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This study builds a fully deconvolutional neural network (FDNN) and addresses the problem of single
image super-resolution (SISR) by using the FDNN. Although SISR using deep neural networks has
been a major research focus, the problem of reconstructing a high resolution (HR) image with an
FDNN has received little attention. A few recent approaches toward SISR are to embed deconvolution
operations into multilayer feedforward neural networks. This paper constructs a deep FDNN for
SISR that possesses two remarkable advantages compared to existing SISR approaches. The first
improves the network performance without increasing the depth of the network or embedding
complex structures. The second replaces all convolution operations with deconvolution operations
to implement an effective reconstruction. That is, the proposed FDNN only contains deconvolution
layers and learns an end-to-end mapping from low resolution (LR) to HR images. Furthermore, to
avoid the oversmoothness of the mean squared error loss, the trained image is treated as a probability
distribution, and the Kullback-Leibler divergence is introduced into the final loss function to achieve
enhanced recovery. Although the proposed FDNN only has 10 layers, it is successfully evaluated
through extensive experiments. Compared with other state-of-the-art methods and deep convolution
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neural networks with 20 or 30 layers, the proposed FDNN achieves better performance for SISR.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Image super-resolution has been an important research field
in general image processing and machine learning (Wang &
Huang, 2009; Wang, Huang, & Xu, 2010; Zhang, Tian, Kong,
Zhong, & Fu, 2020; Zhao, Glotin, Xie, Gao, & Wu, 2012), attempts
have been made to enhance image resolution over the years.
Single image super-resolution (SISR) aims to generate a high-
resolution (HR) image from a given low-resolution (LR) image,
and has become an active area in computer vision because of the
increased demand for HR images in various fields.

Such developed resolution-enhancing technologies can be
grouped into three main categories: (a) Interpolation-based
methods (Dodgson, 1997; Parker, Kenyon, & Troxel, 1983; Zhang,
Fan, Bao, Liu, & Zhang, 2018); (b) Reconstruction based meth-
ods (Jian, Xu, & Shum, 2008; Tai, Liu, Brown, & Lin, 2010; Zhang,
Yang, Zhang, & Huang, 2010); and (c) Learning-based meth-
ods (He & Siu, 2011; Kui, Xiaogang, & Xiaoou, 2013; Kwang In &
Younghee, 2010; Ni & Nguyen, 2007; Timofte, De and Gool, 2014;
Timofte, Smet and Gool, 2014; Wang, Huang, Gong, & Pan, 2017;
Yang, Wang, Lin, Cohen, & Huang, 2012; Yang, Wright, Huang, &
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Ma, 2010; Zhang, Wang, Li, Gao, & Xiong, 2019). Interpolation-
based methods estimate the unknown pixels in the HR grid from
a given LR image based on conventional interpolation approaches
such as bilinear or bicubic interpolation. These interpolation-
based methods are simple and intuitive, but tend to blur the
detail of an image and fail to guarantee precision of the estima-
tion. Recently, Zhang et al. (2018) constructed a rational fractal
interpolation model for SISR, which achieved finer details and
sharper edges. Reconstruction-based methods use some specific
prior knowledge to restore the details of HR images, such as
the gradient profile prior, the edge prior, or the nonlocal means
prior. The third method, the learning-based method, is based
on learning the relationship between LR and HR image patches
from an external image pairs dataset. So far, various types of
learning-based methods have been proposed, such as kernel
regression (Kwang In & Younghee, 2010), support vector regres-
sion (Ni & Nguyen, 2007), and Gaussian process regression (He &
Siu, 2011).

This paper continues to address the third approach. In the
last few years, the sparse-coding-based method (SC) (Romano,
Protter, & Elad, 2014; Yang et al., 2012, 2010), which is one of the
representative learning-based methods, has been used for SISR
with promising results. In fact, SC is used to learn two compact
dictionaries by joint training of LR and HR image patch pairs, and
restores an HR image from an LR image by assuming that the
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HR and LR image patches have the same sparse representation
coefficients. Li, Dong, Xie, Shi, Wu, and Li (2018) used a novel
hybrid approach toward image SR by combining model-based and
learning-based approaches, which learned a parametric sparse
prior of HR images from the training set (external source) and the
input LR image (internal source). Zhang et al. (2019) developed
a novel example regression-based SR algorithm based on a set
of the learned multi-round residual regressors in a coarse-to-
fine scheme and achieved promising SR results. Presently, a deep
leaning method called convolutional neural networks for SISR
(SRCNN), which directly learns an end-to-end mapping between
LR and HR images based on a universal approximation property
of feedforward neural networks has become highly popular.

In fact, deep convolutional neural networks (CNNs) have be-
come one of the hottest technologies in recent years owing to
their great success in computer vision (He, Zhang, Ren, & Sun,
2016; Krizhevsky, Sutskever, & Hinton, 2012). The important
components of CNNs are the convolution operation, pooling op-
eration, and rectified linear unit (ReLU) activation function. As
a main key in CNNs, the convolution operation extracts fea-
tures, and the extracted features become increasingly abstract as
the number of network layers deepens (Erhan, Bengio, Courville,
& Vincent, 2009; Zeiler, Taylor, & Fergus, 2011). Many stud-
ies (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015; Zeiler &
Fergus, 2014) have shown that CNNs represent a good tool for
image classification tasks owing to the excellent performance of
the convolution operation mentioned above.

