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Abstract

Rough set data analysis is one of the main application techniques arising from rough

set theory. In this paper we introduce a concept of inclusion degree into rough set theory

and establish several important relationships between the inclusion degree and measures

on rough set data analysis. It is shown that the measures on rough set data analysis can

be reduced to the inclusion degree. � 2002 Published by Elsevier Science Inc.
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1. Introduction

Rough set theory, introduced by Pawlak (see [1,2]), is emerging as a pow-
erful tool for reasoning about data. Rough set data analysis is one of the main
application techniques arising from rough set theory (see [3–6]). It provides a
technique for gaining insights into properties of data, dependencies, and sig-
nificance of individual attributes in databases, and has important applications
to artificial intelligence and cognitive sciences, as a tool for dealing with
vagueness and uncertainty of facts, and in classification (see [2,7–11]). In order
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to analyze data effectively, many measures are defined in rough set data
analysis, for example, accuracy measure of rough set, accuracy of approxi-
mation of classification, measure of dependency of attributes, measure of im-
portance of attributes, and accuracy and coverage of decision rule, etc.
Although these measures can be applied to justifying effectiveness of data
analysis, it is unclear what is the main foundation behind these measures and
whether they have any common characteristics.
Answers to these questions will be very helpful for people to understand the

essence of rough set data analysis and to employ rough set data analysis to
solve practical problems effectively. In this paper, a concept of inclusion degree
is introduced into rough set data analysis and several important relationships
between the inclusion degree and measures on rough set data analysis are es-
tablished. It is shown that the measures on rough set data analysis can be
reduced to the inclusion degree.

2. Inclusion degree

An approximate mereological calculus called rough mereology (i.e., theory
of rough inclusions) has been proposed as a formal treatment of the hierarchy
of relations of being a part in a degree (see [12–14]). The degree of inclusion is a
particular case of inclusion in a degree (rough inclusion) basic for rough
mereology. The concept of inclusion degree based on partially ordered relation
was proposed in [15] for approximate reasoning. By a slight adjustment of this
concept, we introduce a definition of inclusion degree into rough set data
analysis.
A partial order on a set L is a binary relation � with the following prop-

erties:
x � x (reflexive),
x � y and y � x imply x ¼ y (antisymmetric), and
x � y and y � z imply x � z (transitive).

Definition 1. Let ðL;�Þ be a partially ordered set. If, for any a; b 2 L, there is a
real number Dðb=aÞ with the following properties:
(1) 06Dðb=aÞ6 1,
(2) a � b implies Dðb=aÞ ¼ 1,
(3) a � b � c implies Dða=cÞ6Dða=bÞ, and
(4) a � b implies Dða=cÞ6Dðb=cÞ for 8c 2 L,
then D is called an inclusion degree on L.

In Definition 1, (1) is normalization for inclusion degree; (2) states the
property of consistency between inclusion degree and standard inclusion; and
(3) and (4) state the property of monotonicity of inclusion degree.
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Inclusion degree is practically a measure on partially ordered relation, but it
has more important applications than partially ordered relation.

Example 1. Let U be a finite set, F ¼ fX jX 	 Ug, and 	 is a partially ordered
relation on F . For 8X ; Y 2 F , we define

D0ðY =X Þ ¼
jY\X j
jX j if X 6¼ ;;
1 if X ¼ ;;

�
ð1Þ

where jX j denotes the cardinality of X .

It is easy to see that D0 is an inclusion degree on F. In [12], D0 is regarded as
a particular case of rough inclusions.
Rough inclusions and inclusion degree have some common characteristics

on measure, but rough inclusions is more appropriate for reasoning about
complex structures, inclusion degree is more appropriate for measure on par-
tially ordered relations.

3. Basic concepts of rough sets

Formally, an information system is an ordered quadruple S ¼ ðU ;A; V ; f Þ,
where:

U is a non-empty finite set of objects;
A is a non-empty finite set of attributes;
V is the union of attribute domains, i.e., V ¼

S
Va for every a 2 A, where Va

denotes the domain of the attribute a;
f : U � A ! V is an information function which associates an unique value
of each attribute with every object belonging to U, i.e., 8a 2 A and x 2 U ,
f ðx; aÞ 2 Va.
Each subset of attributes P 	 A determines a binary indiscernibility relation

INDðP Þ as follows:
INDðP Þ ¼ fðx; yÞ 2 U � U j 8a 2 P ; f ðx; aÞ ¼ f ðy; aÞg:

