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Abstract— Consensus clustering is to find a high quality and
robust partition that is in agreement with multiple existing
base clusterings. However, its computational cost is often very
expensive and the quality of the final clustering is easily affected
by uncertain consensus relations between clusters. In order to
solve these problems, we develop a new k-type algorithm, called
k-relations-based consensus clustering with double entropy-norm
regularizers (KRCC-DE). In this algorithm, we build an opti-
mization model to learn a consensus-relation matrix between final
and base clusters and employ double entropy-norm regularizers
to control the distribution of these consensus relations, which
can reduce the impact of the uncertain consensus relations. The
proposed algorithm uses an iterative strategy with strict updating
formulas to get the optimal solution. Since its computation
complexity is linear with the number of objects, base clusters,
or final clusters, it can take low computational costs to effectively
solve the consensus clustering problem. In experimental analysis,
we compared the proposed algorithm with other k-type-based
and global-search consensus clustering algorithms on benchmark
datasets. The experimental results illustrate that the proposed
algorithm can balance the quality of the final clustering and its
computational cost well.

Index Terms— Cluster analysis, consensus clustering, entropy-
norm regularizer, k-type clustering.

I. INTRODUCTION

CLUSTER analysis is an important field in machine learn-
ing [1]. The goal of clustering is to partition a dataset

into several groups so that objects are highly similar within the
same clusters but are dissimilar from different clusters. Various
types of clustering algorithms [2], [3], [4] have been developed
to achieve this goal. Since clustering algorithms work without
label information, their clustering results are often different.
Under an unsupervised scene, it is not easy to select a
suitable clustering result for a dataset, although there are many
clustering indices proposed to evaluate the quality of clustering
results. Because these indices are defined based on different
subjective assumptions. Besides, a clustering algorithm is often
sensitive to parameter settings. A clustering algorithm with
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different input parameters often produces distinct clustering
results on a dataset. It is difficult for users to determine which
parameter setting would be the proper one, since the super-
vision information is lacking. Therefore, it is an extremely
important task for cluster analysis to get a robust and stable
clustering result on a dataset.

Many consensus clustering or cluster ensemble algorithms
were proposed [5] to solve this problem. They try to compute
the most consistency of multiple clustering results (which are
called base clusterings) and then obtain a final clustering result
with high robustness and stability. Consensus clustering can
be used to overcome the limitations of a single clustering [6].
Different types of consensus clustering methods have been
proposed, according to different scientific needs, such as
the pairwise-similarity approach [7], [8], [9], [10], [11], the
graph-based approach [12], [13], [14], [15], [16], [17], the
relabeling-based approach [18], [19], [20], [21], [22], and
the feature-based approach [23], [24], [25], [26], [27], [28].

In order to keep the final clustering having the most
consistency of base clustering results, consensus clustering is
often a combinatorial optimization problem, which has been
shown to be nondeterministic polynomial (NP)-complete [24],
even when the number of input clusterings is three. Therefore,
we often need expensive computation costs for global search
to obtain a final clustering with high consistency. A consensus
clustering algorithm based on a global-search strategy is very
difficult to deal with large-scale datasets. Graph-based [12],
[14] and k-type-based consensus clustering methods [25], [26],
[27], [28] are two good solutions for the challenge of high
computational cost. In graph-based methods [12], [14], the
clustering ensemble task is implemented on a set of all the base
clusters. However, their computational costs are sensitive to the
number of base clusters. They are often inefficient while the
number of base clusters is very large. K -type-based methods
were developed based on the classical k-means or its variants.
They inherited the efficiency from k-means. Compared to other
algorithms, k-type-based algorithms have linear computational
complexity for the number of objects and base clusters.
The representative methods include the k-modes-based [25],
[26] and the k-means-based [27], [28] algorithms. However,
existing k-type-based methods only simply implement one of
k-means or its variants on the base clusterings which are seen
as categorical or binary data. They did not fully consider the
specific characteristics of the consensus clustering task. This
lead to the following two important issues, which need to be
addressed.
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1) It is a Lack of the Interpretability of Clustering Results,
Such as the Meaning of Cluster Representation: Each
k-type algorithm needs to define and learn the cluster
representation. For example, in k-means [3], “mean”
of a cluster on numerical datasets is seen as its rep-
resentation. In density-peak [4], an object with high
local density in a cluster is seen as its representation.
In k-modes [26], “mode” of a cluster on categorical
datasets is seen as its representation. In improved k-
modes [29], a cluster on categorical datasets is described
by the frequency of each categorical value in the cluster.
However, the existing representations are not suitable to
explain the consensus between final and base clusters.

2) The Uncertain Consensus-Relations Between Clusters
are Not Considered: The uncertainty of the consensus
relation between clusters is mainly from the failure of
the consensus evaluation index and the noisy labels in
each base clustering. In most of the consensus clustering
algorithms, the number of common objects between
clusters is seen as an important index to evaluate their
consensus. However, in some cases, the consensus index
does not work. For example, there may be several
base clusters which have the same numbers of common
objects with a cluster. However, the same numbers of
common objects do not represent the same consensus.
Due to the fact that each base clustering includes partial
incorrect labels, the consensus relation evaluated by
the number of common objects may be uncertain. The
uncertainty seriously affects the quality of the obtained
final clustering results on many datasets.