Recently, many studies have adopted CNNs for SISR and have
achieved promising results. Dong, Loy, He and Tang (2016) first
introduced use of a CNN in SISR. They proposed a convolutional
neural network for SISR (SRCNN) that directly learns an end-to-
end mapping between LR and HR images. Since then, additional
deep CNN-based SISR methods (Dong, Loy and Tang, 2016; Kim,
Lee, & Lee, 2016a, 2016b; Liu et al.,, 2019; Mao, Shen, & Yang,
2016; Shi, Caballero, Huszar, Totz, Aitken, Bishop, Rueckert, &
Wang, 2016; Yang et al,, 2017) have been proposed, and sig-
nificantly outperform classic non-deep learning SISR methods.
These deep CNN-based SISR methods, however, mainly rely on
increasing the depth of the network (Dong, Loy and Tang, 2016;
Kim et al., 2016a) or embedding more complex structures (Kim
et al.,, 2016b; Liu et al., 2019; Mao et al., 2016; Song, Chowdhury,
Yang, & Dutta, 2020; Yang et al., 2017) to improve the reconstruc-
tion performance of SRCNN, such as use of a deeply-recursive
convolutional network (Kim et al., 2016b), and encoder-decoder
network (Liu et al.,, 2019; Mao et al., 2016), recurrent residual
network (Yang et al, 2017). Here we omit a comprehensive
review of the existing models. Interested readers can refer to
survey papers (Wang, Chen, & Hoi, 2020) for more details.

No matter how deep or complex the CNN structure proposed,
the main constituent elements of these deep CNN-based SISR
methods remain the convolution operations. Clearly, these deep
CNN-based SISR methods are mainly transplanted and imitated
based on CNNs used for image classification. Generally, in deep
CNNs, convolution operations can extract principal features and
become increasingly abstract as the depth of the network in-
creases, which are very effective for image classification. As
mentioned above, successive multiple convolution operations can
extract abstract features; however, the convolution operation
may also lose some image detail information during the pro-
cess, which is, in fact, a process of information from more to
less. That is, it is a process in which subordinate features are
successively discarded during successive multiple convolution
operations. Thus, multiple convolution operations in CNNs are
highly suitable for image classification.

However, image reconstruction is a process of information
from less to more. In SISR, all LR information should be exploited
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to recover more detailed information. Contrary to a convolu-
tion operation, a deconvolution operation can obtain more abun-
dant information from a few features. We will provide several
comparison experiments between convolution and deconvolu-
tion operations in Section 4 to support our statements. Thus,
using deconvolution operations in multilayered feedforward neu-
ral networks (MFNNs) for SISR should be the more appropriate
choice.

Inspired by this, this paper proposes a deep fully deconvo-
lutional neural network (FDNN) for SISR. That is, the proposed
network only contains deconvolutional layers and directly learns
an end-to-end mapping from LR to HR images. The main rea-
son is that a deconvolution operation can restore more detailed
information from LR pixels. Unlike most deep CNN-based SISR
methods, the proposed FDNN does not require more depth or
embedded complex structures in the network; it uses only 10
deconvolution layers. Although the proposed FDNN has only 10
layers, its structure is very simple and its performance for SISR
is better than deep CNN-based SISR networks containing 20 or
30 layers, such as VDSR (Kim et al., 2016a), DEGREE (Yang et al.,
2017), and RED30 (Mao et al., 2016). An overview on the proposed
architecture is shown in Fig. 1.

Furthermore, we will improve both the ReLU activation func-
tion and mean squared error (MSE) loss function in the proposed
FDNN. Usually, ReLU is the most popular activation function
in deep CNNs because it can alleviate the problem of gradient
vanishing. However, it can lead to the “Dying ReLU” problem
when CNNs are trained with stochastic gradient descent because
ReLU is non-negative. Therefore, we will adopt an exponential
linear unit (ELU) (Clevert, Unterthiner, & Hochreiter, 2016) as
the activation function in the proposed FDNN. Moreover, al-
though most deep CNN-based SISR methods have adopted the
MSE loss function (as most image classification CNNs have), the
MSE may blur the details of the reconstructed image. To over-
come this oversmoothness caused by MSE loss function, we add
the Kullback-Leibler divergence into the loss function.

The main contributions of this paper can be briefly described
as follows.

e A fully deconvolutional neural network (FDNN) is proposed
for SISR, which only contains deconvolutional layers and di-
rectly learns an end-to-end mapping from LR to HR images.
Although the proposed FDNN has only 10 deconvolution
layers, it outperforms deeper, more complex existing CNNs
for SISR.

To our knowledge, it is the first time to add the Kullback-
Leibler divergence into the loss function to achieve a better
reconstruction effect and avoid the oversmoothness caused
by MSE loss.

In the first layer of the proposed network, an 1 x 1 decon-
volution layer with ELU activation is used as a non-linear
enhancement module to regenerate additional non-linear
information from the low-resolution pixels.

