critic corresponding to critic 𝑄𝑘. The update function of actor 𝜋𝑘 is as follows:

▽𝜙𝑘
𝐽 (𝜙𝑘) =𝐸𝑠∼𝑝𝜋 [▽𝑎𝑄(𝑠, 𝑎;𝜃𝑘)|𝑎=𝜋𝑘(𝑠;𝜙𝑘)▽𝜙𝑘

𝜋𝑘(𝑠;𝜙𝑘)]. (6)

When MAM is embedded in multi-critic algorithm, there are 𝑛 ∗𝐾 critics, 𝜃11, 𝜃12, … , 𝜃1𝑛, … , 𝜃𝐾1, 𝜃𝐾2, … , 𝜃𝐾𝑛. The update function
of the critic is the same as Equation (5), but the target value 𝑦 depends on the algorithm itself. For example, in the TD3, 𝑛 = 2,
𝑦𝑘 = 𝑟 + 𝛾𝑚𝑖𝑛𝑖=1,2𝑄

′
𝑘𝑖
(𝑠′, 𝜋′(𝑠′)) and 𝑄′

𝑘1, and 𝑄′
𝑘2 represent two target critics corresponding to a pair of independent critics 𝑄𝑘1 and

𝑄𝑘2. The actor 𝜋𝑘 is optimized with the estimated value of critic 𝑄𝑘1:

▽𝜙𝑘
𝐽 (𝜙𝑘) =𝐸𝑠∼𝑝𝜋 [▽𝑎𝑄(𝑠, 𝑎;𝜃𝑘1)|𝑎=𝜋𝑘(𝑠;𝜙𝑘)▽𝜙𝑘

𝜋𝑘(𝑠;𝜙𝑘)]. (7)

3.1. Obsolescence technology and its advantage

3.1.1. Obsolescence technology

Then, we design an obsolescence technology for better actors to generate more experience in the early training stage, enhancing
the exploration ability and can help the agent find optimal policy faster. The essence of the obsolescence technology is to make the
good actors generate more experience and eventually eliminate the poor actors. Specifically, we evaluate multiple actors based on
average cumulative rewards and select well-performed actors to generate more experience. Only the best actor is finally retained as
the policy is continuously updated. So we refer to the above process as the obsolescence technology.

Since multi-actor cannot interact with one environment, we copy 𝑀 (𝑀 >𝐾) environments for multi-actor to generate experience.
Meanwhile, we test the performance of 𝐾 actors every 𝐴 steps to determine which actor can interact with more environments to
obtain a more high-quality experience. We don’t eliminate actors that perform unsatisfactorily at the beginning but change the
weighting of different actors to pick out the good actors with a high environment interaction probability. The probability, 𝑃𝑘, is
defined as:

𝑃𝑘 =
𝑅𝑘∑𝐾

𝑗=1𝑅𝑗

, (8)

where 𝑅1, … , 𝑅𝐾 are the accumulated reward of 𝐾 actors in the testing stage. We add up the rewards that agent obtains in one
3

episode as cumulative rewards. For example, in this paper, we test each actor 20 times in the test environment and average the

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 1. Experimental verification of multi-actor enhance exploration.

Table 1

Hyperparameters comparison of MA-DDPG and DDPG.

Hyperparameter DDPG MA-DDPG

Actor network (256,256) (256,256)

Critic network (256,256) (256,256)

Explore noise 0.1 0.1

Batch size 100 100

Discount 0.99 0.99

Actor learning rate 0.0003 0.0003

Critic learning rate 0.0003 0.0003

Optimizer Adam Adam

Target network update rate 0.005 0.005

Start time step 10,000 10,000

Actor number 𝐾 None 3

Number of environment 𝑀 None 5

Elimination step 𝐶 None 24,000

Competition frequency 𝐴 None 1,000

20 cumulative rewards as 𝑅𝑘. In each environment, the 𝑘-th actor gets an opportunity to interact with the environment based on
𝑃𝑘. In the case of positive rewards the equation can be used to calculate 𝑃𝑘 directly. In the case of negative rewards, we take an
reverse operation while using the equation. Specifically, after calculating 𝑃𝑘, we sort 𝑃𝑘 sequence by probability and then reverse the
probability sequence. This operation still ensures that actors with smaller cumulative reward values have less probability of creating
experiences. In comparison, actor with larger cumulative reward values are likelier to develop experiences. The final number of
interactions with the environment of the 𝑘-th actor is an integer, 𝐼𝑘 (0 ≤ 𝐼𝑘 ≤𝑀). In this paper, the number of environment is 𝑀 .
Each actor interacts with the environment in a probability of 𝑃𝑘. And the final number of interactions with the environment of the
𝑘-th actor is defined as an integer 𝐼𝑘 (0 ≤ 𝐼𝑘 ≤𝑀). The 𝑃𝑘 is uniform in the initial state.

