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Abstract

Many real data increase dynamically in size. This phenomewours in several fields including
economics, population studies and medical research. Adfaatiee and efficient mechanism to
deal with such data, incremental technique has been prdpodbe literature and attracted much
attention, which stimulates the result in this paper. Whemaap of objects are added to a decision
table, we first introduce incremental mechanisms for thepeasentative information entropies and
then develop a group incremental rough feature selectigorithm based on information entropy.
When multiple objects are added to a decision table, theritthgo aims to find the new feature
subset in a much shorter time. Experiments have been camiedn eight UCI data sets and the

experimental results show that the algorithm is effectind afficient.

Index Terms
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. INTRODUCTION

It has been observed in many fields that data grow with timaze. S his has led to the
development of several new analytic techniques. Amongethieshniques, as an effective
and efficient mechanism, incremental approach is often tseliscover knowledge from a
gradually increasing data set, which can directly carrytbatcomputation using the existing
result from the original data set [1]-[3], [15], [19], [3§41]. In recent years, feature selection,
as a common technique for data preprocessing in patterigmémm, machine learning, data
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mining, etc., has attracted much attention [5], [7], [1&}4]} In this paper, we are concerned
with incremental feature selection, which is an extremempartant research topic in data
mining and knowledge discovery.

On feature selection, a specific theoretical framework iwl&kds rough set model [13],
[31], [45], [53]-[55]. Feature selection based on rough thetory is also called attribute
reduction [8], [17], [39], [49], [50]. The feature subsetained by using an attribute reduction
algorithm is called a reduct [29], [30]. Attribute reductios able to select features that
preserve the discernibility ability of original ones, bub ehot attempt to maximize the
class separability [14], [18], [26], [40], [47]. In the |lasvo decades, based on rough set
theory, many techniques of attribute reduction have beemldeed [6], [11], [27], [33],
[34], [38], [44], [52]. However, most of them can only be appble to static data tables.
When the number of objects increases dynamically in a dagahhese approaches often need
to carry out an attribute reduction algorithm repeatedlg #ms consume a huge amount
of computational time and memory space. Hence, it is verffiaient to deal with dynamic
data tables using these reduction algorithms.

To deal with a dynamically-increasing data set, there sxéstme research on finding
reducts in an incremental manner based on rough set theewvgr&@ incremental reduction
algorithms have been proposed to deal with dynamic data[$61s [25], [28], [51]. A
common character of these algorithms is that they were goyiable when new data are
generated one by one, whereas many real data from applisatiee generated in groups.
When multiple objects are generated at a time in a databhssg talgorithms may be
inefficient since they have to be executed repeatedly inrdaeleal with the added group
of objects. In other words, whel (e.g. M = 10,000) objects are generated at a time, one
has to execute these algorithms times. This is obviously very time-consuming. If the size
of an added object group is very small (e/d. = 10), the existing incremental algorithms
may also be effective, of course. However, when massive ngects are generated at a
time, this gives rise to much more waste of computationaétand space when the existing
reduction incremental algorithms are applied. With theellgyment of data processing tools,
the speed and volume of data generation increase dranhati€hais further appeals for an
efficient group incremental attribute reduction algorittomacquire information timely.

It is well known that the expression of information is usyalhcertain and the uncertainties
come from disorder, vagueness, approximate expressiah,sanon. In rough set theory,
one of the most common uncertainty measures of data setdoisni@tion entropy or its
variants. Shannon introduced an entropy to measure thetamtg of a system, which was
called information entropy [37]. Liang et al. introduced ewninformation entropy called
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complementary entropy to rough set theory [20]. The complaary entropy not only can
measure the uncertainty, but also the fuzziness of a rougmsaddition, Qian et al. proposed
another information entropy called combination entropyicltcan also be used to measure
the uncertainty of information systems [34]. As common roeas of uncertainty, these three
entropies as well as their conditional ones have been walghlied to devise feature selection
algorithms [20], [21], [38], [44]. To save the computatibtiane, an accelerator of feature
selection was also constructed based on those three ezgtiiodB4]. Although an incremental
technique based on the complementary entropy was alsoteepar[20], it can only be used
to update core dynamically.

To fully explore the property of group increments of a dataisefeature selection, this
paper mainly develops an efficient group incremental rednalgorithm based on the three
entropies. In view of that a key step of the development is dbmputation of entropy,
we first introduce in this paper three incremental mechasisfthe three entropies, which
determine an entropy by adding objects to a decision tablgraups. When a group of
objects are added, instead of recomputation on a given datéhe incremental mechanisms
derive new entropies by integrating the changes of conditiclasses and decision classes
into existing entropies. With these mechanisms, a groupemental reduction algorithm is
proposed for dynamic decision tables. After a group of dsjecadded to a decision table, the
proposed algorithm generates a reduct for this expandasiaet¢able by fully exploiting the
reduct of the original decision table. By doing so, when iplétobjects are added to a given
decision table, the new reduct can be obtained by the prdpalgerithm in a much shorter
time. Furthermore, in view of that incremental reductiogoaithms based on entropies have
not yet been discussed so far, this paper also introducescaenental reduction algorithm
for adding a single object to a decision table. Experimetgehbeen carried out on nine
data sets downloaded from UCI. The experimental resultasghat the proposed algorithm
is effective and efficient.

For convenience of the following discussion, here is a degon of the main idea in this
paper. To select effective features from a dynamicallyeasing data set, an efficient group
incremental feature selection algorithm is proposed inftamework of rough set theory.
In the process of selecting useful features, this algoridmploys information entropy to
determine feature significance, and significant featuressalected as a final feature subset.
Experiments show that, compared with both the classicaisteufeature selection algorithm
based on information entropy and existing incrementalufeatselection algorithms, the
proposed algorithm can find a feasible feature subset in drsliorter time. The rest of this
paper is organized as follows. Some preliminaries in rowghteory are briefly reviewed in
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Section 2. Traditional heuristic reduction algorithmsdzh®n three representative entropies
are introduced in Section 3. Section 4 introduces the inergat feature selection algorithm
for adding a single object. And the incremental featurectigle algorithm for adding objects
in groups is introduced in Section 5. In Section 6, eight U@tadsets are employed to
demonstrate the effectiveness and efficiency of the prapalkgorithms. Section 7 concludes
this paper.