The remainder of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 introduces the proposed
FDNN in detail. In Section 4, several experiments are presented to
evaluate the performance of the proposed FDNN. The conclusion
and future work are presented in Section 5.

2. Related work

The main purpose of SISR is to determine the relationship
between LR and HR images. Generally, this relationship can be
formulated as

y=vx*k+n), (1)
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Fig. 1. Network structure of the proposed FDNN for a scale factor of 3. The model is mainly composed of three parts: non-linear enhancement, multi-scale feature
restoration, and fusion enhancement. The lower channel can be regarded as the residual learning part, which is composed of one 3 x 3 deconvolution layer and
one 1 x 1 deconvolution layer to make the residual feature size the same as the output.

where ¥(-) denotes a nonlinear compression operator, k is the
convolution kernel, n is the noise, y is the LR image, and x denotes
the ground truth HR image. The Eq. (1) could be further simplify
as

y = Hx, (2)

where H is a degradation matrix that represents a down-sampling
operator. Owing to the insufficient condition of the ill-posed
inverse problem represented by SISR, we cannot restore x easily
by

x=H"y. (3)

Recently, various deep CNNs have been developed to learn an
end-to-end mapping that restores the desired HR image from an
LR image based on

where % denotes the estimate of the ground truth HR image x.
These deep CNNs aim to train a network F(-) that minimizes

1 N
N 2
N;cmm x)?,

where N is the number of the training image pairs.

Dong, Loy, He et al. (2016) firstly proposed a CNN to solve SISR
(SRCNN), which consists of three convolution layers correspond-
ing to three operations: patch extraction and representation,
non-linear mapping, and reconstruction. Therefore, similar to
Eq. (4) SRCNN is a composition of three functions:

X = Fsrenn(y) = F3(Fo(F1())), (6)

where F; denotes the ith convolution layer, which is expressed as
a mapping operation.

To achieve a better restoration performance, Kim et al. (201643,
2016b) developed two very deep CNNs for SISR: a very deep
super-resolution (VDSR) convolutional network (Kim et al., 2016a)
and a deeply-recursive convolutional network (DRCN) (Kim et al.,
2016b), each comprising 20 convolution layers. These depth-
increased convolution networks can be formulated as

X =Fu(- - B(RF)),

where d denotes the depth of the deep CNN.

VDSR adopted residual learning and adjustable gradient clip-
ping to accelerate the convergence speed of the network. To
reduce the number of parameters of the network and ease the
difficulty of training, DRCN used recursive-supervision and skip-
connection techniques and achieved promising results. Although
VDSR and DRCN achieved impressive performances, both are
composed solely of convolution layers. The size of the input
LR images is reduced during the convolution operations. Thus,
SRCNN, VDSR, and DRCN must increase the size of the input
LR images before training, which increases the computational

(5)

(7)
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complexity. Inspired by this, Mao et al. (2016) proposed a resid-
ual encoder-decoder network with 30 layers (RED30) for SISR,
which consists of a chain of symmetric convolution layers and
deconvolution layers. Owing to its symmetry, RED30 also has to
increase the size of LR images before the first layer to keep the
size of the input image consistent with the output image. Liu
et al. (2019) proposed an end-to-end multi-scale deep encoder—
decoder with edge map guidance for SISR. In their model, im-
age and the corresponding edge maps were simultaneously fed
into the pipeline. And along the multiple streams, convolution-
deconvolution responses with different scales were concatenated
to generate the final reconstructed image. Dong, Loy and Tang
(2016) proposed a 9-layer fast super-resolution convolutional
neural network (FSRCNN), which contains 8 convolution layers
and a final deconvolution layer. Shi et al. (2016) proposed an ef-
ficient sub-pixel convolutional neural network (ESPCN) and used
an efficient sub-pixel convolution layer as the last layer of their
network. Both FSRCNN and ESPCN added an upscaling operation
at the end of the network as part of the training process.

With the increasing depth of CNNs, the ReLU activation func-
tion has been widely used in deep neural networks to elimi-
nate the gradient vanishing problem. However, training based
on stochastic gradient descent may suffer from the dying ReLU
problem, where a unit dies (it only outputs 0 for any given input).
Dong, Loy and Tang (2016) used the parametric rectified linear
unit (PReLU) (He, Zhang, Ren, & Sun, 2015) as the activation
function in FSRCNN instead of the commonly-used ReLU. Unlike
RelU, the coefficient of the PReLU negative part is not zero and
is adaptively learned.

Most deep CNN-based SISR methods have adopted the MSE as
the loss function. However, the MSE can result in the loss of high
frequency details because of its oversmoothness. To overcome
this drawback, Yang et al. (2017) proposed a deep edge guided
recurrent residual network (DEGREE) to recover HR images with
sharp high frequency details by modeling the edge priors.

A deconvolution network was first introduced by Zeiler, Krish-
nan, Taylor, and Fergus (2010), and has been successfully applied
to visualize neural network layers by generating representative
images in feature space (Zeiler & Fergus, 2014; Zeiler et al,
2011). In FSRCNN, a deconvolution operation was first introduced
into SISR. However, the deconvolution operation is only used in
the final layer, while the remaining layers are all convolution
layers. The main mechanism of FSRCNN is thus the convolution
operation, and the deconvolution operation is only applied as a
pixel amplifier.