In order to solve the above problems, we propose a new
k-type algorithm for consensus clustering, called k-relations-
based consensus clustering with double entropy-norm regular-
izers (KRCC-DE). Its main contributions are summarized as
follows.

1) We construct an optimization model to learn a matrix
of consensus relations between final and base clusters,
which is seen as cluster representation. In this model,
double entropy-norm regularizers are used to control the
distribution of these consensus relations and reduce their
uncertainty.

2) We derive an iterative method with strict updating for-
mulas to solve the proposed optimization problem. The
proposed method inherits high efficiency from the k-type
algorithms.

3) The experimental analysis on several widely-used bench-
mark datasets illustrates that the proposed algorithm can
well solve the problem of balancing the effectiveness
and efficiency of cluster ensemble, compared to other
consensus clustering algorithms.

The remainder of this article is organized as follows.
Section II provides an overview of existing consensus cluster-
ing techniques. Section III introduces a new k-relations-based
algorithm for consensus clustering. Section IV evaluates the
performance of the proposed algorithm. Finally, Section V
concludes the article with a discussion of the results.

II. RELATED WORKS

Various types of consensus clustering algorithms have been
designed to solve the most consistency of base clusterings. In a
consensus clustering algorithm, there are two important steps:
representation of base clustering and integration technique.
In some literature [5], [9], they can be classified into four
categories, that is, pairwise similarity–based, graph-based,
relabeling-based, and feature-based approaches, according to
integration techniques. In this article, we review these exist-
ing consensus clustering algorithms, from the view of the
representation of base clusterings. Currently, there are three
types of representation methods, that is, consensus relations
between objects, consensus relations between base clusters,
and consensus relations between objects and base clusters,
as seen in [30].

1) Object-consensus-based approach that represents base
clusterings as an object graph or pairwise-similarity
matrix to reflect the consistent relations between
objects [7], [8], [9], [10], [11], [31]. At the early
stage, Fred and Jain [7] constructed a co-association
matrix for base clustering and proposed the evidence
accumulation–based ensemble algorithm. Strehl and
Ghosh [12] defined a hypergraph-based representation
for base clusterings, where objects and clusters are seen
as nodes and hyperedges, respectively. In [8] and [32],
clustering validity functions were used to evaluate the
importance of a base clustering and construct a weighted
similarity matrix. In [9], a link-based similarity matrix
was proposed, where the indirect similarity between
clusters is computed. In [10] and [33], a pairwise-
similarity matrix was proposed to reflect the label
consistency on different subspace clusterings. In [14],
a pairwise-similarity matrix for consensus clustering
was learned by random walk. In [34], proposed a
novel multidiversified ensemble clustering approach for
integrating multiple similarity matrices. Lai et al. [11]
defined a weighted co-association matrix based on
prior information. Zhou et al. [35] built a graph learning
model to learn multiple pairwise-similarity matrices for
robust consensus clustering. In [36], a deep ensemble
clustering method was proposed, which learns a final
clustering to reconstruct the weighted pairwise-similarity
matrices generated from base clusterings. In [37], they
improved the co-association matrix by extracting highly
confidence information to enhance the quality of con-
sensus clustering. Besides, Shi et al. [38] proposed a
co-association matrix optimization model to improve the
co-association matrix by integrating abundant informa-
tion from both label space and feature space.

2) Cluster-consensus-based approach that evaluates the
consistent relations between base clusters to define a
cluster graph or cluster-similarity matrix for consen-
sus clustering. Relabeling-based ensemble algorithms
are the representatives of the cluster consensus–based
approach. They proposed different optimization mod-
els [18], [19], [21], [39] to solve the label align-
ment for base clusters. In [12], the MCLA algorithm
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was proposed to construct a cluster graph where the
nodes and edges denote clusters and the similarity
between clusters, respectively. Fern and Brodley [13]
extended MCLA to propose the HBGF algorithm, which
is an integration of object consensus– and cluster
consensus–based approaches. Its nodes represent both
objects and clusters. In [40], [41], and [42], a consensus
clustering problem is seen as the approximate spec-
tral clustering problem and then different accelerated
algorithms have been proposed. To reduce the computa-
tional costs, they constructed a cluster-similarity matrix,
instead of the object-similarity matrix, to learn the graph
representation.

3) Object-cluster-consensus-based approach that learns the
consensus relations between objects and base clusters
and then converts a consensus clustering problem into a
categorical or binary data clustering problem [24], [25],
[26], [27], [30]. Topchy et al. [24] illustrated the equiva-
lence between categorical data clustering and consensus
clustering. In [25], the k-modes algorithm [26], as a
representative of categorical data clustering, was used to
solve the consensus clustering problem. In [30], from the
view of categorical data clustering, information theory
was employed to evaluate the quality of base clusterings
and consensus of cluster ensemble. Wu et al. [27] used
the k-means objective function as consensus function
that is equal to the category utility function [43] for
categorical data clustering, and then developed k-means-
based consensus clustering algorithm. In [17], a self-
paced consensus clustering algorithm was proposed to
learn a structured bipartite graph from the multiple base
clustering results, which reflects the relations between
objects and base clusters. In [44], graph representation
methods were employed to learn the vector representa-
tion of each label. In this case, base clusterings can be
converted into numerical data, the consensus relations
between objects and clusters were learned by k-means.
Liu [45] proposed a simple multiple kernel k-means
clustering algorithm which can be used to solve the con-
sensus clustering problem by seeing the co-association
matrix of each base clustering as a kernel matrix.