To save computing resources and improve the stability of our algorithm, we define the elimination step as 𝐶 , which means that
the poorly performed actors will not be permitted to participate in the training after the 𝐶 steps. We choose the best actor based on
the average cumulated reward obtained by the actor interacting with the environment.

Compared with a single actor, multi-actor are conducive to early exploration, which makes agents explore high-value areas faster
with the same number of steps. Furthermore, our obsolescence technology guarantees that good actors can produce more experience
in the early training stage, facilitating the actor to find the optimal policy quickly.

3.1.2. Advantage of obsolescence technology

To verify the proposed MAM, we present the MA-DDPG algorithm and design a artificial two-dimensional, continuous state and
action task AppleCollect to test its performance. Fig. 1 (a) shows the artificial environment. The experimental setting is a square area
with a side length of 2. The agent starts from the region’s center, 𝑥, 𝑦 = (0, 0), with the maximum action range of a single movement
of 0.2. There are four locations with apples in the area, two of which are rewarded with 10 and the rest with 50. The positions of
the apple area with the ample reward are (-0.8, -0.8) and (0.8, 0.8). The places with a small reward are (0.5, -0.5) and (-0.5, 0.5).
We set the maximum number of steps in a single episode as 100. A reward of -0.01 is assigned to the agent after each step. In the
MA-DDPG, the number of actors 𝐾 is 3, indicating that three actors involved in the interaction with the environment. The maximum
number of environments 𝑀 is 5, indicating that the actor can interact with five environments. And the elimination step 𝐶 is 15,000,
which means poorly performed actors will be eliminated after 15,000 steps. See Table 1.

The performance comparison of the MA-DDPG and the DDPG in the AppleCollect is shown in Fig. 1 (b). The darker lines represent
4

the average return of 10 trials, and the shaded area represents the 1 standard deviation. The results indicate that the multi-actor-based

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 2. Visualization of Q-value weighting technology based on MAM, where “min” means a minimum of two values, “avg” means an average of all values, and
“weight” means a weight of two values.

agent exhibits higher exploration under the competitive approach, finds regions with higher reward values faster, and ultimately
outperforms the algorithms using a single actor in terms of performance.

3.2. Q-value weighting technology and its advantage

3.2.1. Q-value weighting technology

The accurate value estimation directly affects the algorithm’s performance [21]. To obtain a more accurate value estimation, we
propose Q-value weighting technology in MAM. The Q-weighting technique is a weighting idea that uses multiple choices given by
a multi-actor to generate diverse Q-value. Then it calculates the target Q-value to relief the estimation bias by weighting the diverse
Q-value. Further, we embed the mechanism into the classical Actor-Critic algorithm TD3 and present the Multi-actor TD3 (MA-TD3),
which means that MA-TD3 contains both obsolescence technology and Q-value weighting technology. The process of the weighting
process and calculating the TD error of MA-TD3 is shown in Fig. 2.

The underestimation problem impairs TD3’s performance to a large extent due to the minimization operation. When calculating
the target value, we average the Q-values guided by a multi-actor and combine the averaging operation with the minimization
operation, taking a trade-off of overestimation and underestimation. In the MA-TD3, the critic update is based on Equation (5), but

𝑦 = 𝑟+ 𝛾((1 − 𝜂) min
𝑖=1,2

𝑄𝑘𝑖(𝑠′, 𝜋𝑘(𝑠′)) +
𝜂

2𝑘− 2
(

𝐾∑
𝑗=0,≠𝑘

(𝑄𝑗𝑖(𝑠′, 𝜋𝑗 (𝑠′))), 𝜂 ∈ (0,1). (9)

3.2.2. Advantage of Q-value weighting technology

In this section, our proposed technique is analyzed from theoretical and experimental aspects. In Theorem 1, we analyze the
expectation of the bias and verify that the estimation bias of our methods MA-TD3 𝐸(𝐵𝑘𝑖) are upper bounded by 𝜆 − 𝜇(1−𝜂)

3 . For
details, see below.