3. Fully deconvolutional neural network
3.1. Model structure

Our primary objective is to improve the performance of the
neural network for SISR by choosing an appropriate internal algo-

rithm instead of simply increasing the network depth or embed-
ding complex structures into the network. Our proposed FDNN
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Fig. 2. Illustration of convolution and deconvolution operations.

model, as shown in Fig. 1, primarily comprises three parts: non-
linear enhancement, multi-scale feature restoration, and fusion
enhancement. FDNN is a simple forward-type network model and
consists of only 10 deconvolution layers.

3.1.1. Non-linear enhancement

The non-linear enhancement module contains one deconvolu-
tion layer whose filter size is 1 x 1, and the 1 x 1 deconvolution
operation is equivalent to an 1 x 1 convolution operation. The
one by one convolution operation was first introduced by Lin
et al. (Lin, Chen, & Yan, 2014) and was further developed by
Szegedy et al. in GoogLeNet (Szegedy et al., 2015). When the
stride is equal to 1, the one by one convolution or deconvolution
operation can be formulated as

H = wiH, (8)

where w; is a real number and denotes the ith filter weight, H
denotes one input feature map of the previous layer, and the size
of Hj is equal to that of H.

Suppose the shape of the input tensor is (I, Iy, [), where
(Ly, Iy) represents the spatial dimensions of a feature map, and
l is the number of feature maps. After the (I,, Iy, ) tensor is
fed into an 1 x 1 convolution or deconvolution layer with [
filters, the output tensor of the 1 x 1 layer will have the shape
(Ly, Iy, 1). Thus, the 1 x 1 convolution or deconvolution laypr can
be used to change the dimensionality in filter space. If [ > |,
the 1 x 1 filter increases the dimensionality, but if | < [, it
reduces dimensionality. For GoogLeNet (Szegedy et al., 2015) and
Network in Network (Lin et al., 2014), the 1 x 1 convolution op-
eration was used to reduce the channel dimensionality, while the
1 x 1 deconvolution operation in our FDNN is used to increase
dimensionality.

From Eq. (8), the 1 x 1 convolution or deconvolution operation
is strictly linear, but we add a non-linear ELU activation layer after
the 1 x 1 deconvolution layer. In the non-linear enhancement
block, the input LR image is first fed into an 1 x 1 deconvolution
layer with 64 filters to generate more features from the original
image. Obviously, the dimensionality of the channel (feature map)
increases from 1 to 64, which could capture more information
from the original input image. Then, these features are mapped
by a non-linear ELU activation function to increase nonlinearity.
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3.1.2. Multi-scale feature restoration

Presently, the convolution operation has been widely used in
deep learning because of its great success in image classification,
and many studies have transplanted CNNs into SISR. However,
these CNN-based SR methods rarely analyze if the convolution
operation is reasonable for the mechanism of SISR. Most of them
just simply transferred the CNN model to SISR from image classi-
fication tasks. Therefore, it is necessary to analyze the mechanism
of SISR and the difference between convolution operation and
deconvolution operation in SISR.

Supposing that a w x w image is processed by a k x k convo-
lution, then the size of the output feature map can be computed

by Eq. (9):

W= (w-—k)/s+1, (9)

where s denotes the convolution stride, w denotes the width
of the feature map after convolution, and w < w. In essence,
a convolution operation is a process for feature compression
and extraction, and it only extracts the principal features and
may lose some detailed information in the compression pro-
cess. Conversely, a deconvolution operation can reconstruct addi-
tional information from few features. The size of the feature map
recovered by deconvolution can be computed by Eq. (10):

W =(w—1)s+k, (10)

where w'’ is the width of the feature map after deconvolution, and
it is clear that w’ > w.

A detailed illustration of the convolution and deconvolution
operations is shown in Fig. 2, where the top panel shows the
convolution operation and the bottom panel shows the deconvo-
lution operation. In both panels, the input image is 4 x 4, and the
size of the convolution and deconvolution filters are 2 x 2. The
size of the convolution output results in a 2 x 2 image, while de-
convolution results in an 8 x 8 image. Obviously, the convolution
operation is not consistent with the mechanism of SISR which
aims to recover the high resolution images from low resolution
images. Although the padding operation before convolution could
increase the size of output image, while extra white pixels would
be generated. On the contrary, the deconvolution operation could
increase the size of image which is more consistent with the
mechanism of SISR.
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For the relationship between LR and HR images Eq. (1), we
consider a simple linear degradation model (Xu, Ren, Liu, & Jia,
2014)

y=xxk. (11)

According to the convolution theorem (Bracewell, 2002), the spa-
tial convolution can be transformed to a frequency domain mul-
tiplication

F(y) = F(x) - F(k), (12)

where F(-) is the Fourier transform, and - denotes the element-
wise multiplication. Then, in the Fourier domain, x could be
expressed as

x = F Y (FW)/Fk) = F (1/FKk) *y, (13)

where F~1(-) denotes the inverse Fourier transform, and * de-
notes the convolution operation. Thus, the ground truth image
could be recovered from low resolution image y by a pseudo
inverse convolution kernel

x=kfxy, (14)

where “Tx" is the deconvolution operation, and k' = F~1(1/F(k))
denotes the deconvolution kernel.