Although the existing consensus clustering methods already
have good theoretical and practical contributions, it is still
challenging for them to balance the effectiveness and effi-
ciency of algorithms. Therefore, in this article, we focus on
how to design an effective k-type clustering for consensus
clustering.

III. K -RELATIONS-BASED CONSENSUS CLUSTERING

We first introduce the related symbols of consensus cluster-
ing. Let X = {xi }

n
i=1 be a set of n objects. On a given dataset

X , we can run clustering algorithms to produce t different
clustering results which are called “base clusterings.” Base
clusterings can be described by sets 5 or matrices B. The
set representation of base clusterings is defined as follows.
Let 5 = {π1, . . . , πt } be a set of t base clusterings and
πh = {Ch1 , . . . ,Chkh

} be a set of all the clusters included by

Fig. 1. Consensus clustering task.

Fig. 2. Consensus-relation matrix versus cluster-similarity matrix.

the hth base clustering, where kh is the number of clusters and
Ch j ∈ πh is the j th base cluster in πh , for 1 ≤ h ≤ t . The
matrix representation of base clusterings is defined as follows.
Let B = [B1, . . . , Bt ] be a n × p matrix, where p =

∑t
h=1 kh

is the number of all base clusters from 5, and Bi be a n × kh

membership matrix, where bih j is the membership degree of
object xi to cluster Ch j . bih j = 1 if object xi belongs to Ch j ,
otherwise, 0. π∗ = {C∗

1 , . . . ,C∗

k } denotes the final clustering
including k final clusters, where C∗

l ∈ π∗ be the lth final
cluster for 1 ≤ l ≤ k, k is the number of the final clusters.
U = [uil] is a n × k membership matrix of the final clustering
and uil is the membership degree of xi to C∗

l . The task of the
consensus clustering problem is to generate a final clustering
π∗ or U of dataset X based on the base clusterings, which is
shown in Fig. 1.

In this article, we try to learn Z , which is a k × p
consensus-relation matrix, where zlh j is an element of Z which
reflects consensus (similarity) relation between final cluster C∗

l
and base cluster Ch j . We assume zlh j is proportional to the
occurrence frequency of the common objects between C∗

l and
Ch j in C∗

l , that is,

zlh j ∝ flh j , where flh j =

∣∣C∗

l ∩ Ch j

∣∣∣∣C∗

l

∣∣ . (1)

Next, let us explain why learning Z can improve clustering
speed. In some graph-based methods, a p × p cluster-
similarity matrix is seen as the operation object, in order to
fast obtain the final clustering U . However, if p is very large,
these graph-based methods are not efficient. Compared to the
cluster-similarity matrix, Z needs low computation cost (seen
in Fig. 2). Given Z , we can directly compute the membership
degree of objects to final clusters, according to a similarity
measure.

In this, we define the similarity measure as follows:

sil = bi zT
l (2)
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where bi is the lth row of B and zl is the lth row of Z . sil

uses the dot product between vectors bi and zl to reflect the
membership degree of object xi to final cluster C∗

l . We can
see that

bi zT
l =

∑
xi ∈Ch j ,1≤h≤t,1≤h j ≤kh

zlh j (3)

is the sum of the similarity between the lth final cluster and
the base clusters that object xi belongs to. The higher the
similarity value is, the more possibly xi is assigned to C∗

l .
Based on the similarity measure, a consensus function 8 is
defined as

8(U, Z) =

n∑
i=1

k∑
l=1

uilsil . (4)

It is used to evaluate the consensus degree of final clustering
with base clusterings. We have

8(U, Z) =

k∑
l=1

∣∣C∗

l

∣∣ t∑
h=1

kh∑
j=1

flh j zlh j . (5)

Since zlh j ∝ flh j , flh j zlh j can be used to reflect the consensus
between C∗

l and Ch j . The larger flh j zlh j is, the more consensus
they have. In this case, 8(U, Z) can be seen as the sum of the
consensus between all the final and base clusters. For example,
if we set zlh j = flh j

8(U, Z) =

k∑
l=1

∣∣C∗

l

∣∣ t∑
h=1

 kh∑
j=1

f 2
lh j

. (6)

We have 0 ≤
∑kh

j=1 f 2
lh j

≤ 1. The more consistent the
base-cluster labels of πh in the final cluster C∗

l are, the closer∑kh
j=1 f 2

lh j
to be 1. Thus, maximizing 8 is used to find out a

final clustering with the high consensus of base clusterings.
If we add a constraint

∑kh
j=1 zlh j = 1 to 8(U, Z), we can

obtain the following equation:

zlh j =

1, j = arg
khmax

j=1
flh j

0, otherwises
(7)

to maximize 8 given U . In this case, we can see that each
final cluster has consensus relation with only a cluster from
each base clustering. Other consensus relations are omitted.
In order to solve this problem, we add a regularizer term �

to stimulate more consensus relations. A consensus function
with regularizer is defined as follows:

max
U,Z

F(U, Z) = 8(U, Z)+�(U, Z) (8)

where

�(U, Z) = −α

k∑
l=1

n∑
i=1

uilzl ln zT
l . (9)

�(U, Z) is an entropy-norm regularizer, which makes use of
information entropy to control the distribution of the vector
zlh = [zlh1 , . . . , zlhkh

], for 1 ≤ l ≤ k and 1 ≤ h ≤ t .
By maximizing �(U, Z), we can assign such base clusters
that have high overlapping degrees with the final cluster to

the high within-cluster-consensus values and reduce the roles
of the base clusters that have low overlapping degrees with
the final cluster. α is a parameter used to control the sparsity
of Z . The smaller the parameter value, the more sparse Z is.