Obviously INDðP Þ is an equivalence relation on the set U and

INDðP Þ ¼
\
a2P

INDðfagÞ:

The relation INDðPÞ, P 	 A, constitutes a partition of U, which we will
denote by U=INDðP Þ. Any element from U=INDðP Þ will be called an equiv-
alence class. Let ½x�INDðPÞ denote the equivalence class of the relation INDðPÞ
containing the element x.
Let P 	 A and X 	 U . Then P -lower and P -upper approximations of X are

defined respectively as follows:
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PX ¼
[

fY jY 2 U=INDðP Þ; Y 	 Xg

and

PX ¼
[

fY jY 2 U=INDðP Þ; Y \ X 6¼ ;g:

The set BNP ðX Þ ¼ PX � PX will be called the P -boundary of X. The set PX
is the set of all elements of U, which can be with classified certainty as elements
of X with respect to the values of attributes from P; and the set PX consists of
those elements of U which can be possibly defined as elements of X with respect
to the values of attributes from P. Finally, BNP ðX Þ is the set of elements which
can be classified neither in X nor in U � X on the basis of the values of at-
tributes from P.

4. Relationships between inclusion degree and measures on rough set data

analysis

4.1. Accuracy measure of rough set and degree of rough belonging can be reduced
to inclusion degree

Let S ¼ ðU ;A; V ; f Þ be an information system, P 	 A, and X 	 U . The ac-
curacy measure of rough set X with respect to P is defined as

aP ðX Þ ¼ jPX j
jPX j

; ð2Þ

where X 6¼ ;.
It is easy to show that

aP ðX Þ ¼ jPX \ PX j
jPX j

¼ D0ðPX=PX Þ:

The degree of rough belonging of x 2 X about X with respect to P is defined
as

lP
X ðxÞ ¼

X \ ½x�INDðPÞ

��� ���
½x�INDðPÞ

��� ��� : ð3Þ

It follows obviously that

lP
X ðxÞ ¼ D0 X=½x�INDðPÞ

� �
:

Hence, aP ðX Þ and lP
X ðxÞ can be reduced to inclusion degree.
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4.2. Accuracy of approximation of classification and quality of approximation of
classification can be reduced to inclusion degree

Let S ¼ ðU ;A; V ; f Þ be an information system, and P 	 A. Let Y ¼ fY1; Y2;
. . . ; Yng be a classification, or partition, of U. The origin of this classification is
independent from attributes contained in P. Subsets Yi, i ¼ 1; 2; . . . ; n, are
classes of classification Y. By P -lower and P -upper approximations of Y in S
we mean sets PY ¼ fPY1; PY2; . . . ; PYng and PY ¼ fPY1; PY2; . . . ; PYng, respec-
tively. The coefficient

dP ðY Þ ¼
Pn

i¼1 jPYijPn
i¼1 jPYij

ð4Þ

is called the accuracy of approximation of classification Y by the set of attri-
butes P, or in short, accuracy of classification. It expresses the possible correct
decisions when the classified objects possess the set of attributes P.
The coefficient

cP ðY Þ ¼
Pn

i¼1 jPYij
jU j ð5Þ

is called the quality of approximation of classification Y by the set of attributes
P, or in short, quality of classification. It expresses the percentage of objects
which can be correctly classified into class Y employing the set of attributes P.
Let Y ¼ fY1; Y2; . . . ; Yng be a classification, or partition, of U. Let

F ¼ ffF1; F2; . . . ; FngjFi 	 Yi; i ¼ 1; 2; . . . ; ng, X ¼ fX1;X2; . . . ;Xng 2 F and
Z ¼ fZ1; Z2; . . . ; Zng 2 F .
A partially ordered relation � on F is defined as follows:

X � Z if and only if Xi 	 Zi; i ¼ 1; 2; . . . ; n:

For 8X ; Z 2 F , define

D1ðX=ZÞ ¼
Sn

i¼1 Xi

	 

\
Sn

i¼1 Zi

	 
�� ��Sn
i¼1 Zi

�� �� : ð6Þ

It can be easily shown that D1 is inclusion degree on F.
Since dP ðY Þ ¼ D1ðPY =PY Þ and cP ðY Þ ¼ D1ðPY =Y Þ, dP ðY Þ and cP ðY Þ can be

reduced to inclusion degree.