Generally, the deconvolution kernel k' is difficult to obtain.
Thus, we build a multi-layers deconvolutional neural network
FDNN to learn these deconvolution kernels. Unlike most deep
CNN-based SISR methods, we use only deconvolution layers in
our FDNN for image super-resolution. As shown in Fig. 1, the
multi-scale feature restoration block is composed of several de-
convolution layers, which is primarily responsible for progressive
recovery of image details in multiple steps. Furthermore, an im-
age contains various features, while a single scale of deconvolu-
tion operation cannot significantly restore all types of features.
Thus, the multi-scale feature restoration block contains different
scales of deconvolution operations to restore different types of
high-resolution features. For an up-scale factor of N (N > 2),
the multi-scale feature restoration block would consist of N — 1
sub-blocks to restore different up-scale level pixel features. As
shown in Fig. 1, for an up-scale factor of 3, the multi-scale feature
enhancement block contains two sub-blocks: 2x enhancement
and 3x enhancement.

3.1.3. Fusion enhancement

As described above, the multi-scale feature enhancement block
learns high-resolution features with different scale deconvolu-
tional kernels and each kernel learns one type of features. To fuse
all types of high-resolution features, in the fusion enhancement
block, we use an 1 x 1 deconvolution layer containing one kernel
to achieve image feature fusion. Here, the 1 x 1 deconvolution
kernel is used to keep the scale-invariance of the last layer in
the multi-scale feature enhancement block. First, the HR features
restored by the multi-scale feature restoration block are fused by
the 1 x 1 deconvolution operation:

(15)

where z{ is the ith feature map restored by the multi-scale feature
restoration block, j = 1 denotes the top channel, j = 2 denotes
the bottom channel (or residual channel) as shown in Fig. 1, cl'
denotes the 1 x 1 deconvolution filter weight, #/ is the number of
feature maps to be restored by the multi-scale feature restoration
block, and ¥ denotes the jth channel fusion feature.
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Fig. 3. Shapes of different activation functions: ReLU, LReLU/PReLU (LReLU is an
exception of PReLU when the coefficient of the negative part is fixed at 0.1),
and ELU for « = 1.0.

Next, the top channel reconstructed HR feature map and the
residual channel reconstructed HR feature map are combined into
the final reconstructed HR image as follows:

2
X = E Xi.
i=1

3.2. Exponential linear unit activation function

(16)

The commonly-used activation function in DNN-based SISR
models is rectified linear unit (ReLU) (Nair & Hinton, 2010), how-
ever, the ReLU activation may generate “dead features” (Zeiler &
Fergus, 2014) caused by zero gradients. Several improved ReLU
methods such as leaky ReLU (LReLU), PReLU, and the exponential
linear unit (ELU) (Clevert et al., 2016) are provided to address
this problem, which use the identity for positive values to avoid
the gradient vanishing problem and zero gradients. Owing to
their negative parts, LReLU and PReLU are represented as a slope,
and they do not ensure a noise-robust deactivation state, while
ELU can decrease the propagated variation and information by
saturating to a negative value with smaller input values. Fig. 3
shows the shapes of these activation functions. Thus, we use the
ELU to replace the commonly-used ReLU. Formally, ELU is defined
as

X if x>0,
f) = {a(exp(x) —1) ifx<0. an
Then
oy |1 if x>0,
Fx= :f(x)—i-(x ifx < 0. (18)

where the « is a scalar to control the slope of negative section
and it is depicted as 1.0 in our experiments.

3.3. Kullback-Leibler divergence loss

Most deep CNN-based SISR methods use the MSE as the loss
function, but the MSE can lead to the loss of information on image
details due to its oversmoothness. To avoid this shortcoming, we
add Kullback-Leibler divergence (KL divergence) into the final
loss function. KL divergence is a non-symmetric measure of the
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difference between two probability distributions. It can calculate
exactly how much information is lost when one distribution
approximates another. Formally, let p be the original distribution
(original HR image) and q be the approximating distribution
(reconstructed HR image), then the KL divergence can be written
as

p(x;)
q(x;)’

where M denotes the total number of pixels.

Let {L;}Y, € R'm*h be the LR training image set, and {H;}}Y , €
R"n > be the HR training image set, where N is the total number
of training image pairs. Denoting our proposed model by Frpnn,
then the reconstructed HR image by the FDNN is expressed as
Fronn(Li, 0), where 6 is the network parameter. The final loss
function is a combination of MSE and KL divergence, which is
given by

D (plq) = Zp xi) (19)
i=1

N
1
Loss =N Z | Feonn(Li, ) — Hillg

i=1

(20)
1 N
+y Z] | D (Hi)Fepnn(Lis 0)1g
i=
where | - || is the Frobenius norm. Combining Eq. (19) with
Eq. (20), we obtain
Loss = Z | Feonn(Li, ) — Hillg
(21)
HI(X])