Given 8 and �, the optimization problem of F becomes

max
U,Z

F =

n∑
i=1

k∑
l=1

uil
[
bi zT

l − αzl ln zT
l

]
(10)

s.t.
kh∑

j=1

zlh j = 1, zlh j ∈ [0, 1]. (11)

Given U , we use the Lagrangian multiplier technique to
compute

∂F ′

∂zlh j

=
∣∣C∗

l ∩ Ch j

∣∣− α
∣∣C∗

l

∣∣(1 + ln zlh j )+ λ (12)

where

F ′
= F + λ

k∑
l=1

t∑
h=1

 kh∑
j=1

zlh j − 1

.
According to (12), we can solve the maximization problem of
F by the following equation:

zlh j =

exp
(

flh j

α

)
∑kh

r=1 exp
(

flhr
α

) . (13)

In this, zlh reflects the distribution of the cluster labels of base
clustering πh in final cluster C∗

l . Based on the equation, we can
see that zlh j is directly proportional to flh j and inversely
proportional to other flhr for 1 ≤ r ̸= j ≤ kh . In this case,
Z reflects the consensus of base-cluster labels within final
clusters. However, it ignores the consensus of a base-cluster
label among final clusters. A base-cluster label may have
high occurrence frequency in more than one final cluster. The
consensus between final cluster C∗

l and base cluster Ch j is
strong when the label of Ch j has low frequencies in other
final clusters. Thus, zlh j should be inversely proportional to
fqh j for 1 ≤ q ̸= l ≤ k. Therefore, we need to consider its
distribution in all the final clusters.

We take an example in Fig. 3 for this problem. There
is a base clustering πh = {Ch1 ,Ch2 ,Ch3 ,Ch4} and a final
clustering π∗ = {C∗

1 ,C∗

2 ,C∗

3 ,C∗

4 }. The figure first shows the
frequencies of these base clusters within the final cluster C∗

1 .
We can see that both f1h1 and f1h2 are equal to 40%. This
indicates that if we only consider the frequencies within final
clusters to evaluate the consensus relations, the consensus
degree between C∗

1 and C1h1 is the same as that between C∗

1
and C1h2 . However, if we consider the frequencies of these
base clusters within other final clusters, we may get different
conclusion. According to the figure, we can observe that base
cluster C1h1 only has high frequency within final cluster C∗

1 .
However, base cluster C1h2 has higher frequency within final
cluster C∗

2 than final cluster C∗

1 . Therefore, we can conclude
that the consensus degree between C∗

1 and C1h1 should be
higher than that between C∗

1 and C1h2 .
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Fig. 3. Distributions of within-cluster and between-cluster-consensus relations.

Based on the above motivation, we split Z into two k × p
variable matrices V and W , that is,

Z = V ⊙ W (14)

where ⊙ is an element-wise multiplication and zlh j = vlh jwlh j ,
for 1 ≤ l ≤ k, 1 ≤ h ≤ t , and 1 ≤ j ≤ kh . We employ
vlh j and wlh j to reflect within-cluster consensus and between-
cluster consensus of zlh j , respectively. The definitions of V
and W are formalized as follows.

1) V is a k × p within-cluster matrix of consensus rela-
tions, where vl is the lth row of V , vlh j is the h j th
component of vl reflecting the within-cluster consensus
of base cluster Ch j to final cluster C∗

l . We assume

vlh j ∝ flh j and vlh j ∝ − flhr , 1 ≤ r ̸= j ≤ kh .

Therefore, we add the constraint
∑kh

j=1 vlh j = 1, for
1 ≤ h ≤ t , 1 ≤ l ≤ k to V .

2) W is a k × p between-cluster matrix of consensus
relations, where wl is the lth row of W , wlh j is the h j th
component of wl reflecting the between-cluster consen-
sus of base cluster Ch j to final cluster C∗

l . We assume

wlh j ∝ flh j and wlh j ∝ − frh j , 1 ≤ r ̸= l ≤ k.

Therefore, we add the constraint
∑k

l=1wlh j = 1, for
1 ≤ h ≤ t , 1 ≤ j ≤ kh , to W .

Based on the new description of Z , � can be redefined as
follows:

�(U, V,W ) = −α

k∑
l=1

n∑
i=1

uilvl ln vT
l − β

k∑
l=1

n∑
i=1

uilwl ln wT
l .