4.3. Measure of dependency of attributes and measure of importance of attributes
can be reduced to inclusion degree

An information system S ¼ ðU ;A; V ; f Þ can be seen as a decision table as-
suming that A ¼ C [ D and C \ D ¼ ;, where C is called the set of condition
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attributes, and D is called the set of decision attributes. Let P 	 C and Q 	 D.
The measure of dependency between P and Q is defined as

cðP ;QÞ ¼ jPOSP ðQÞj
jU j ; ð7Þ

where POSP ðQÞ ¼
S
fPY jY 2 U=INDðQÞg.

Let F denote the set of all partitions on U, X ¼ fX1;X2; . . . ;Xng 2 F and
Z ¼ fZ1; Z2; . . . ; Zmg 2 F . A partially ordered relation � on F is defined as
follows:

X � Z if and only if ; for 8Xi 2 X ; there exists Zj 2 Z such that Xi 	 Zj:

For 8X ; Z 2 F , define

D2ðZ=X Þ ¼
S

Zj2Z

S
Xi	Zj

Xi

� ���� ���
jU j : ð8Þ

We prove in the following that D2 is inclusion degree on F.
(1) Obviously, 06D2ðZ=X Þ6 1.
(2) Let X ¼ fX1;X2; . . . ;Xng 2 F , Z ¼ fZ1; Z2; . . . ; Zmg 2 F and X � Z. Then

we have m6 n and there exists a partition E ¼ fE1;E2; . . . ;Emg of f1; 2; . . . ; ng
such that

Zj ¼
[
i2Ej

Xi; j ¼ 1; 2; . . . ;m:

Hence

[
Zj2Z

[
Xi	Zj

Xi

 !
¼
[
Zj2Z

Zj ¼ U :

Thus

D2ðZ=X Þ ¼ jU j
jU j ¼ 1:

(3) Let X ¼ fX1;X2; . . . ;Xng 2 F , Z ¼ fZ1; Z2; . . . ; Zmg 2 F , Y ¼ fY1; Y2; . . . ;
Ylg 2 F and X � Z � Y . Then we have l6m and there exists a partition
E ¼ fE1;E2; . . . ;Elg of f1; 2; . . . ;mg such that

Yj ¼
[
i2Ej

Zi; j ¼ 1; 2; . . . ; l:

We show in the following that

[
Xj2X

[
Yi	Xj

Yi

 !
	
[
Xj2X

[
Zi	Xj

Zi

 !
: ð9Þ
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Let Xj 2 X , Yi0 2 Y and Yi0 	 Xj. From Z � Y , it follows that Yi0 ¼
S

i2Ei0
Zi. For

8i1 2 Ei0 , we have Zi1 	 Yi0 and Zi1 	 Xj, hence,

Zi1 	
[
Xj2X

[
Zi	Xj

Zi

 !
;

i.e.,

Yi0 	
[
Xj2X

[
Zi	Xj

Zi

 !
:

This completes the proof of (9).
From (9), we have

D2ðX=Y Þ6D2ðX=ZÞ:
(4) Let X ¼ fX1;X2; . . . ;Xng 2 F , Z ¼ fZ1; Z2; . . . ; Zmg 2 F and X � Z. For

8Y ¼ fY1; Y2; . . . ; Ylg 2 F , we have

[
Xj2X

[
Yi	Xj

Yi

 !
	
[
Zj2Z

[
Yi	Zj

Yi

 !
: ð10Þ

In fact, let Xj 2 X , Yi0 2 Y and Yi0 	 Xj. From X � Z, it follows that there exists
Zj0 2 Z such that Xj 	 Zj0 . Hence, Yi0 	 Zj0 , i.e.,

Yi0 	
[
Zj2Z

[
Yi	Zj

Yi

 !
:

This implies (10).
From (10), we have

D2ðX=Y Þ6D2ðZ=Y Þ:
Hence, D2 is inclusion degree on F.
Since cðP ;QÞ ¼ D2ððU=INDðQÞÞ=ðU=INDðP ÞÞÞ, cðP ;QÞ can be reduced to

inclusion degree, i.e., degree of partition U=INDðQÞ includes partition
U=INDðP Þ.

Remark. Let P ! Q denote functional dependency between P and Q. Then
P ! Q if and only if D2ððU=INDðQÞÞ=ðU=INDðPÞÞÞ ¼ 1.