N
+ %Z ZH(X] log ———M——
i=1

Fepnn(Li, 0)(%;)
F

In our loss function, the MSE loss aims to reduce the error
between the predicted image set and ground truth high reso-
lution image set. On the other hand, the KL loss could ensure
the pixel distribution of predicted image is as close as possible
to the ground truth high resolution image to avoid the distor-
tion phenomenon caused by the oversmoothness of MSE. To our
knowledge, it is the first time to introduce the KL divergence into
SISR. To evaluate the effectiveness of KL divergence, we compare
VDSR under the standard MSE loss with MSE-KL loss. For the sake
of fairness, we rebuild VDSR with 10 layers and train it with MSE
loss and KL divergence based loss. It is important to note that
the implementation details of the VDSR10 under MSE loss are
completely consistent with VDSR10 under the MSE-KL loss. They
are both trained over 100 epochs with batch size of 64, and the
optimization algorithm is Adam (Kingma & Ba, 2015). The training
dataset is composed of 291 images without data augmentation.
The experimental results are presented in Table 1. Obviously,
the VDSR10 under MSE-KL loss achieves better performance than
VDSR10 under MSE loss.

4. Experiments

In this section, several experiments are presented to evaluate
the performance of our proposed method. The datasets used for
training and testing are introduced first. Next, some implementa-
tion details are described. Finally, we compare our method with
several state-of-the-art SISR methods. Experiments in this paper
are carried out using one GPU (GeForce GTX 1050 ti) and an Intel
CORE i7 with 16 GB RAM memory system. The training phase is
performed with Keras (Chollet et al., 2015) under the Tensorflow
framework, CUDA9 (Nickolls, Buck, Garland, & Skadron, 2008),
and cuDNNG6 (Chetlur et al.,, 2014). The test phase is performed
using Matlab 2016a.
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Table 1
The PSNR results of VDSR10 with MSE loss and MSE-KL loss under different
datasets.

Dataset Scale VDSR10 + MSE VDSR10 + MSE-KL
2 X 36.65 36.96
Set5 3 x 32.83 32.88
4 x 30.40 30.53
2 x 3241 32.60
Set14 3 x 29.29 29.32
4 x 27.40 27.48
2 x 31.44 31.55
B100 3 x 28.49 28.50
4 x 26.94 26.96

4.1. Datasets and implementation details

4.1.1. Training datasets

For benchmarking, we use 291 images to train our proposed
model as most of the comparison SISR methods have done. The
training dataset consists of two parts: the first contains 91 images
from Yang et al. (2010), and the other contains 200 images from
the Berkeley Segmentation Dataset (Martin, Fowlkes, Tal, & Malik,
2001). It should be noted that data augmentation (rotation and
flip) is used in our experiments. For fair comparison, we do not
train our models with a larger dataset and all methods use the
same training dataset as described above.

4.1.2. Test dataset

For the test dataset, we compare our proposed method with
state-of-the-art SISR methods on three popular benchmark
datasets: Set5 (Bevilacqua, Roumy, Guillemot, & Alberimorel,
2012), Set14 (Zeyde, Elad, & Protter, 2010), and BSD100 (Martin
et al., 2001) with scaling factors of 3 and 4. The three benchmark
datasets consist of 5, 14, and 100 images, respectively.

4.1.3. Evaluation metrics

We use the widely used the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) (Wang, Bovik, Sheikh, Simoncelli,
et al,, 2004) to evaluate the performance of different methods,
which are defined as

PSNR = 20lo, 255 here RMSE = 1||$< X%, (22)
= %%opnsee Vi P

and

SSIM(x, X) = I(x, X)c(x, X)s(x, X), (23)
where
5y 2uxpztCy
lx, %) = HE+13+Cy
5y 20x03+C)
c(x,X) = o +07+Cy (24)
5 +C
S(X’ X) = GZX(;;+S3

respectively. Here x denotes the ground truth high resolution
image, and x denotes the predicted image. The positive constants
Cq, G, and C; are used to avoid a null denominator

4.1.4. Training samples

The 291 original ground truth images are first processed by
data augmentation (rotation and flip) to obtain the HR training
image set {H; } 1 € Rfimxhn Then we use the desired scaling factor
s to down-sample the HR training image set {H;}}, € Rfim*M to

form the corresponding LR training image set {Li}} , € Rm*In,
where h,, = sl,, and h,, = sl,,.
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Table 2
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Comparison results of the proposed FDNN (10 layers) with Bicubic, A+, SRCNN, VDSR (20 layers) DEGREE2 (20 layers), and
ESCN for a scale factor 3 on dataset Set5. The bold numbers denote the best performance and the underlined numbers

indicate the second-best performance.