(15)

According to the definition, we can see that � uses two
entropy-norm regularizers to control the distributions of con-
sensus relations between final and base clusters. The term
−vl ln vT

l with the constraint
∑kh

j=1 vlh j = 1 is used to control
the distribution of vector vlh = [vlh1 , . . . , vlhkh

], for 1 ≤ l ≤ k
and 1 ≤ h ≤ t . By maximizing it, we can assign such
base clusters that have high overlapping degrees with the
final cluster to the high within-cluster-consensus values and
reduce the roles of the base clusters that have low overlapping
degrees with the final cluster. The term −wl ln wT

l with the
constraint

∑k
l=1wlh j = 1 is used to control the distribution of

the column vector wh j = [w1h j , . . . , wkh j ]
T , for 1 ≤ h ≤ t

TABLE I
DESCRIPTION OF DATASETS

and 1 ≤ j ≤ kh . By maximizing it, we wish each base cluster
has high consensus with few final clusters rather than all the
final clusters. α and β are two important parameters that are
used to control the distributions of V and W , respectively.

When using V and W , instead of Z , the optimization
problem of F is redescribed as follows:

max
U,V,W

F(U, V,W ) = 8(U, V,W )+�(U, V,W ) (16)

s.t.



k∑
l=1

uil = 1, uil ∈ {0, 1}

kh∑
j=1

vlh j = 1, vlh j ∈ [0, 1]

kh∑
j=1

wlh j = 1, wlh j ∈ [0, 1].

(17)

Maximization of the objective function F with the constraint
(17) is a constrained non-linear optimization problem. In order
to rapidly solve the optimization problem, we need to itera-
tively solve the following three subproblems.

1) Problem P1: Fix U = Û and V = V̂ , compute W to
maximize F(Û , V̂ ,W ).

2) Problem P2: Fix U = Û and W = Ŵ , compute V to
maximize F(Û , V, Ŵ ).

3) Problem P3: Fix V = V̂ and W = Ŵ , compute U to
maximize F(U, V̂ , Ŵ ).

Next, we provide the following theorems to solve these
subproblems.
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TABLE II
ADJUSTED RAND INDEX (ARI) VALUES OF DIFFERENT ALGORITHMS ON THE BENCHMARK DATASETS WITH FIXED k

TABLE III
NORMALIZED MUTUAL INFORMATION (NMI) VALUES OF DIFFERENT ALGORITHMS ON THE BENCHMARK DATASETS WITH FIXED k

TABLE IV
ARI VALUES OF DIFFERENT ALGORITHMS ON THE BENCHMARK DATASETS WITH RANDOM k

TABLE V
NMI VALUES OF DIFFERENT ALGORITHMS ON THE BENCHMARK DATASETS WITH RANDOM k

TABLE VI
ARI VALUES OF DIFFERENT ALGORITHMS ON THE CATEGORICAL DATASETS
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TABLE VII
NMI VALUES OF DIFFERENT ALGORITHMS ON THE CATEGORICAL DATASETS

TABLE VIII
COMPARISONS WITH GLOBAL-SEARCH ALGORITHMS

TABLE IX
RUNNING TIME (SECONDS) OF DIFFERENT ALGORITHMS

TABLE X
DIFFERENT INITIALIZATION

Theorem 1: Let U = Û and W = Ŵ be fixed. F(Û , V, Ŵ )

is maximized iff

vlh j =

exp
(
wlh j flh j

α

)
∑kh

r=1 exp
(
wlhr flhr

α

) (18)

for 1 ≤ h ≤ t , 1 ≤ l ≤ k, 1 ≤ j ≤ kh .
Proof: Let κlh =

∑kh
j=1 |C∗

l ∩ Ch j |vlh jwlh j −

α|C∗

l |
∑kh

j=1 vlh j ln vlh j , for 1 ≤ h ≤ t and 1 ≤ l ≤ k. We have
the following equation:

F(U, V,W ) =

t∑
h=1

k∑
l=1

κlh − β

k∑
l=1

n∑
i=1

uilwl ln wT
l .

Each κlh is independent of each other. Given U and W , |C∗

l |,
|C∗

l ∩ Ch j |, and wl ln wT
l are constants. As κlh is a strictly

convex function, the well-known Karush–Kuhn–Tucker (K-K-
T) necessary optimization condition is also sufficient to ensure
an optimal solution. Consequently, vlh = [vlh1 , . . . , vlhkh

] is an
optimal solution if and only if there exists λ together with vlh

that satisfies the following system of equations:

κ̃ lh(vlh, λ ) = κlh + λ

 kh∑
j=1

vlh j − 1


∇vlh κ̃ lh(vlh, λ ) = 0,

kh∑
j=1

vlh j = 1. (19)

We have

∂κ̃ lh(vlh, λ )

∂vlh j

=
∣∣C∗

l ∩ Ch j

∣∣wlh j − α
∣∣C∗

l

∣∣(1 + ln vlh j )+ λ .

(20)
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From (19) and (20), we obtain the optimal solution

vlh j =

exp
(
wlh j

α

∣∣C∗

l ∩Ch j

∣∣∣∣C∗

l

∣∣ )
∑kh

r=1 exp
(
wlhr
α

∣∣C∗

l ∩Chr

∣∣∣∣C∗

l

∣∣ ) .
This completes the proof.

Theorem 2: Let U = Û and V = V̂ be fixed. F(Û , V̂ ,W )

is maximized iff

wlh j =

exp
(
vlh j flh j

β

)
∑k

r=1 exp
(
vrh j frh j

β

) (21)

for 1 ≤ h ≤ t , 1 ≤ l ≤ k.
Proof: Let θh j =

∑k
l=1 |C∗

l ∩ Ch j |vlh jwlh j −

β|C∗

l |wlh j lnwlh j , for 1 ≤ h ≤ t and 1 ≤ j ≤ kh . We have the
following equation:

F(U, V,W ) =

t∑
h=1

kh∑
j=1

θh j − α

k∑
l=1

n∑
i=1

uilvl ln vT
l .