Il. RELATIVE WORKS

In this section, previous research on incremental knovdadadating is reviewed.

Knowledge updating for dynamically-increasing data seds httracted much attention.
By integrating the changes of discernibility-matrix, Sheinal. introduced an incremental
approach to obtain all maximally generalized rules of a gedndecision table [36]. Bang
et al. introduced an incremental learning algorithm to finanenimal set of rules of a
decision table [2]. Tong et al. constructed the concepé-d&cision matrix, and presented
an algorithm for incremental learning of rules [42]. Zhengaé developed an effective
incremental algorithm which was called RRIA. This algamtican learn from a domain
data set incrementally [56]. Guo et al. proposed an incréahenles extraction algorithm
based on the search tree, which is one kind of the first heusstarch algorithms [9].
Furthermore, under variable precision rough-set modeRSR Chen et al. introduced a new
incremental method for updating approximations of VPRSIlevhbjects in the information
system dynamically alter [4].

Feature selection is a common technique for data prepriogedsor incremental feature
selection, researchers have also proposed several appsoddu et al. proposed an incre-
mental reduction algorithm for the minimal reduct [25]. $klgorithm can only be applied
to information systems without decision attribute. Forigien tables, a reduction algorithm
was presented to update reduct in [28], but it was very tioresaming. To overcome the
deficiencies of these two algorithms, Hu et al. presentechareimental reduction algorithm
based on the positive region [10], and pointed out that theswas more efficient than those
two algorithms. Moreover, an incremental reduction aldponi based on the discernibility
matrix was proposed by Yang in [51].

Rough set theory has been conceived as a powerful soft camgpobl to analyze various
types of data [29], [30], and is also a specific framework téctng useful features. Based on
rough set theory, to select useful features, a kind of comapgmoaches is using information
entropy to measure the feature significance and selectmgfisant features as a final feature
subset [20], [21], [23], [38], [44]. Liang and Qian et al. pased complementary entropy and
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combination entropy, respectively [20], [34]. These twtrepies have been used to determine
feature significance in a feature selection algorithm [E84]. In [33], information entropy is
employed to determine feature significance in an accelbrf@i@ure selection algorithm. In
[22], Liang et al. proposed an effective feature selectigor@thm from a multi-granulation
view. This algorithm was also designed based on informagiainopy.

In this paper, to select useful features from a dynamidaltyeasing data set, we focus
on incremental feature selection in the framework of roughtiseory. In view of that many
real data from applications are generated in groups, a gmenemental feature selection
algorithm is proposed in the framework of rough set theorgd Ahis algorithm employs
information entropy to measure the feature significance.

I1l. PRELIMINARIES ON ROUGH SETS

In this section, several basic concepts in rough set thaeryeaiewed. In rough set theory,
a basic concept is data table, which provides a conveniantdwork for the representation
of records in terms of their attribute values. A data table iguadrupleS = (U, A,V f),
where the univers# is a finite nonempty set of objects (records) ahds a finite nonempty
set of attributes (featuresl), = U,c4 V. with V, being the domain of, andf : U x A — V
is an information function withf(z,a) € V, for eacha € A andxz € U. The tableS can
often be simplified asy = (U, A).

Each nonempty subsdt C A determines an indiscernibility relation, which g8z =
{(z,y) € U x U | f(z,a) = f(y,a),Va € B}. The relationRp partitionsU into some
equivalence classes given BYy/Rp = {[z]|p | x € U}, justU/B, where|[z]p denotes the
equivalence class determined bywith respect toB, i.e., [z]p = {y € U | (z,y) € Rp}.

Given an equivalence relatioR on the universé/ and X C U, the lower approximation
and upper approximation of are defined by

RX =z € U] [t]r C X}

and
RX =|[{z €U |[z]rN X # O},

respectively. The order paitRX, RX) is called a rough set ok with respect toR. The
positive region ofX is denoted byPOSk(X) = RX.

A partial relation=< on the family{U/B | B C A} is defined as followst//P < U/Q (or
U/Q = U/P) if and only if, for everyP;, € U/ P, there exists); € U/(Q such thatP; C @),
whereU/P = {P,P,,---,P,} andU/Q = {Q1,Qs,---,Q,} are partitions induced by
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P, @ C A, respectively. Then, we say that is coarser thanP, or P is finer than@. If
U/P XU/Q andU/P # U/Q, we say(Q is strictly coarser thar® (or P is strictly finer
than@), denoted byU/P < U/Q (or U/Q = U/P). Itis clear thatlU/P < U/Q if and only
if, for every X € U/P, there exists” € U/(Q such thatX C Y, and there exisX, € U/P
andY; € U/Q such thatX, C Y.

A decision table is a data tableé = (U,C U D) with C N D = @, where an element
of C is called a condition attribute}’ is called a condition attribute set, an element/of
is called a decision attribute, and is called a decision attribute set. Givén C C' and
U/D = {Dy, D.,---,D,}, the positive region ofD with respect to the condition attribute
set P is defined byPOSp(D) = Uj,_, PDy.

For a decision tabl& and P C C', X € U/P is consistent iff all its objects have the same
decision value; otherwiseX is inconsistent. A decision table is called a consistentsi@t
table iff all z € U are consistent; and #z,y € U are inconsistent, then the table is called an
inconsistent decision table. One can extract certain mecisiles from a consistent decision
table and uncertain decision rules from an inconsistenisaectable.

For a decision tablg and P C C, when a new object is added taS, x is indistinguishable
on B iff, dy € U, Ya € P, such thatf(x,a) = f(y,a); andx is distinguishable orP iff,

Vy € U, Ja € P such thatf(z,a) # f(y,a).