In rough set data analysis, the measure of importance of condition attributes
C0 	 C with respect to decision attributes D is defined as follows:

cðC;DÞ � cðC � C0;DÞ: ð11Þ
In particular, when C0 ¼ fcg, cðC;DÞ � cðC � fcg;DÞ is the measure of

importance of attribute c 	 C with respect to D.
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Since

cðC;DÞ � cðC � C0;DÞ ¼ D2ððU=INDðDÞÞ=ðU=INDðCÞÞÞ
� D2ððU=INDðDÞÞ=ðU=INDðC � C0ÞÞÞ;

cðC;DÞ � cðC � C0;DÞ can be reduced to computation of inclusion degree.

4.4. Measure of the relative degree of misclassification can be reduced to inclusion
degree

Let X and Y be non-empty subsets of a finite universe U. The measure
cðX ; Y Þ of the relative degree of misclassification of the set X with respect to set
Y (see [16]) defined as

cðX ; Y Þ ¼ 1� jY\X j
jX j if jX j > 0;

0 if jX j ¼ 0:

�
ð12Þ

It can be easily shown that

cðX ; Y Þ ¼ 1� D0ðY =X Þ ¼ D0ððU � Y Þ=X Þ:
This means that cðX ; Y Þ can be reduced to inclusion degree.

Remark. Let 06 b < 0:5. Then cðX ; Y Þ6b if and only if D0ðY =X ÞP 1� b.
Thus, the variable precision rough set model (see [16]) can be expressed by
inclusion degree as follows.

Let X 	 U and R be an equivalence relation on U. The b-lower approxi-
mation of the set X is defined as

RbX ¼
[

E 2 U=INDðRÞjD0ðX=EÞf P 1� bg;

and the b-upper approximation of the set X is defined as

RbX ¼
[

E 2 U=INDðRÞjD0ðX=EÞf > bg:

Consequently, the b-boundary region of X is given by

BNRbX ¼
[

E 2 U=INDðRÞjbf < D0ðX=EÞ < 1� bg:

The b-negative region of X is defined as a complement of the b-upper ap-
proximation, i.e.,

NEGRbX ¼
[

E 2 U=INDðRÞjD0ðX=EÞf 6 bg:

4.5. Accuracy and coverage of decision rule can be reduced to inclusion degree

Let S ¼ ðU ;A; V ; f Þ be a decision table with A ¼ C [ D and C \ D ¼ ;,
where C is the set of condition attributes and D is the set of decision attributes.
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Let U=INDðCÞ ¼ fX1;X2; . . . ;Xng and U=INDðDÞ ¼ fY1; Y2; . . . ; Ymg denote
the partitions on U induced respectively by the equivalence relations INDðCÞ
and INDðDÞ. Expression DesCðXiÞ ! DesDðYjÞ is called the ðC;DÞ-decision rule
in S, where DesCðXiÞ and DesDðYjÞ are unique descriptions of the classes Xi and
Yj, respectively ði ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;mÞ. The set of decision rules frijg
for each class Yj ðj ¼ 1; 2; . . . ;mÞ can be defined as

frijg ¼ DesCðXiÞ


! DesDðYjÞjYj \ Xi 6¼ ;; i ¼ 1; 2; . . . ; n
�
:

A decision rule rij is deterministic iff Yj \ Xi ¼ Xi, and rij is non-deterministic
otherwise.
The accuracy and coverage of decision rule rij (see [17]) are defined re-

spectively as

aXiðYjÞ ¼
jYj \ Xij
jXij

; jXiðYjÞ ¼
jYj \ Xij
jYjj

: ð13Þ

It is notable that aXiðYjÞ measures the degree of sufficiency of a proposition,
DesCðXiÞ ! DesDðYjÞ, and that jXiðYjÞ measures the degree of its necessity. It
can be easily shown that

aXiðYjÞ ¼ D0ðYj=XiÞ; jXiðYjÞ ¼ D0ðXi=YjÞ:

This means that aXiðYjÞ and jXiðYjÞ can be reduced to inclusion degree.

5. Conclusions

Rough set data analysis is one of the main application techniques arising
from rough set theory. In this paper, the concept of inclusion degree has been
introduced, several important relationships between inclusion degree and
measures on rough set data analysis are established, and we have shown that
the measures on rough set data analysis can be reduced to inclusion degree.
These results will be very helpful for people to understand the essence of rough
set data analysis, and can be regarded as the main foundation of measures
which are defined for rough set data analysis. The introduction of inclusion
degree will play a significant role in further research on rough set data analysis.
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