Theorem 1. Let 𝑄∗(𝑠, 𝑎) be the true state-action value and suppose that there are 𝐾 estimation values 𝑄̂𝑘(𝑠, 𝑎). Denote the estimation bias
(upper bound) 𝐵𝑘𝑖 = 𝑄̂𝑘𝑖(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎) are independently identical distribution in uniform distribution 𝑈 (𝜆 − 𝜇, 𝜆 + 𝜇), where 0 < 𝜆 << 𝜇.
Then,

𝐸(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3 = 𝜆− 1
3
𝜇(1 − 𝜂). (10)

Proof. From [25], we have the cumulative distribution function and the probability density function of min𝑖=1,2𝐵𝑘𝑖:

𝐹 (𝑋) =
⎧⎪⎨⎪⎩
0 𝑥 < 𝜆− 𝜇

1 − (1 − 𝑥−𝜆+𝜇
2𝜇)2 𝜆− 𝜇 ≤ 𝑥 < 𝜆+ 𝜇

1 𝑥 ≥ 𝜆+ 𝜇,

𝑓 (𝑥) =

{ 1
𝜇
(1 − 𝑥−𝜆+𝜇

2𝜇) 𝜆− 𝜇 ≤ 𝑥 < 𝜆+ 𝜇

0 𝑒𝑙𝑠𝑒.
5

Then,

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Algorithm 1 MA-TD3

1: Initialize 2𝐾 critic networks 𝑄11, 𝑄12 , ⋯ , 𝑄𝑘1 , 𝑄𝑘2 and 𝐾 actor networks 𝜋1 , 𝜋2 , ⋯ , 𝜋𝑘 with random parameters 𝜃11 , 𝜃12 , ⋯ , 𝜃𝑘1 , 𝜃𝑘2 , 𝜙1 , 𝜙2 , ⋯ , 𝜙𝑘

2: Initialize target networks 𝜃′
𝑘𝑖
← 𝜃𝑘𝑖, 𝜙′

𝑘
← 𝜙𝑘 and replay buffer 

3: Initialize 𝐼𝑘 with average probability of environment interaction 𝑃𝑘
4: for 𝑡 = 1 to 𝑇 do

5: for each actor 𝑘 do

6: for 𝑖𝑘 = 0 to 𝐼𝑘 do

7: Select action 𝑎𝑖𝑘 ∼ 𝜋𝑘(𝑠) + 𝜖, 𝜖 ∼ (0, 𝜎)
8: Observe reward 𝑟 and new state 𝑠′
9: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′) in 

10: end for

11: Sample mini-batch of 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 
12: 𝑎′

𝑘
← 𝜋𝑘(𝑠) + 𝜖, 𝜖 ∼ (0, 𝜎) and calculate 𝑦 in Equation (9)

13: Update critics 𝜃𝑘𝑖 ← 𝑎𝑟𝑔min𝜃𝑘𝑖 𝑁
−1 ∑(𝑦 −𝑄𝜃𝑘𝑖

(𝑠, 𝑎))2
14: end for

15: if 𝑡 mod 𝐴 == 0 and 𝑡 < 𝐶 then

16: Calculate 𝐼𝑘 and 𝑃𝑘 with Function (8)

17: end if

18: if 𝑡 == 𝐶 then

19: Select the best actor 𝑒 based on the average cumulated reward, and let 𝑘 = 𝑒, 𝐼𝑘 = 1
20: end if

21: if 𝑡 mod 𝑑 == 0 then

22: Update 𝜙𝑘 by Equation (7)

23: Update target networks by Equation (4)

24: end if

25: end for

𝐸(min
𝑖=1,2

𝐵𝑘𝑖) =

𝜆+𝜇

∫
𝜆−𝜇

𝑥𝑓 (𝑥)𝑑𝑥 =

𝜆+𝜇

∫
𝜆−𝜇

(𝑥
𝜇
− 𝑥2 − 𝜆𝑥+ 𝜇𝑥

2𝜇2)𝑑𝑥 = 𝜆− 1
3
𝜇. (11)

𝐸(
𝐾∑

𝑗=0,𝑗≠𝑘
𝐵𝑗𝑖) = (2𝐾 − 2)𝜆. (12)