IV. ROUGH FEATURE SELECTION BASED ON INFORMATION ENTROPY

In rough set theory, a given data table usually has multipthicts, whereas it has been
proved that finding its minimal is an NP-hard problem [39]. @eercome this deficiency,
researchers have proposed many heuristic reduction edgiwhich can generate a single
reduct from a given table [11], [12], [20], [21], [33]. Mosf these algorithms are of greedy
and forward search type. Starting with a nonempty set, taEg@ithms keep adding one or
several attributes of high significance into a pool at eaehaiton until the dependence no
longer increases.

This section reviews the heuristic attribute reductionoathms based on information
entropy for decision tables. The main idea of these algmsthis to keep the conditional
entropy of target decision unchanged. This section firseveythree representative entropies,
and then introduces the classic attribute reduction algoribased on information entropy.

In [20], the complementary entropy was introduced to measurcertainty in rough set
theory. Liang et al. also proposed the conditional complagarg entropy to measure un-
certainty of a decision table in [21]. By preserving the atindal entropy unchanged, the
conditional complementary entropy was applied to constreduction algorithms and reduce
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the redundant features in a decision table [33]. The canthiticomplementary entropy used
in this algorithm is defined as follows [20], [21], [33].

Definition 1: Let S = (U,CUD) be a decision table anél C C. Then, one can obtain the
partitionsU/B = { X1, Xs,---, X,,} andU/D = {Y1,Ys,---, Y, }. Based on these partitions,
a conditional entropy of3 relative to D is defined as

Z|X mY||YC X¢|

1
o &

E(D|B) =Y

i=17=1

whereY and X¢ are complement set df; and X; respectively.

Another information entropy, called combination entropgs presented in [34] to measure
the uncertainty of data tables. The conditional combimaéntropy was also introduced and
can be used to construct the heuristic reduction algorifi3ds This reduction algorithm can
find a feature subset that possesses the same number of paidistinguishable elements
as that of the original decision table. The definition of tleaditional combination entropy
is defined as follows [34].

Definition 2: Let S = (U,C'UD) be a decision table an®t C C'. Then one can obtain the
partitionsU/B = { X1, Xs, -+, X,,} andU/D = {Y1,Y5,--- Y, }. Based on these partitions,
a conditional entropy of3 relative to D is defined as

|1 X;| Cix,

m "X, NY; Cin y,
B(DIB) =3[ ¢a; 1% D3] 2y

T

i=1

)- (2)

whereCf‘X” denotes the number of pairs of objects which are not distéhgble from each
other in the equivalence class,.

Based on the classical rough set model, Shannon’s infooma&tntropy [37] and its con-
ditional entropy were also introduced to find a reduct in ariséia algorithm [38], [44]. In
[44], the reduction algorithm keeps the conditional engroptarget decision unchanged, and
the conditional entropy is defined as follows [44].

Definition 3: Let S = (U,CUD) be a decision table anél C C. Then, one can obtain the
partitionsU/B = { X1, Xo,---, X,,} andU/D = {Y1,Ys,---, Y, }. Based on these partitions,
a conditional entropy of3 relative to D is defined as

X §~ XN Yyl \Xij\
HDIB) = = g7 3 S e ©

=1

For convenience, a uniform notatiol £(D|B) is introduced to denote the above three
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entropies. For example, if one adopts Shannon’s conditientiopy to define the attribute
significance, thel E(D|B) = H(D|B). In [20], [33], [44], the attribute significance is
defined as follows (See Definitions 4-5).

Definition 4: Let S = (U,CUD) be a decision table anbl C C'. Va € B, the significance
measure (inner significance) afin B is defined as

Sig™ (a, B, D) = ME(D|B — {a}) — ME(D|B). (4)

Definition 5: Let S = (U,C U D) be a decision table an# C C. Va € C — B, the
significance measure (outer significancelah B is defined as

Sig™"(a, B, D) = ME(D|B) — ME(D|B U {a}). ()

Given a decision tablé = (U,C' U D) anda € C. From the literatures [20], [21], [23],
[33], [34], [44], one can get that i§ig""*" (a, C, D) > 0, then the attribute is indispensable,
i.e., a is a core attribute of5. Based on the core attributes, a heuristic attribute réotuct
algorithm can find an attribute reduct by gradually addingaed attributes to the core. The
definition of reduct based on information entropy is definedadlows [20], [21], [33], [44].

Definition 6: Let S = (U,C' U D) be a decision table an® C C. Then the attribute set
B is a relative reduct ifB satisfies:

(1) ME(D|B) = ME(D|C);

(2) Va € B, ME(D|B) # ME(D|B — {a}).

The first condition guarantees that the reduct has the sastiagliish power as the whole
attribute set, and the second condition guarantees tha th@o redundant attributes in the
reduct. Because the heuristic searching strategies irhtiee tlgorithms are similar to each
other, a common heuristic attribute reduction algorithmsdaaon information entropy for
decision tables is introduced in the following [20], [2133], [44].

Algorithm 1. Classic heuristic attribute reduction algorithm basedirdarmation entropy
for decision tables({ AR)

Input: A decision tableS = (U,C U D)
Output: Reductred

Step 1 red « ();
Step 2 for (j =15 < |C|;j++)
{ If Sig"™™(a;,C, D) >0, thenred « red U {a;};}
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Step 4 P «— red, while (ME(D|P) # ME(D|C)) do
{ Compute and select sequentiallyg®*“" (ag, P, D) = max{Sig®*“" (a;, P, D), a; €
¢ - Pl
P — PU{ao};}
Step 5 red < P, returnred and end.

The time complexity olC AR given in [33] isO(|U]|C|?). However, this time complexity
does not include the computational time of entropies. Cdimgentropies is obviously not
computationally costless according to the definitions dfagies, and is also a key step in
Algorithm 1. To analyze the exact time complexity of Algbrt 1, the time complexity of
computing entropies should be given as well.