Each θh j is independent of each other. Given U and V , |C∗

l |,
|C∗

l ∩ Ch j |, vlh j , and vl ln vT
l are constants. Thus, minimizing

the objective function F is equivalent to minimizing each
θhl . Since θh j is a strictly convex function, it follows that
the K-K-T necessary optimization condition is also sufficient.
Therefore, the vector wh j = [w1h j , . . . , wkh j ]

T is an optimal
solution if and only if there exists a scalar λ such that the
following system of equations is satisfied:

θ̃h j (wh j , λ ) = θh j + λ

(
k∑

l=1

wlh j − 1

)

∇wh j
θ̃h j (wh j , λ ) = 0,

k∑
l=1

wlh j = 1. (22)

We have

∂θ̃h j (wh j , λ )

∂wlh j

=
∣∣C∗

l ∩ Ch j

∣∣vlh j − β
∣∣C∗

l

∣∣(1 + lnwlh j )+ λ .

(23)

From (22) and (23), we obtain the optimal solution

wlh j =

exp
(
vlh j

β

∣∣C∗

l ∩Ch j

∣∣∣∣C∗

l

∣∣ )
∑k

r=1 exp
(
vhr j

β

∣∣C∗
r ∩Ch j

∣∣∣∣C∗
r

∣∣ ) .
This completes the proof.

Theorem 3: Let V = V̂ and W = Ŵ be fixed. F(U, V̂ , Ŵ )

is maximized iff

uil =

{
1, l = arg max

l
bi zT

l − αvl ln vl
T

− βwl ln wl
T

0, otherwise
(24)

for 1 ≤ l ≤ k, 1 ≤ i ≤ n.
Proof: Let ψil = bi zT

l −αvl ln vl
T

−βwl ln wl
T and ϕi =∑k

l=1 ψil . For a given V and W , F(U, V,W ) =
∑n

i=1 ϕi .

Since each ϕi is independent of each other. Maximizing F is
equivalent to maximizing each ϕi . When uil = 1, we have
ui j = 0, 1 ≤ j ≤ k, j ̸= l and ϕi = ψil . It is clear that ϕi is
maximized iff l = arg maxl ψil . The result follows.

Based on [26], we can prove the convergence of the pro-
posed algorithm by Theorem 4 as follows.

Theorem 4: The KRCC-DE algorithm converges in a finite
number of iterations.

Proof: We first observe that there are only a finite number
of possible partitions U . We then demonstrate that each of
these partitions U appears at most once in the sequence
generated by the algorithm. Suppose that U (τ1) = U (τ2), where
τ1 ̸= τ2. Since we know U (τ ), we can compute the minimizer
V (τ ) independently of W (τ ). We have the maximizers V (τ1)

and V (τ2) for U (τ1) and U (τ2), respectively. Using U (τ1) and
V (τ1) and U (τ2) and V (τ2), according to Theorem 3, we can
compute the maximizers W (τ1) and W (τ2), respectively. Since
W (τ1) = W (τ2), we obtain that

F(U (τ1), V (τ1),W (τ1)) = F(U (τ2), V (τ2),W (τ2)).

However, we know that the sequence F(·, ·, ·) generated by
the algorithm is non-decreasing. Thus, the proof is complete.

Based on Theorems 1, 2, and 3, an iterative optimization
algorithm is proposed to maximize the objective function
F with the constraint, which is described in Algorithm 1.
It is called K -relations-based consensus clustering with double
entropy-norm regularizers (KRCC-DE). Based on Theorem 4,
we conclude that the proposed algorithm can converge in a
finite number of iterations.

Algorithm 1 KRCC-DE Algorithm
Input: 5, k, α, β
Output: U
Initialize U and W ;
Repeat
Fixed U and W , solve Problem P1 to compute V by
Theorem 1;

Fixed U and V , solve Problem P2 to compute W by
Theorem 2;

Fixed V and W , solve Problem P3 to compute U by
Theorem 3;

Until The objective function F is not changed.

Before implementing this algorithm, we need to provide
the initialization of W and U . For initial between-cluster
relation matrix W , we initially set each wlh j to 1/k, for
1 ≤ l ≤ k, 1 ≤ h ≤ t , and 1 ≤ j ≤ kh . Compared to
W , the proposed algorithm is affected by initial U , which
is a common shortcoming for k-type algorithms. In order to
overcome this shortcoming, we can employ one of the existing
initialization methods of k-type algorithms for U , such as
k-means++ [46], or we can use one of internal clustering
indices, such as category utility (CU) [47] measure, to select
the best base clustering to initialize U .

Besides, we need to input the number of final clusters k,
and the parameters α and β. In general, k is set according
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to prior knowledge of users. We assume α and β should be
not less than 0. If α = 0 and β = 0, the regularizers do not
work in the optimization of F . In this case, Z becomes the
most sparse, which leads to the omission of many important
consensus relations. If α > 0 and β = 0, the regularizer of W
do not work and Z is equivalent to V . Similarly, if α = 0 and
β > 0, Z is equivalent to W . In this article, we hope to set
small positive values for V and W to make them sparse. This
setting can reduce many of the uncertain consensus relations.