Combine Equation (11) and Equation (12):

𝐸(𝐵𝑘𝑖) = (1 − 𝜂)(𝜆− 1
3
𝜇) + 𝜂

2𝐾 − 2
(2𝐾 − 2)𝜆

= 𝜆− 1
3
𝜇(1 − 𝜂). □

(13)

Denote the bias’s expectations (upper bound) of the MA-TD3 and the TD3 as 𝐸(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3 and 𝐸(𝐵𝑘𝑖)𝑇𝐷3. According to Equation
(11) and Equation (13), we have:

𝐸(𝐵𝑘𝑖)𝑇𝐷3 = 𝜆− 1
3
𝜇,𝐸(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3 = 𝜆− 1

3
𝜇(1 − 𝜂).

Further, we have:

𝐸(𝐵𝑘𝑖)𝑇𝐷3 −𝐸(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3 = 𝜆− 1
3
𝜇 − 𝜆+ 1

3
𝜇(1 − 𝜂)

= −1
3
𝜇𝜂 < 0, 𝜂 ∈ (0,1).

(14)

According to Equation (14), the bias’s expectation (upper bound) of the MA-TD3 is lower than the bias’s expectation (upper bound)
of the TD3, which indicates that the MA-TD3 relieves the underestimation problem suffered by the TD3.

Moreover, we analyze the variance of the MA-TD3 in the different number of actors by Theorem 2, showing the relationship
between value estimation stability and the number of actors.

Theorem 2. Let 𝑉 𝑎𝑟(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3
𝐾

denote the variance of MA-TD3 with 𝐾 actors. Then:
6

𝑉 𝑎𝑟(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3
𝑚

− 𝑉 𝑎𝑟(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3
𝑛

> 0, (𝑚< 𝑛).

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 3. Estimate bias comparison in two continuous control tasks, where w/o WT represents without weighting technology.

Proof.

𝑉 𝑎𝑟(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3
𝐾

= (1 − 𝜂)2𝑉 𝑎𝑟(𝑚𝑖𝑛𝑖=1,2𝐵𝑖) +
𝜂2

(2𝐾 − 2)2
𝑉 𝑎𝑟(

𝐾∑
𝑗=0,𝑗≠𝑘

𝐵𝑗𝑖)

= (1 − 𝜂)2𝑉 𝑎𝑟(𝑚𝑖𝑛𝑖=1,2𝐵𝑖) +
𝜂2

(2𝐾 − 2)2
(2𝐾 − 2)(2𝜇)2

12

= (1 − 𝜂)2𝑉 𝑎𝑟(𝑚𝑖𝑛𝑖=1,2𝐵𝑖) +
𝜂2𝜇2

6𝐾 − 6
.

(15)

Thus, we have:

𝑉 𝑎𝑟(𝐵𝑘𝑖)𝑀𝐴−𝑇𝐷3
𝑚

− 𝑉 𝑎𝑟(𝐵)𝑀𝐴−𝑇𝐷3
𝑛

= 𝜂2𝜇2

6𝑚− 6
− 𝜂2𝜇2

6𝑛− 6

= 𝜂2𝜇2 6𝑛− 6𝑚
(6𝑛− 6)(6𝑚− 6)

> 0. □
(16)

From the above theorems, weighting the Q-values based on multi-actor can reduce the estimation bias and variance when calcu-

lating the target Q-values. Furthermore, we demonstrate the improvement of accurate value estimation in the MuJoCo environment.
In each MuJoCo continuous control task, we evaluate estimation bias, calculate the difference between the true Q-values and the
estimated Q-values of the current critic every 5,000 steps, and use the estimation bias rate as a criterion to indicate the magnitude
of the estimation bias. Fig. 3 shows the experimental results, where the darker lines represent the average bias rate of 10 random
seeds, and the shaded area represents the one standard deviation. The bias rate is calculated by the function below:

𝑅𝑎𝑡𝑒 = 𝑄̂(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)
𝑄∗(𝑠, 𝑎)

, (17)

where the 𝑄∗(𝑠, 𝑎) is the true Q-value estimated by rolling out the current policy 20 times in the initial environment and recording
the average discounted reward.