According to Definitions 1-3, a decision table first needsdmpute its conditional classes
and decision classes, and then computes its value of entXapyet al. in [48] gave a
fast algorithm for partition with time complexity bein@(|U||C|). So, the time complexity
of computing entropy iO(|U||C| + |U| + X%, | X:| - X5-, 1Yj]) = O(|U?) (the specific
introduction ofm, n, X; andY; is shown in Definitions 1-3). Thus, the time complexity of
computing core (Steps 1-2) ©(|C||U|?), and the time complexity of computing reduct
according toC AR is O(|C||U> + |C|(|U||C| + |U[?)) = O(|C)*|U| + |C||U|?).

V. INCREMENTAL FEATURE SELECTION ALGORITHM FOR ADDING A SINGLEOBJECT

Given a dynamic decision table, based on those three repatise entropies, this section
introduces an incremental feature selection algorithmafliting a single object. This section
is divided into two parts. Subsection 4.1 introduces theemental mechanisms for the three
entropies. When a new object is added to a given decisioe,taidtead of recomputation
on the new decision table, the incremental mechanisms ainaltulate new entropies by
integrating the changes of classes into the existing emsopf the original decision table.
Subsection 4.2 introduces the incremental feature seteetigorithm based on information
entropy for adding a single object. Similarly, this increrted algorithm finds a new feature
subset on the available result of feature selection. Theemental mechanisms of entropies
are used in the steps of the algorithm where entropies arpui@a. To make the presentation
easier to follow, some illustrative examples are also givethis section.

A. Incremental mechanism to calculate entropies after gld single object

Given a dynamic decision table, with the increase of objeasomputing entropy is
obviously time-consuming. To address this issue, thisesttizm introduces three incremental
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mechanisms for computing entropies. When a single objeeidded to a decision table,
Theorems 1- 4 introduce the incremental mechanisms forhitee tentropies respectively.

In [23], when a single object is added to a given decisionetatihle incremental mechanism
of complementary conditional entropy (see Definition 1) haen analyzed, which is shown
in Theorem 1.

Theorem 1:Let S = (U,C U D) be a decision table3 C C, U/B = { X1, Xo, -+, X;n}
andU/D = {Y},Ys,---,Y,}. The conditional complementary entropy of with respect
to B is Ey(D|B). Suppose that object is added to the tablé, x € X, andz € Y]
(X, e UU{z}/B andY, € UU{z}/D ). Then the new complementary conditional entropy
becomes

1 / !
s (U Ey(D|B) +2|1X;, — Y])).

Eyuay(DIB) = o1

Proof. The proof can be found in [23].

For the convenience of introducing incremental mechanisrwombination entropy, here
gives a variant of the definition of combination entropy (§2e&finition 2). According to
C% = N (]\27‘1), Definition 7 shows a variant of combination entropy. Basedttus variant,
the incremental mechanism of combination entropy is intoed in Theorem 2.

Definition 7: Let S = (U,C U D) be a decision table an® C C. One can obtain the
condition partitionU//B = { X1, Xs, -+, X;,} andU/D = {Y},Y5,---, Y, }. The conditional

entropy of B relative to D is defined as

L EXPIX -1 & X NYRGNY - 1)
CEWIB) =2 po—n ~ & ool -

i=1 j=1

)- (6)

Theorem 2:Let S = (U,C U D) be a decision tableB C C, U/B = {X;, Xo,---, Xin},
andU/D = {Y1,Y,,---,Y,}. The conditional combination entropy & with respect toB
is CEy(D|B). Suppose that a new objectis added to the tablé, » € X] andx € Y,
(X, e Uu{x}/B andY, € UU{z}/D ). Then the new combination conditional entropy
becomes

1
(VU =1)CEy(DIB) + X, = Y7I(3| X, | + 3| X, N Y| = 5)).

CEUU{r}(D|B) = W

The following two theorems are the introduction of incretaémechanism of Shannon’s
information entropy (see Definition 3).
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TABLE |: A decision table

&1 C2 C3 Cy d
1 1 0 1 0 0
T 1 0 1 0 1
T3 1 1 0 0 0

Theorem 3:Let S = (U,C U D) be a decision tablel3 C C, U/B = {X;, X5, -+, X,,,}
andU/D = {Y1,Y,,---,Y,}. The conditional Shannon’s entropy &f with respect toB
is Hy(D|B). Suppose that a new objectis added to the tabl&, » € X, andx € Y|
(X, e UUu{z}/B andY, € UU{xz}/D ). The new Shannon’s conditional entropy becomes
1
H, D|B) = ——(|U|Hy(D|B) — A

| Xpl—1
X5

(1XL]=D)| XY, | X/ NY)|
+ (X, Yyl = Dlog iy + o9 ="

whereA = Y077 (X, — {z}) NYj|log

Obviously, theA in Theorem 3 is relatively complicated, which may give risentuch
waste of computational time, especially for large-scal@ dats. Thus, Theorem 4 shows an
approximate computational formula.

Theorem 4:Let S = (U,C U D) be a large-scale decision tabl®, C C, U/B =
{X1,Xo,---, X} andU/D = {Y1,Y,,---,Y,}. The conditional Shannon’s entropy &f
with respect toB is Hy(D|B). Suppose that a new objectis added to the tabl§, = € X
andr € Y] (X, € UU{z}/B andY, € UU {z}/D ). The new Shannon’s conditional
entropy becomes

1 |1 X!NY/|
Hyuiny(D|B) % ————(|U|Hy(D|B) — log—2—=—-1L).
o ([07+1) X

In the following, we employ an example to illustrate the adavcremental mechanisms.

Example 1:Let Table | be a decision table. In this table, = {x1,xs,z3, 24} is the
universe,C' = {cy,ca, 3, ¢4} is the condition attribute set an®® = {d} is the decision
attribute.

We have thaU/C = {{1'1,1'2}, {1'3}, {1'4}} and U/D = {{1'1,1'3}, {1'2,1'4}}.

According to Definitions 1-3 (or 1,3 and 7), we have that(D|C) = 5, CEy(D|C) = &
and Hy (D|C) =~ 0.15.
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Suppose that new objeet = {1,0,1,1,1} is added to Table I. We hav&, = {z5} and

}/;1/ - {.IQ, Ty, .’,U5}.