Similar to other k-type algorithms, the time complexity of
the proposed algorithm is O(nkpτ), where τ is the number
of iterations. The time complexity is linear with the number
of objects n, base clusters p, or final clusters k. We know
that the computational costs of object-consensus clustering
and cluster-consensus clustering are O(n2) and O(np2) with
respect to n and p, respectively. According to the comparison
of the computational complexities, we can see that if n and
p are very large in a dataset, the k-type clustering is suitable,
compared to other types of consensus clustering. The storage
complexity of the proposed algorithm is O(np + nk + 2pk),
which is necessary to hold the set of t base clusterings, the
final partition matrix U , the cluster representation matrices V
and W . Thus, the complexity analysis reveals that the proposed
algorithm inherits the efficiency of k-type algorithms for large-
scale datasets.

IV. RELATION BETWEEN KRCC-DE AND OTHER K -TYPE
CLUSTERING

If we see B as an input data matrix and Z as cluster
prototype matrix, the objective function of k-type clustering
is generally described as follows:

P(U, Z) =

n∑
i=1

k∑
l=1

uild(bi , zl) (25)

where d is a dissimilarity or distance measure to evaluate the
similarity between an object and a cluster prototype. In k-
means, Euclidean distance is used to define d, that is, ∥bi −

zl∥
2. In this case, the objective function becomes

P(U, Z) =

n∑
i=1

k∑
l=1

uil∥bi − zl∥
2

=

n∑
i=1

k∑
l=1

uil
(
b2

i + z2
l − 2bi zl

)
= kn +

n∑
i=1

k∑
l=1

uilz2
l − 28(U, Z). (26)

If fix U to minimize P(U, Z), by the Lagrangian multiplier
technique to compute

∂P
∂zl

= 2
n∑

i=1

k∑
l=1

uil(zl − bi ) = 0 (27)

we can obtain zlh j = flh j . In this case, we have

n∑
i=1

k∑
l=1

uilz2
l = 8(U, Z). (28)

Thus, we can see the following relation between the objective
function of k-means and 8 defined in this article:

P(U, Z) = kn −8(U, Z). (29)

According to the equation, we can conclude that if we do not
consider the entropy-norm regularizers �(U, Z), the objective
function of KRCC-DE is equal to k-means. Besides, we also
can see the role of the entropy-norm regularizers, which make
Z become sparse, compared to directly computing Z by flh j .

V. EXPERIMENTAL ANALYSIS

A. Datasets

In order to verify the performance of the proposed
algorithm, we perform experiments on several
widely used benchmark datasets, which can be
found from https://cs.nyu.edu/ roweis/data.html and
https://archive.ics.uci.edu/ml. These datasets include a
variety of different types, such as face image (ORL),
spoken letter recognition (Isolet), satellite image (Statlog),
handwritten digits (COIL100, OpticalDigits, USPS and
MNIST), shuttle information data (Shuttle), handwritten
letters (Letters), categorical data (Soybean, Zoo, Voting,
Breastcancer, Mushroom). Details of the tested datasets can
be found in Table I. For each non-categorical datasets, we set
the number of base clusterings t = 100 and use classical
k-means as base clusterer to produce 100 different base
clusterings. For a categorical dataset, each of its features is
seen as a base clustering. The number of clusters k is set to
the number of real clusters on each dataset.

B. Compared Methods

In order to properly examine the performance of the KRCC-
DE algorithm, we compare it with the following k-type-based
consensus clustering algorithms.

1) k-modes algorithm [26] sees multiple base clusterings
as categorical data and uses the k-modes algorithm to
produce the final clustering.

2) k-means algorithm [3] sees multiple base clusterings
as numerical data and uses the k-means algorithm to
produce the final clustering.

3) k-means-based algorithm (KCC) [27] was proposed by
Wu and Liu et al., which extends k-means objective
function to build the optimization model for consensus
clustering.

4) Weighted k-means-based algorithm (WKCC) [28] was a
weighted version of KCC.

5) k-relations-based algorithm with single entropy-norm
regularizer (KRCC-E) is equal to KRCC-DE with the
parameter β = 0.

Besides, we also compare the proposed algorithm with the
following global-search consensus clustering algorithms.

1) The USENC algorithm [14] is an approximated spectral
clustering algorithm for consensus clustering.

2) The MCLA algorithm [12] is a kind of graph-based
consensus clustering algorithm.

3) The WCT algorithm [9] is a kind of pairwise
similarity–based consensus clustering algorithm.
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Fig. 4. Effect of parameters on the proposed algorithm. (a) ARI against α. (b) NMI against α. (c) ARI against β. (d) NMI against β.

The comparisons are conducted on a personal computer (Intel
i7@3.60 GHz) with 16G RAM and MATLAB 2016b.

C. Evaluation Criteria

In the experiments, the clustering indices ARI [48] and
NMI [49] are used to evaluate the clustering result. If a
clustering result is highly similar to the ground truth on a
dataset, it will yield a high ARI and NMI score.