To distinguish the effect of obsolescence technology and Q-value weighting technology on value estimation, we conduct the
ablation study on two typical MuJoCo environments, Ant-v2 and Reacher-v2. The results are shown in Fig. 3. Fig. 3 (a) shows
that the obsolescence technology helps relieve estimation bias, but the improvement is more pronounced after adding the Q-value
weighting technology. Meanwhile, Fig. 3 (b) indicates that the Q-value weighting technology helps reduce the variance of estimation
bias, allowing the estimation bias to converge faster. Fig. 3 shows that the estimation bias does not fluctuate even after eliminating
the poor actors, indicating the Q-value weight still works and alleviates the estimation bias.

4. Experiment

4.1. Implementation details

To evaluate our method, we conduct extensive experiments on continuous control tasks from OpenAI Gym [30] simulated by
MuJoCo. Table 2 indicates the dimensions of state and action. Fig. 4 shows the visual rendering of the environments. The darker
lines represent the average return of 10 random seeds, and the shaded area represents the standard deviation.

We select the optimal parameters experimentally. Fig. 5 compares the performance of MA-TD3 with different weight coefficients
𝜂. The average return is the expected sum of rewards an agent obtains over time steps. It is calculated by taking the average of the
returns obtained over 20 episodes. The return is sum of the agent’s rewards over a single episode. The calculation of the average
7

return remains consistent throughout the paper. Experiments show that the algorithm performs best in Ant-v2 and Walker2d-v2

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Table 2

Details of 8 MuJoCo control tasks.

Environment State Dimension Action Dimension

Ant-v2 111 28

Hopper-v2 11 3

Halfcheetah-v2 17 6

Humannoid-v2 376 17

InvertedDoublePendulum-v2 11 1

InvertedPendulum-v2 4 1

Reacher-v2 11 2

Walker2d-v2 17 6

Fig. 4. Rendering of the MuJoCo continuous control tasks.

Fig. 5. Comparison of MA-TD3 different 𝜂 in 2 MuJoCo environments.

environments when 𝜂 = 0.1. As 𝜂 increases, the algorithm suffers from severe underestimation problem leading to performance
degradation. So, we apply 𝜂 = 0.1 in later experiments.

Fig. 6 gives a comparative analysis of the algorithm’s performance with different elimination steps. The two experiments show
that the algorithm’s performance improves with increasing elimination steps. However, increasing the elimination step means more
significant computational effort, resulting in a longer computation time. Thus, we choose 𝐶 = 300, 000 in all environments to balance
the algorithm performance and computation time. The hyper-parameters and settings of neural networks of the MA-TD3 are the
same as that of the TD3. To balance algorithm performance and computational complexity, we set the number of actors 𝐾 to 2, the
8

number of environment 𝑀 to 3, and the elimination step 𝐶 to 300,000 in the MA-TD3. The weight coefficient 𝜂 is 0.1 for all the

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 6. Comparison of different elimination steps 𝐶 in 2 MuJoCo environments.

Table 3

Hyperparameters comparison of MA-TD3 and TD3.

Hyperparameter TD3 MA-TD3

Actor network (256,256) (256,256)

Critic network (256,256) (256,256)

Explore noise 0.1 0.1

Batch size 256 256

Discount 0.99 0.99

Optimizer Adam Adam

Actor learning rate 0.0003 0.0003

Critic learning rate 0.0003 0.0003

Target network update rate 0.005 0.005

Actor delay update frequency 2 2

Start time step 25,000 25,000

Actor number 𝐾 None 2

Number of environment 𝑀 None 3

Elimination step 𝐶 None 300,000

Competition frequency 𝐴 None 5,000

Weight coefficient 𝜂 None 0.1

Table 4

Comparison of max average return over 10 trials of 1 million time steps. ± corresponds to a single standard deviation over trials. The
maximum value of 6 methods for each task is bolded.

Environment MA-TD3 TADD DARC TD3 MA-DDPG DDPG

Ant 5512.1±807.1 4579.0 5030.3 3443.5 1943.7 1258.7

Hopper 3679.7±68.8 3554.5 3454.6 3519.3 3562.8 3387.0

Halfcheetah 12334.6±529.2 10827.9 11572.1 9569.5 12075.9 10827.1

Humanoid 5727.2±156.1 5194.2 5308.6 5359.2 1897.5 1708.8

IDP 9359.9±0.1 8431.4 9352.6 8431.4 9354.4 8426.4

InvertedPendulum 1000±0.0 1000 1000 1000 1000 1000

Reacher -3.3±0.39 -4.1 -4.1 -3.9 -3.5 -4.2

Walker2d 4719.8±344.5 4044.4 3251.8 4099.6 4045.4 2744.2

MuJoCo continuous control tasks. Each algorithm is run with 10 independent seeds and evaluated ten times every 5,000 timesteps.
Table 3 illustrates other implementation details.