Then, according to Theorem 1, we ha\®) — Y| = {25} — {22, 74,25} = 0 and
Buuay(DIB) = e (47 X § +2 % 0) = 0.08,

According to Theorem 2, we ha\®,| = 1, [X] NY,| = 1 and [X] — Y| = 0. Thus,
CBuuy(D|B) = (4 x (4= 1) X 13 #0x (3x 1 +3 x 1= 5)) = 0.04.

According to Theorem 3, we hav&(,| = 1 and | X, NY,| = 1. Thus, Hyy,)(D|B) =
(4 % 0.15 - 0) = 0.12.

(4+1)

Because the size of Table | employed in this example is vellsme used Theorem 3 to
compute Shannon’s entropy. For the larger data sets entplaythe section of experiments,
Theorem 4 is used to compute entropy.

B. Incremental algorithm for adding a single object

Based on the incremental mechanisms of the three entrapisssection introduces an
incremental feature selection algorithm based on infolemaéntropy in the framework of
rough set theory.

Given a decision tablé = (U,C U D). Suppose thaBB C C'is a reduct ofS and x is
the new incremental object. There are three distinguisbingtions about: based on the
reductB:

(1) x is distinguishable oB, andx is also distinguishable o6’

(2) x is indistinguishable orB, andz is distinguishable o,

(3) z is indistinguishable orB, andz is also indistinguishable o@'.

For above three distinguishing situations, following thteeorems introduce the changes
of the three entropies.

Theorem 5:Let S = (U,C' U D) be a decision table an®8 C C. Supposed thaB is a
reduct of S andx is a new incremental object. Then,afis distinguishable on boti® and
C, then M Ey .y (D|B) = M Eyugay (D|C).

Theorem 6:Let S = (U,C' U D) be a decision table an® C C. Supposed thaB is a
reduct of S andz is a new incremental object. Then,afis indistinguishable orB and is
distinguishable orC, then M Ey (1 (D|B) # M Eyuey (D|C).

Theorem 7:Let S = (U,C' U D) be a decision table anf8 C C. Supposed thaB is a
reduct ofS andz is a new incremental object. Thenifis indistinguishable both o® and
C, then M Eyygy (D|B) = M Eyygay (D|C).
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According to Theorems 5 and 7, if the added object is disisltable or indistinguishable
on both B and C, then new entropies oD with respect toB and C' are identical. Hence,
according to the definition of reduct (Definition 6), it onlyeed to delete the reductant
attributes fromB for these two situations. If the added object is indististable on the
previous reductB and is distinguishable on conditional attribute ég&tfinding new reduct
needs to add new attributes. On this basis, Algorithm 3 ¢htces an incremental algorithm
for reduct computation.

Algorithm 2. An incremental algorithm for reduct computatiohARC)

Input: A decision tableS = (U,C U D), reduct REDy on U, and the new incremental
objectx

Output: Attribute reductRE Dy g,y on U U {x}

Step 1: B «— REDy. Find M/:in U/B = {M, M, ---, M}, if all of the attribute values
of x is identical to that ofA/; on B, then M| = M, U {z}; else M| = {x}.
Step 2: If M] = {z}, then turn toStep 5 if M] = M, U {x}, then turn toStep 3
Step 3: Find X,: similarly, in U/C' = { X}, Xy, -+, X}, if X)) = X, U{z}, then turn to
Step 5if X, = {=}, then turn toStep 4
Step 4: While M Ey,)(D|B) # M Eyugy(D|C) do
{ For eacha € C' — B, computeSigpiei, (a, B, D) (according to Theorem 1, 2 or
4 and Definition 5);
Selectay = maz{Sigyi(, (a, B, D)}, a € C = B;
B — BU/{ap}. }
Step 5: For eacha € B do
{ ComputeSig;r, (a, B, D);
If Sig}'}ﬁlg}(a, B,D)=0,thenB — B —{a}. }
Step 6: RE Dy, < B, return RE Dy, and end.

An example is employed to illustrate Algorithm 2. For conegice, Example 2 shows the
process of computing reduct based on complementary entiophe same way, one can
compute core based on the other two entropies by using Algor?.

Example 2:(Continued from Example 1)Computing new reduct based onpbamentary
entropy by using Algorithm 2.

For Table I, its previous reduct found by using Algorithm 1séd on complementary
entropy is{ci, c2}. Suppose that new object = {1,0,1,1,1} is added to Table I.

According to Step 1, we havef] = {z;, xs, x5}. Obviously, M/ # {x5}, then algorithm
turns to Step 3 according to Step 2.
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TABLE II: Comparison of time complexity

Entropy Classic Incremental
O(lUP?) o(Uul[C] + [X,[1Y7])
Reduct CAR TARC

O(ICPIUI+[ClU®)  O(CPIUL+|CIIXIYy)

According to Step 3, we hav& = {z5}. Hence, algorithm turns to Step 4 according to
Step 3.

From Theorem 1, one can gBty .} (D|B) = 0.16, Eyugy (D|C) = 0.08, and By, (D] B)

# Eyu1(D|C). Thus, algorithm needs to add attributes frém- B according to Step 4.

In the first circulation,Siggii(, (cs, B, D) = 0 and Sig,,(cs, B, D) = 0.08. Then,
we haveB = {ci,c2} U {ca} = {c1,c2,ca}. Now, we haveEy 3 (D|B) = 0.16 and
Euuey(D|B) = Eyuy (D]C). Algorithm here stop the circulation in Step 4.

According to Step 5, there is no attribute ihneed to be deleted. ThuBE Dy, < B
and REDyyzy = {c1, ¢2, ca}

The following is the time complexities of Algorithm 2. Hereeasome explanations firstly.
Based on the analysis in Subsection 4.1, wheis added to the table, one can also get
the new value of entropy by using the incremental formulasd Ahe time complexity of
computing entropy i€ (|U||C| + |[U| +m|C| +n + [ X]||Y]]) = O(|U||C| + | X, ||Y,]) ( the
explanations ofn,n, X, andY, are shown in Theorems 1, 2 and 4). For convenience, we
make©’ to denote the above time complexity, i.€, = O(|U||C| + | X,||Y,]).