Set5 Criterion Bicubic A+ SRCNN VDSR DEGREE2 ESCN FDNN

bab PSNR 33.92 35.17 35.25 35.39 35.34 35.35 3541
Y SSIM 0.9033 0.9228 0.9241 0.9269 0.9249 0.9262 0.9270

bird PSNR 32.58 35.76 35.48 36.67 36.37 36.22 36.75
SSIM 0.9264 0.9563 0.9549 0.9649 0.9625 0.9617 0.9648

butterfl PSNR 24.03 27.35 27.95 29.95 29.49 28.87 29.87
y SSIM 0.8232 09112 0.9098 0.9428 0.9369 0.9300 0.9410

head PSNR 32.88 3373 33.71 33.97 33.88 33.92 33.94
SSIM 0.7996 0.8271 0.8272 0.8341 0.8298 0.8319 0.8335

woman PSNR 28.56 31.30 31.37 32.35 31.87 32.01 32.37
SSIM 0.8902 0.9290 0.9291 0.9409 0.9368 0.9369 0.9403

Average PSNR 30.39 32.59 32.75 33.66 33.39 33.28 33.68
S SSIM 0.8682 0.9088 0.9090 0.9213 0.9182 0.9173 0.9213

(a) Ground Truth (b) Bicubic

(e) SRCNN

(f) VDSR

(g) DEGREE2

(h) FDNN (Ours)

Fig. 4. Reconstruction results of “Baby” (Set5) with scale factor 3.

4.1.5. Implementation details

As shown in Fig. 1, our proposed FDNN consists of three
parts and all layers are deconvolution layers. The FDNN model
is designed with 10 layers, where the nonlinear enhancement
and fusion enhancement are both composed of one 1 x 1 de-
convolution layer. For a scale factor of 3, the multi-scale feature
restoration block consists of three 2 x 2 and five 3 x 3 de-
convolution layers. The last layer contains one filter and the
remaining layers all contain 64 filters. For a scale factor of 4, the
multi-scale feature restoration block consists of two 2 x 2, two
3 x 3 deconvolution layers, and four 4 x 4 deconvolution layers.
Analogously, the last layer contains one filter and the remaining
layers all contain 64 filters.

For filter weight initialization, we use the Glorot uniform
initializer (Glorot & Bengio, 2010) for each deconvolution fil-
ter. It randomly extracts samples from a uniform distribution
[—limt, limit], where the limit is \/é/a/n,- + n;;1, n; denotes the
number of input units in the weight tensor, and n;,; denotes the
number of output units in the weight tensor. The Glorot uniform
initializer is formulated as

6 6
woul_ f ’ [
Vi i i

We use the Adam optimization algorithm (Kingma & Ba, 2015)
to optimize our proposed model. Stochastic gradient descent

(25)
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(SGD) maintains a single learning rate (termed alpha) for all
weights update and the learning rate does not change during
training, while Adam estimates the first and second moments of
the gradients to compute individual adaptive learning rates for
different parameters. The parameters used for Adam follow those
provided in the original paper (Kingma & Ba, 2015): learning rate
is setting to 0.001, 81 = 0.9, B, = 0.999, ¢ = 1078,

4.2. Comparisons to state-of-the-art methods

To evaluate the performance of our proposed FDNN, we com-
pare FDNN with several state-of-the-art SISR methods:

e A+ - adjusted anchored neighborhood regression (Timofte,

Smet et al., 2014);

SRCNN — convolutional neural network for SISR (Dong, Loy,

He et al., 2016);

VDSR — very deep CNN for SISR (20 layers) (Kim et al.,

2016a);

DEGREE2 — deep edge guided recurrent residual network

(20 layers) (Yang et al., 2017);

ESCN — ensemble based sparse coding network (Wang et al.,

2017);

e SML — parametric sparse model learning (Li et al., 2018);

e MSDEPC - multi-scale deep encoder-decoder with edge map
guidance (24 layers) (Liu et al., 2019).
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(a) Ground Truth (b) Bicubic

(e) SRCNN

(f) VDSR
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(g) DEGREE2

(h) FDNN (Ours)

Fig. 5. Reconstruction results of “baboon” (Set14) with scale factor 3.

Table 3

Average comparison results of the proposed model (10 layers) with Bicubic, ScSR, A+, SRCNN, VDSR (20 layers), DEGREE2
(20 layers), ESCN, SML, and MSDEPC (24 layers). The bold numbers denote the best performance and the underlined numbers

indicate the second-best performance.

Dataset Set5 Set14 B100
Method Criterion x3 x4 x3 x4 x3 x4
Bicubic PSNR 30.39 28.42 27.55 26.00 27.21 25.96
SSIM 0.8682 0.8104 0.7742 0.7027 0.7385 0.6675
At PSNR 32.58 30.28 29.13 27.32 28.29 26.82
SSIM 0.9088 0.8603 0.8188 0.7491 0.7835 0.7087
SRCNN PSNR 32.75 30.48 29.28 27.49 28.41 26.90
SSIM 0.9090 0.8628 0.8209 0.7503 0.7863 0.7101
VDSR PSNR 33.66 31.35 29.77 28.01 28.82 27.29
SSIM 0.9213 0.8838 0.8314 0.7674 0.7976 0.7251
DEGREE2 PSNR 33.39 31.03 29.61 27.73 28.63 27.07
SSIM 0.9182 0.8761 0.8275 0.7597 0.7916 0.7177
ESCN PSNR 33.28 31.02 29.51 27.75 28.58 27.11
SSIM 0.9173 0.8774 0.8264 0.7611 0.7917 0.7197
SML PSNR 33.50 31.26 29.58 27.76 28.55 27.06
SSIM 0.9175 0.8791 0.8262 0.7593 0.7887 0.7155
MSDEPC PSNR 33.70 31.41 29.78 28.02 28.88 27.30
SSIM 0.9225 0.8836 0.8319 0.7679 0.7974 0.7249
FDNN(Ours) PSNR 33.68 31.17 29.80 27.93 28.80 27.22
SSIM 0.9213 0.8813 0.8320 0.7651 0.7976 0.7236