4.2. Experiment results

We compare the proposed algorithm with TD3, DDPG, TADD, and DARC. Fig. 7 shows the experimental results, where the darker
lines represent the average return of 10 trials. The shaded area represents the 1 standard deviation. Table 4 shows the experimental
results of the maximum average return over 10 trials of 1 million time steps.

The experimental results demonstrate that our algorithms significantly outperform the comparison algorithm in large state-action
spaces environments Ant-v2, Hopper-v2, Humanoid-v2, Humanoid-v2, Walker2d-v2, and Halfcheetah-v2. The reason is that those
environments with large state and action spaces are more complex and thus require powerful exploration capability and the ability to
9

value accurately. In addition, our algorithm converges to the optimal strategy faster in all tasks, suggesting that the MAM mechanism

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 7. Learning curves on 8 MuJoCo continuous control tasks.

can enhance exploration and generate high-quality experience, facilitating more stable and accurate value estimation in the early
training stage.

To better verify the effectiveness of the obsolescence technology and Q-value weighting technology, we design ablation experi-

ments in four classic MuJoCo continuous control environments, HalfCheetah-v2, Ant-v2, Hopper-v2, and Walker2d-v2. Fig. 8 shows
the experimental results, which indicate that the algorithm’s performance decreases significantly after the absence of the weighting
technique, because the algorithm suffers from an underestimation problem, which makes the policy converge to a suboptimal policy.
From the experiments, we find that poorly performing actors can hardly generate experience in the later stage of training. Thus, tak-

ing the obsolescence technology can prevent poorly performing actors from developing invalid experience, reducing computational
costs and speeding up the training process. See Table 5.

Fig. 9 compares the convergence of MA-TD3 and TD3. In the early training stage, the standard deviation of reward returns is
10

significant, indicating that the algorithm has not yet converged. The standard deviation gradually decreases as training proceeds, and

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 8. Ablation experiments on Halfcheetah-v2 and Ant-v2, where w/o OT denotes without obsolescence technology, w/o WT represents without weighing technology.

Table 5

Ablation experiments results of max average return over 10 trials of 1 million time steps. The maximum value of 6
methods for each task is bolded.

Methods HalfCheetah Hopper Walker2d Ant

MA-TD3 12334.6 3679.7 4719.8 5515.1

DARC 11572.1 3454.6 3251.8 5030.3

TADD 10827.9 3554.5 4044.4 4579.0

TD3 9569.5 3519.3 4099.6 3443.5

MA-TD3 - OT 11558.2 3553.9 4615.0 5324.2

MA-TD3 - WT 10755.3 3531.0 4240.9 4327.8

both algorithms converge to their best performance. The experimental results show that embedding MAM ensures a higher return
convergence.

5. Conclusion

This paper proposes a multi-actor mechanism (MAM) incorporating both obsolescence technology and Q-value weighting technol-

ogy to exploit the multi-actor advantages. The obsolescence technology can enhance the exploration capability of the agent, and the
Q-value weighting technology can reduce the estimation bias and variance to achieve a more accurate value estimation. To illustrate
the advantages of MAM, we embed MAM into DDPG to construct the algorithm MA-DDPG and verify in a artificial experiment that
the obsolescence technology is beneficial for enhancing exploration ability. Then, we offer the MA-TD3 by embedding MAM into
the TD3 and demonstrate that MAM can reduce the estimation bias and variance through both experiments and theory. Extensive
experiments illustrate that MA-TD3 outperforms state-of-the-art methods. Interesting directions for future work include exploring
how to take advantage of multi-actor with different characteristics to adapt to more complex environments and improve the RL
algorithm’s performance.

CRediT authorship contribution statement

Lin Li: Conceptualization, Methodology, Software, Writing – review & editing. Yuze Li: Methodology, Software, Writing – original
draft. Wei Wei: Project administration, Supervision, Writing – review & editing. Yujia Zhang: Software, Writing – review & editing.
11

Jiye Liang: Methodology, Project administration, Writing – review & editing.