In the algorithm/ ARC', the time complexity of Steps 1 and 33X |U||C]|). In Step 4, the
time complexity of adding attributes 3(|C|©’). In Step 5, the time complexity of deleting
redundant attributes i©(|C|©’). Hence, the total time complexity of algorithtdRC' is
o(|U|Cl+|C|(jUliC|+|X,1Y,]) = O(JU||C|*+|C||X]||Y,])- To stress the above findings,
Table Il shows the time complexities of computing reduct.

From Table I, because of thaX ||Y;| is usually much smaller thal@/|*, we can conclude
that the computational time of new incremental algorithmes @sually much smaller than
that of the classic algorithms. Note that, sometinjé§,||Y,| may be identical tqU|?, i.e.,
|X,| = |U] and|Y,| = |U]. In this situation, the discernibility ability of the attites induced
|X,| (or [Y]]) is very weaker, and thus these attributes will have few rdoutions to select
effective feature subset. In other words, it is impossibé these attributes can be selected as
useful features. HencgX)||Y;| is more commonly much smaller théki|* in the process of
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selecting effective features, and the new incrementalrdéfgos can save more computation
thanC' AR.

VI. INCREMENTAL FEATURE SELECTION ALGORITHM FOR ADDING MULTIPIE OBJECTS

In practice, the rapid development of data processing tbatsled to the high speed of
dynamic data updating. Thus many real data in applicatioag be generated in groups
instead of one by one. If multiple objects are added to daeyahe feature selection algo-
rithm proposed in the previous section may be less efficlantther words, the incremental
algorithm for single object needs to be re-performed regzatin order to deal with multiple
objects. This obviously gives rise to much waste of companat time. To overcome this
deficiency, this section introduces a group incrementalufeaselection algorithm, which
aims to deal with multiple objects at a time instead of repeist

This section is divided into two parts to introduce the graogremental algorithm. We
assume in this paper that the size of an added object set itesti@an that of the original
table. Subsection 5.1 introduces the incremental meamsnaf three entropies for adding
multiple objects. When multiple objects are added to a giecision table, the incremental
mechanisms aim to compute new entropy by using the previotnspy instead of recompu-
tation on the decision table. Subsection 5.2 introducegtbep incremental feature selection
algorithm based on information entropy. The incrementatimaisms of entropies are used
in the steps of the algorithm which need to compute entropyn@ke the presentation easier
to follow, some examples are also given in this section.

A. Incremental mechanism to calculate entropies after aglanultiple objects

Given a decision table, when multiple objects are addednttremental mechanisms intro-
duced in Subsection 4.1 for computing entropy obviouslydrnieerepeat the operation many
times. Hence, this subsection introduces the group inaneahenechanisms of entropies.
Theorems 8- 10 introduce the group incremental mechanisrtitse® entropies respectively.

For convenience, here are some explanations which will bd irsthe following theorems.
Given a decision tablé = (U,C U D), B C C,U/B = {X},Xs,---,X,,} andU/D =
{Y1,Y,,---,Y,}. Suppose thal'x is the incremental object séfyx /B = {M;, My, - - -, M}
andUx/D = {Z,, Z,,---, Zy}. In the view of that, betweefi/B andUx /B, there may be
some conditional classes with the identical attribute @alanB, we might as well assume
that(UUUx)/B = { X1, X5, -+, X}, Xit1, Xpwo, vy Xony Myyq, Myyo, -+, My} and (U U
Ux)/D = {Y],Yy, - Y Yiu1,Yigo, - Yo, Zigr, Zigo, -+, Zw}. In (UUUx)/B, X =
X, UM; (i =1,2,---,k) denote the combinative conditional classes, that is, ttrébate
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values of X; € U/B and M; € Ux/B are identical. AndX; € U/B (i =k+1,2,---,m)
and M; € Ux/B (j = k+ 1,k+2,---,m') denote the conditional classes which can
not be combined. Similarly, ifU U Ux)/D, Y/ = Y;U Z; (i = 1,2,---,1) denote the
combinative of decision classes with the identical attébualues onD. And Y; € U/D
(i=1+1,142,---,n)and Z; € Ux/D (j =1+1,1+2,---,n') denote the decision classes
which can not be combined.

Example 3:Let U = {x1, z9, 3, 4, x5, T, 7, 28}, U/ B = {{x1, 22}, {x3, x4}, {x5}, {ws,
z7}} and U/D = {{x1, 2,23}, {24}, {25}, {z6,27}}. The incremental data séfy =
{y1,v2, 93, s}, Ux/B = {{y1, 92}, {ys}} andUx /D = {{y1 }, {2, y3}}-

It is assumed that the attribute values{af} is identical to that of{x5} with respect to
B, and the decision attribute value ff», 3} is identical to that of x4, x7}. Then, one have

(UUUx)/B = {{w5,y3}, {71, 2}, {x3, 24}, {T6, 27}, {y1, Y2} },

where, X = {z5,ys}, Xo = {x1, 22}, X5 = {3, 24}, X4 = {6, 27}, and My = {y1, 2}

(U U UX)/D = {{ZL’@, X7,Y2, yS}v {1’1, Zg, 1‘3}, {1’4}, {1’5}, {yl}}v

where,Y! = {x6, 27,92, y3}, Yo = {21, 22,23}, Y3 = {x4}, Ya = {x5}, and Z, = {y:1}.
Obviously,m =4,n=4,m'=2,n' =2 k=1 andl = 1.

Given a decision table, Theorem 8 introduces the increrhemahanism based on com-
plementary entropy.

Theorem 8:Let S = (U,C U D) be a decision tablel3 C C, U/B = {X;, X, -+, X,,,}
andU/D = {Y1,Ys,---,Y,}. The complementary conditional entropy @fwith respect taB
is Ey(D|B). Suppose thal'y is an incremental object séfyx /B = {M;, My, - - -, M, } and
Ux/D ={Zy,Zy,---,Zy}. We assume thatlU U Ux)/B = { X1, X}, - -+, X}, Xk+1, X2,

s Xony Myy1, Miyo, -+, My} and(UUUx ) /D = {Y{, Yy, -, Y/, Vi1, Yo, - -+, Yo, Ziya,
Ziyo, -+, Zw}. Then, the new complementary conditional entropy becomes

Eyuuy (D|B) = (U] Ev(D|B) + |[Ux|*Eu, (D]B)) + A,

(IU L Ux|)?