All images are down-sampled by the same bicubic kernel and
the results are implemented by publicly available codes from the
authors or from their original papers. It should be noted that
some compared methods do not recover the image border; these
methods need to crop some pixels near image boundaries during
test processing. Our proposed method does not have to crop
the image border; FDNN can reconstruct the full-sized image.
However, for fair comparison, we also crop the boundary pixels
during test processing.

4.2.1. Objective evaluation

In Table 2, we provide the detailed results with a scale factor
of 3 on Set5, respectively. Although our proposed FDNN contains
only 10 deconvolution layers, its reconstruction performance is
better than those CNN-based SISR methods with 20 layers. Table 3
provides a summary of the quantitative evaluations on Set5,
Set14, and B100.

Moreover, an ablation study is implemented to further show
that the deconvolution operation is more suitable for the mecha-
nism of SISR than convolution operation. We build several mixed
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models of convolutional and deconvolutional for SISR, the total
number of layers of these models are the same as our FDNN. It
should be noted that the input image and output image of these
mixed models have the same size and the padding form is set
to “same" during convolution, as VDSR did. In addition to these,
the training dataset and implementation details are also the same
as our FDNN for the fair of the comparison experiment. The
experimental results are presented in Table 4, which show that
the performance increases with the number of deconvolutional
layers.

4.2.2. Visual evaluation

In order to investigate the performance of the different meth-
ods in terms of visual quality, we present some visual results in
Figs. 4, 5, 6, and 7. From these figures, we can observe that the re-
constructed results of CNN-based SISR methods are far superior to
traditional learning-based SISR methods. For the image *“148026"
from B100 in Fig. 7, which contains much texture information, the
images reconstructed by ScSR and A+ are slightly blurry, while the
SRCNN and VDSR generated images are clearer than ScSR and A+.
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(a) Ground Truth (b) Bicubic

(e) SRCNN (f) VDSR
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(g) DEGREE2 (h) FDNN (Ours)

Fig. 6. Reconstruction results of “lenna” (Set14) with scale factor 4.

(e) SRONN (f) VDSR

Fig. 7. Reconstruction results of

However, because of the MSE loss function used in SRCNN and
VDSR, the images generated by these two CNN-based methods
are too smooth to reconstruct sharp details. By introducing the
Kullback-Leibler divergence loss into our proposed FDNN, the
image reconstructed by our method produces more natural sharp
details.

5. Conclusion

This study proposes a fully deconvolutional neural network
(FDNN) and uses FDNN to reconstruct HR images. Deeper CNN-
based methods have been introduced into SISR with promising
results, and have become a widely used option for SISR in recent
years. However, the majority of the previous deep CNN-based

(g) DEGREE2

(h) FDNN (Ours)

“148026" (B100) with scale factor 4.

402

SISR models have focused on increasing the network depth or
embedding complex structures, which result in deeper and more
complex networks.

Our main objective is to improve the performance of the
network by using its internal processing mechanisms instead of
simply increasing its depth or embedding complex structures. We
thus use the more reasonable deconvolution operation instead of
the convolution operation for SISR to reconstruct more natural
details, and introduce the Kullback-Leibler divergence into the
final loss function to avoid the oversmoothness caused by the
MSE loss.

Building a deep FDNN for SISR and using KL divergence loss
during training represent a preliminary attempt to increase the
performance of MFNNs based on their internal processing mech-
anism. We believe that the improvement and innovation of the
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Table 4

Ablation study for a scale factor 3 on three datasets. CiDj denotes the mixed
model contains i convolutional layers and j deconvolutional layers. FCNN denotes
the model with fully convolutional layers.

Dataset Set5 Set14 B100
Method Criterion x3 x3 x3
PSNR 32.15 29.39 28.15
FCNN SSIM 0.8999 0.8375 26.47
c8D2 PSNR 33.65 2974 2878
SSIM 0.9214 0.8313 0.7972
D3 PSNR 33.65 29.76 28.78
SSIM 0.9214 0.8316 0.7973
PSNR 33.65 29.75 28.78
6D4 SSIM 0.9214 0.8316 0.7973
55 PSNR 33.66 29.74 2878
SSIM 0.9213 0.8314 0.7972
46 PSNR 33.65 29.75 2878
SSIM 0.9214 0.8316 0.7972
307 PSNR 33.67 29.77 28.79
SSIM 0.9216 0.8318 0.7975
208 PSNR 33.66 29.75 28.79
SSIM 0.9215 0.8317 0.7975
PSNR 33.68 29.80 28.80
FDNN(Ours) SSIM 0.9213 0.8320 0.7976

algorithms applied in FDNN are more meaningful than the re-
combination of different structures for the development of MFNN
applications.
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