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

Fig. 9. Convergence experiments on Halfcheetah-v2 and Ant-v2, where the error bars correspond to standard deviation during evaluation with 10 random seeds.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No.2019YFE0118200), the National
Natural Science Foundation of China (Nos.62276160, 61976184, 61772323), the Natural Science Foundation of Shanxi Province,
China (No.202203021211291), and the 1331 Engineering Project of Shanxi Province (First-class Discipline Construction Project of
Computer Science and Technology), China.

References

[1] R.S. Sutton, Learning to predict by the methods of temporal differences, Mach. Learn. 3 (1) (1988) 9–44.

[2] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama, E. Uchibe, J. Morimoto, Deep learning, reinforcement learning, and world models, Neural
Netw. 152 (2022) 267–275.

[3] X. Wang, T. Sandholm, Reinforcement learning to play an optimal Nash equilibrium in team Markov games, in: NIPS, 2002, pp. 1603–1610.

[4] O. Vinyals, I. Babuschkin, W.M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D.H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., Grandmaster level in starcraft
ii using multi-agent reinforcement learning, Nature 575 (7782) (2019) 350–354.

[5] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the
game of go with deep neural networks and tree search, Nature 529 (7587) (2016) 484–489.

[6] Z. Bing, C. Lemke, L. Cheng, K. Huang, A. Knoll, Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement
learning and inverse reinforcement learning, Neural Netw. 129 (2020) 323–333.

[7] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, G. Cheng, Learning cpg-based biped locomotion with a policy gradient method: application to a humanoid
12

robot, Int. J. Robot. Res. 27 (2) (2008) 213–228.

http://refhub.elsevier.com/S0020-0255(23)01079-4/bibB3C0EFDE384FCE10C9A6F00084C67F9Bs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibAF4720DC4A1C6373267F01C6550A996Cs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibAF4720DC4A1C6373267F01C6550A996Cs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib01FB8F175CA3355BC5DA753D811C3569s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibE35C929F057FC5475FEA6456EE442883s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibE35C929F057FC5475FEA6456EE442883s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibCC6D2D647A6291293026323EA3E7649Ds1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibCC6D2D647A6291293026323EA3E7649Ds1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib20CEF64B40510935C2067D03A8CD85D6s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib20CEF64B40510935C2067D03A8CD85D6s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib69D01B33802E7E624F615E1A23226F96s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib69D01B33802E7E624F615E1A23226F96s1

Information Sciences 647 (2023) 119494L. Li, Y. Li, W. Wei et al.

[8] A. Tsantekidis, N. Passalis, A. Tefas, Diversity-driven knowledge distillation for financial trading using deep reinforcement learning, Neural Netw. 140 (2021)
193–202.

[9] Y. Lin, F. Lin, L. Yang, W. Zeng, Y. Liu, P. Wu, Context-aware reinforcement learning for course recommendation, Appl. Soft Comput. (2022) 109189.

[10] F. Liu, R. Tang, H. Guo, X. Li, Y. Ye, X. He, Top-aware reinforcement learning based recommendation, Neurocomputing 417 (2020) 255–269.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go without human
knowledge, Nature 550 (7676) (2017) 354–359.

[12] S. Thrun, A. Schwartz, Issues in using function approximation for reinforcement learning, in: Proceedings of the 1993 Connectionist Models Summer School,
vol. 6, 1993.

[13] H. Hasselt, Double q-learning, in: NIPS, vol. 23, 2010.

[14] R. Fox, A. Pakman, N. Tishby, Taming the noise in reinforcement learning via soft updates, arXiv preprint, arXiv :1512 .08562, 2015.

[15] D. Lee, B. Defourny, W.B. Powell, Bias-corrected q-learning to control max-operator bias in q-learning, in: ADPRL, 2013, pp. 93–99.

[16] O. Nachum, M. Norouzi, G. Tucker, D. Schuurmans, Smoothed action value functions for learning Gaussian policies, in: ICML, 2018, pp. 3692–3700.

[17] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling network architectures for deep reinforcement learning, in: ICML, 2016, pp. 1995–2003.

[18] H. v. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, in: AAAI, 2016, pp. 2094–2100.

[19] O. Anschel, N. Baram, N. Shimkin, Averaged-dqn: variance reduction and stabilization for deep reinforcement learning, in: ICML, 2017, pp. 176–185.