Lkl XNV IM— 2 M XY By i) MZ 11X
whereA =37, (X5 (UUUx])? + 21 quotRD? +X 0ot )

In what following, the group incremental mechanism basedcombination entropy is

introduced in Theorem 9.

Theorem 9:Let S = (U,C U D) be a decision tablei3 C C, U/B = { X3, Xo, -+, X;n}
andU/D = {Y1,Y,,---,Y,}. The conditional combination entropy &f with respect taB is
CEy(D|B). Suppose thal’y is an incremental object sétx /B = {M;, M, ---, M, } and

July 9, 2012 DRAFT



IEEE I RANSAU TIUNS UN AINUVWLEDGOE AND DATA ENOINEERING N

Ux/D ={72y,Z3,---,Zy}. We assume thdUUUx ) /B = { X1, X5, - - -, X1, Xpv1, Xig2, - -
Xm7 Mk+17 Mk+27 Ty Mm’} and(UUUX)/D = {}/1,7 }/;7 ) YY? Yi—i-h Y2+27 T Ynu Zl+17 Zl+27
-+, Zx}. Then, the new combination conditional entropy becomes

1
U+ 1Ux*(JU] + [Ux] = 1)

Ux*([Ux| = 1)CEu, (D|B)) + A,

CEyuuy (D|B) = (1UP(|U] = 1)CEy(D|B)+

ook XIMIGIXGM=2) XY MiNZ;I(3IXNY; |3]MinZ; | —-2)
where A = 30 (T ox 10T+ -~ =1 (U D20+ Ux [-1) )-

Based on Shannon’s entropy, the group incremental mechdoisadding multiple objects
is introduced in Theorem 10.

Theorem 10:Let S = (U,C' U D) be a decision table3 C C, U/B = { X1, Xo,- -+, X;n}
andU/D = {Y1,Y,,---,Y,}. The conditional Shannon’s entropy of with respect toB is
Hy(D|B). Suppose thal/x is an incremental object setx/B = {M;, M, ---, M, } and
Ux/D ={Zy,Zs, -+, Z,}. We assume thatlU UUx)/B = { X7, X}, -+, X{, Xi+1, Xpro,
oy Xy M1, Myga, - -+, My b and(UUUx ) /D = {Y{, Y5, -+ Y, Yiqn, Yigo, -+, Yo, Zig,
Zito, -+, Zy}. Then, the new Shannon’s conditional entropy becomes

1
Huyuuy (D|B) = W(W\HU(DUB) + |Ux|Huy (D[B)) — A,
 —k ! | X:NY;| X[ XY | Minz,) [M; || X{NY]| n | X3NY;| | X |
whereA = 32 (- (roa oI emseay ) T 00 I RmAz ) T =1 0T TR 9T
Zn’ |MiNZ;| lo |Mz'\)
J=11 O+ P9 X7 /-

To illustrate above study clearly, here employs an exampleatroduce the process of
computing entropies in a group incremental way.

Example 4:For Table |, suppose thdfy = {x5,z6, 27} is the added object set:; =
{1,0,1,1,1}, ¢ = {0,1,0,0,0} andz; = {1,1,0,0,0}.

We have thatU/C = {{z1,x2},{x3},{x4}}, U/D = {{z1,23}, {2, 24}}, Ux/C =
{{zs}, {we}, {27}} andUx /D = {{=5}, {ws, 27} }.

Then, one can get th&atUUx /C = {{x3, x7}, {z4, x6}, {z1, 22}, {25} } andU UUx /D =
{{x1, z3, x6, w7}, {2, T4, 5} }.

According to Definitions 1-3, we have thay, (D|C) = §, CEy(D|C) = 55, Hy(D|C) =
0.15, and Eyuyy (D|C) = CEyuuy (D|C) = Hyuuy (D]C) = 0.

According to Theorem 8, we have that=2,m = 3,m' = 3,1l = 2,n =2, andn’ = 2.
And X| = {x3, 27}, X) = {xyg, 26}, X3 = {x1, 22}, and M3 = {z5}. Y/ = {x1, 23, x4, 27}
andYy = {x, z4,25}. Hence,Eyuy, (D|C) = 75 x (42 x £+ 3 x 0) + & = 5.
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According to Theorem 9, one can get thiaEy y, (D|C) = =5(4> x (4—1) x 5 +32 X
(3=1) x0) + iz = 17-

According to Theorem 10, one can get thdy y, (D|C) ~
(—0.086) = 0.17.

Ix(4x06+3x0)—

B. Incremental algorithms for adding multiple objects

Based on the incremental mechanisms of the three entropigsrithm 3 introduces a
group incremental algorithm for reduct computation basednéormation entropy.

Algorithm 3. A group incremental algorithm for reduct computati@gn/(A RC)

Input: A decision tableS = (U, C' U D), reductRED; on U, and the new object séfy

Output: ReductRE Dy, onU U Ux

Step 1 B «+ REDy. Computel//B = {XF XP ... XBY U/C ={XC X, -, XE},
Ux/B={M M7, -- My} andUx/C = {M{, My, -, Mg}

Step 2 Compute(UUUx)/B ={X{®, X}P, - X;B. X2 |, XP,, - XE ME.,,MZ.,,
- MEY and(UUU)/C = {X{C. X, XIS XG 1. X g0 XO MGy, M -
MG},

Step 3: If k=0 andk’ = 0, turn to Step 4 else turnStep 5

Step 4: ComputeM Ey, (D|B) and M Ey, (D|C). If MEy, (D|B) = MEy, (D|C), turn
to Step 7 else turn toStep 5

Step 5: while M Eyuu, (D|B) # M Eyuuy (D|C) do

{ For eacha € C' — B, computeSigg's, (a, B, D);
Selectay = max{Sigg'y. (a, B, D), a € C — B};
B «— BU/{ag}.
}
Step 6: For eacha € B do
{ ComputeSigyie (a, B, D);
If Sig%}””ﬁfjﬁ((a, B,D) =0, thenB — B — {a}.
}
Step 7: REDyy, < B, returnRE Dy, and end.