D. Effectiveness Analysis

We first compare the proposed algorithm with other k-type-
based consensus clustering algorithms on all the benchmark
datasets. For the KRCC-DE algorithm, we fix α = 0.01 and
β = 0.01 and for the KRCC-E algorithm, we set α = 0.01 and
β = 0. We run each of these algorithms 50 times to compute
the mean and standard deviation of their ARI and NMI on
each dataset. Tables II and III show the comparison results on
non-categorical datasets, where the number of base clusters
kh for each base clustering is fixed to the number of true
clusters k of each dataset. Tables IV and V show the com-
parison results on non-categorical datasets, where kh in each
base clustering is randomly selected in the interval [k/2, 2k].
Tables VI and VII show the comparison results on categorical
datasets. According to these tables, we can see that the pro-
posed algorithm is significantly better than other k-type-based

consensus clustering algorithms. Moreover, we compared the
proposed algorithm with double entropy-norm regularizers
(KRCC-DE) and single entropy-norm regularizers (KRCC-
E). We found that the double entropy-norm regularizers can
further improve the clustering accuracy.

Next, we compare the proposed algorithm with three
global-search consensus clustering algorithms on non-
categorical datasets, where kh in each base clustering is
randomly selected in the interval [k/2, 2k]. Compared to
k-type algorithms based on local search, the global-search
algorithms need expensive computation costs to get more
robust clustering results. However, the local-search perfor-
mance of k-type algorithms can be improved by an appropriate
selection of the initial value U , which makes the average local
search results to not reach the same level as the global-search
result in clustering accuracy. Therefore, in this comparison,
we try to verify whether the proposed algorithm with a good
initial value can achieve global-search results. Consequently,
we compare the highest ARI and NMI values of the proposed
algorithm with 50 different initial U to those of the global-
search algorithms. Table VIII shows the comparison results
on benchmark datasets. It is noted that while WCT is used
on Shuttle and MNIST datasets, it needs a very large size of
memory. Thus, we cannot get its results on the two datasets.
Thus, in this case, we use “NA” instead of the real values of
ARI and NMI in the tables. According to the table, we can
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conclude that the proposed algorithm with an appropriate
initial value can reach or even exceed the global-search results.

E. Efficiency Analysis

We compare the computation costs of different algorithms
on the benchmark datasets, as shown in Table IX. We can see
from the table that the running time of the k-type algorithms
is less than the global-search algorithms (USENC, MCLA,
and WCT). Among these algorithms, WCT needs the highest
computation costs. We also see that USENC is very efficient,
compared to MCLA and WCT. However, it is not suitable to
deal with datasets with a large number of clusters and base
clusterings, since the time complexity of USENC is O(p3).
As seen in Table IX, USENC is highly time consuming for
the COIL100 dataset. According to the table, we can see
that the proposed algorithm (KRCC-DE) has the excellent
balance between the effectiveness and efficiency of clustering
consensus. In terms of clustering accuracy, the KRCC-DE
algorithm is obviously better than other k-type algorithms.
In terms of clustering efficiency, the KRCC-DE algorithm is
far faster than USENC, MCLA, and WCT. It is worth noting
that the proposed algorithm requires additional computations
for the entropy-norm regularizers, compared to other k-type
algorithms. However, according to the tests, the proposed
algorithm is still scalable. Therefore, according to the exper-
iment analysis, we conclude that the proposed algorithm can
take low computational costs to effectively solve the consensus
clustering problem.

F. Effect of Initialization

The performance of the proposed algorithm is effected by
the initialization of U . To evaluate the effect, we test three
different initialization methods: (1) randomly selecting a base
clustering as initial U ; (2) using CU measure [47] to evaluate
base clusterings and select one with the maximum CU value;
(3) employing k-means++ to compute the initial U . The
comparison results are shown in Table X. We can see that
using CU measure and k-means++ are two good initialization
methods for U . They can enhance the performance of the
proposed algorithm, compared to the random selection.

G. Parameter Analysis

Parameters α and β are two important factors that affect
the performance of the proposed algorithm. To evaluate their
effect on the datasets, we fixed one of the parameters to 0.1 and
then tested the other parameter in the interval [0, 0.1] with a
step size of 0.01. The results of this analysis are demonstrated
in Fig. 4. It is evident that the effects of the parameters
vary across datasets, which implies that it is challenging for
the proposed algorithm to select α and β values that are
general and appropriate for each dataset. To further analyze the
impact, we computed the mean ARI and NMI of the proposed
algorithm on all the tested datasets for each α and β in Fig. 4.
According to the mean lines, we can see that the average
performance of the proposed algorithm in the interval [0, 0.1]

is relatively stable. Besides, we can see that setting α and β to

0.01 is a good choice for most datasets. In this setting, we can
learn a sparse Z which can reduce the uncertain consensus
relations and enhance the quality of the final clustering result.

VI. CONCLUSION

In this article, we present a novel k-relations consensus
clustering algorithm developed under the k-type clustering
paradigm. We define a cluster representation using consensus
relations between the final and base clusters. Furthermore,
we propose a new objective function composed of a consensus
function to evaluate the consensus between the final and base
clusterings, and two entropy-norm regularizers to control the
distributions of consensus relations. We design an iterative
optimization approach to minimize the objective function. The
algorithm can rapidly and accurately capture a good final
clustering. To demonstrate the effectiveness and efficiency of
the proposed algorithm, we conducted experiments on bench-
mark datasets and compared it against other k-type-based
and several global-search consensus clustering algorithms. The
comparison results showed the superiority of the proposed
algorithm.
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