[20] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning, arXiv preprint,
arXiv :1509 .02971, 2015.

[21] S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic methods, in: ICML, 2018, pp. 1587–1596.

[22] D. Wu, X. Dong, J. Shen, S.C. Hoi, Reducing estimation bias via triplet-average deep deterministic policy gradient, IEEE Trans. Neural Netw. Learn. Syst. 31 (11)
(2020) 4933–4945.

[23] Q. He, X. Hou, Reducing estimation bias via weighted delayed deep deterministic policy gradient, arXiv preprint, arXiv :2006 .12622, 2020.

[24] L. Pan, Q. Cai, L. Huang, Softmax deep double deterministic policy gradients, in: NIPS, vol. 33, 2020, pp. 11767–11777.

[25] W. Wei, Y. Zhang, J. Liang, L. Li, Y. Li, Controlling underestimation bias in reinforcement learning via quasi-median operation, in: AAAI, vol. 36, 2022,
pp. 8621–8628.

[26] J. Lyu, X. Ma, J. Yan, X. Li, Efficient continuous control with double actors and regularized critics, in: AAAI, vol. 36, 2022, pp. 7655–7663.

[27] S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, K. Tumer, Collaborative evolutionary reinforcement learning, in: ICML, PMLR, 2019,
pp. 3341–3350.

[28] E. Todorov, T. Erez, Y. Tassa, Mujoco: a physics engine for model-based control, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2012, pp. 5026–5033.

[29] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic policy gradient algorithms, in: ICML, 2014, pp. 387–395.
13

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, Openai gym, arXiv preprint, arXiv :1606 .01540, 2016.

http://refhub.elsevier.com/S0020-0255(23)01079-4/bib5A3A6D2A00E669981EDE539457F2683Ds1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib5A3A6D2A00E669981EDE539457F2683Ds1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibACB570F4CE03F8D00AB42B652A07CA64s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib41FA50601601FCF7ED1375555872FE8Fs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibE05B44462AB13617A8F47FF868031AB7s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibE05B44462AB13617A8F47FF868031AB7s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibDF19BBAA3FE1E1C63B3EAD0051652E9As1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibDF19BBAA3FE1E1C63B3EAD0051652E9As1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibBE0A72882F9620317F121403CF9C3438s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib1A80EEC167E97B4E7D7196CC6D1449C6s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib6E76C5B80A9A631C07EC7A3D272ED98As1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib42FE2D671C346770044621411B95D832s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibAE76994A15EACA90A612E20DCA12124Es1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibFF6280FA6D28CB1F79170F6A8C88AD92s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib3412A032C352E65C0AB1AA5CF1F3C706s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib5D621920178BEA4E1DC97C14C0AC1A98s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib4CF6EDD0BF9B3E7D5888FB5AF37BB774s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib4CF6EDD0BF9B3E7D5888FB5AF37BB774s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib817EA5F1401865A18B9A21518E74ACF2s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibF5DE6578340F2126ADC00066EC8E7577s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib3CE613C29A1018CBEDAF997AFBBDCA6Fs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib3CE613C29A1018CBEDAF997AFBBDCA6Fs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibC9888D722D3039B04ACC720700BCA6A1s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib24FD574B7CF195F1E78168035F82EFC4s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib24FD574B7CF195F1E78168035F82EFC4s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib74349724D27A04659561FA9F38F6B710s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib74349724D27A04659561FA9F38F6B710s1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bib47DA88F593F06D1CC9DAE67B22F969CCs1
http://refhub.elsevier.com/S0020-0255(23)01079-4/bibBCD689454C0DFAB7AAB3EB5FAEEA0C33s1

	Multi-actor mechanism for actor-critic reinforcement learning
	1 Introduction
	2 Preliminaries
	2.1 Deep deterministic policy gradient
	2.2 Twin delayed deep deterministic policy gradient

	3 Multi-actor mechanism
	3.1 Obsolescence technology and its advantage
	3.1.1 Obsolescence technology
	3.1.2 Advantage of obsolescence technology

	3.2 Q-value weighting technology and its advantage
	3.2.1 Q-value weighting technology
	3.2.2 Advantage of Q-value weighting technology

	4 Experiment
	4.1 Implementation details
	4.2 Experiment results

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