An example is employed to illustrate Algorithm 3. Similarlyased on complementary
entropy, this example updates reduct by using Algorithm 3d e other two entropies can
be used to compute attribute significance in this algorithrthe same way.

Example 5:(Continued from Example 1) Computing new redut based on ¢emmgntary
entropy by using Algorithm 3.
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TABLE Ill: The complexities description
Reduct TARC GIARC

O(ICPIUNUx| + [Ux|ICIXGIYD) — O(CPIU||Ux])

For Table 1, its previous reduct found by using Algorithm 1séd on complementary
entropy is{ci, co}. Suppose thal/x = {z5, x¢, 27} is the added object set.

According to Step 1B = {c1, o}, UUUx/C = {{z3,x7}, {z4, w6}, {x1, 22}, {25} } and
UUUx/B = {{x3,x7},{x4, 26}, {71, 22, 25} }

Because of = 2 and k' = 3, example turns to Step 4.

According to Step 4, we havEy u, (D|B) = % and Eyuu, (D|C) = 45. Thus, example
needs to add attributes frooi — B.

In the first loop, Sigfitis” (cs, B, D) = 0 and Siggiiter (¢4, B, D) = %. Thus,B = B U
{ca} = {c1, c2,c4}. Now, we haveEy v, (D|B) = Eyuuy (D|C) = 55. Example thus stops
in Step 4.

According to Step 5, there is no attribute #h need to be deleted and the final reduct is
REDyuy = {c1,c2, ¢4}

The following is the time complexity of above Algorithm 3. Amsentioned above, we
give in this paper a specific explanation théty| < |U|. When a data set is added to the
decision tables, according to Theorems 8-10, the time cexitgl of computing entropy is
O(|U||C]+|Ux]||C|+|Ux|*+|U|| X|), and X denotes the object set with identical conditional
attribute values inJ and Uy. In the algorithmGIARC, the time complexity of Step 2 is
O(ICI(IU|Ux[|C] + [UNIC] + [Ux|* + [U]|X])) = O(IC|*|U||Ux]). The time complexity of
Step 3 is als@(|C|?|U||Ux|), and the other steps are constant. So, the total time coityplex
of algorithmGIARC is O(|C|?|U||Ux|). When a group of objects are added to a data table,
Table Il shows the time complexities of computing reduct.

In Table 111, we compare the time complexities@f A RC with that of I ARC, respectively.

It is easy to see that, if the size of added object set is vemlisire., |Ux| is very small,
the computational time of ARC' is almost identical to that off/ ARC'. However, with the
1X;[Y;]

is not computationally costless and should not be neglettedce, when massive new objects

increases ofUy

, especially|Ux| is close to|U|, the computational time dlUx||C

in the databases are generated at o4 RC' is usually more efficient thanARC'.
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TABLE |V: Description of data sets

Data sets Samples Attributes  Classes

1 Breast-cancer-wisconsin(Cancer) 683 9 2

2  Tic-tac-toe 958 9 2

3 Kr-vs-kp 3196 36 2

4 Letter-recognition(Letter) 20000 16 26

5 Krkopt 28056 6 18

6  Shuttle 58000 9 7

7 Person Activity (PA) 164860 8 11

8  Poker-hand 1025010 10 10

VII. EXPERIMENTAL ANALYSIS

The objective of the following experiments is to show effemtess and efficiency of the
proposed group incremental algorith?V ARC'. The data sets used in the experiments are
outlined in Table IV, which are all downloaded from UCI reftosy of machine learning
databases. All the experiments have been carried out onsar@rcomputer with Windows
7, Inter(R) Core (TM) i7-2600 CPU (2.66 GHz) and 4.00 GB meyndihe software used
is Microsoft Visual Studio 2005 and the programming languagC#. And in the data sets,
Shuttleand Poker-handare preprocessed using the data tool Rosetta.

Eight UCI data sets are employed in the testing. The expatsnare divided into three
parts, which illustrate effectiveness, efficiency and giveomparison with the existing incre-
mental algorithms, respectively. In the first part, the @ffeness ofGIARC' is illustrated
mainly through comparing it with the classic heuristicibtite reduction algorithm based on
information entropy ¢'AR). In the second parf, ARC' are first compared witliz/ ARC' and
the efficiency ofGI ARC' is then illustrated by comparing their computational tiffike third
part contains the comparison with the existing incremeakgbrithms. The specific design
of experiments for each part is as follows.

A. Effectiveness analysis

In this subsection, to test the effectiveness:dfA RC, four common evaluation measures
in rough set theory are employed to evaluate the decisicionpeance of the reducts found
by CAR and GIARC'. The four evaluation measures are approximate classifiecigion,
approximate classified quality, certainty measure andistargy measure, which are shown
in Definitions 8-9.

In [29], [30], Pawlak defined the approximate classified [@iea (AP) and approximate
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classified quality 4Q) to describe the precision of approximate classificatiomomgh set
theory, namely, the discernible ability of a feature subléet feature subset has the sahe
and AQ with original attributes, this feature subset is consideas has the same discernible
ability with original attributes. Hence, this subsection@oys these two measures to estimate
the discernible ability of a generated feature subset.

Definition 8: Let S = (U,C'U D) be a decision table and/D = {X;, Xs,---, X, }. The
approximate classified precision 6f with respect taD is defined as

[POSc(D))]

APy(D) = ASeA
W)= e
and the approximate classified quality @fwith respect toD is defined as

|[POSc(D)|
1%/

In rough set theory, by adopting a reduction algorithm, oae get reducts for a given

AQc(D) =

decision table. Then, based on one reduct, a set of decigies can be generated from the
decision table [29], [35]. Decision rules are used to priedecision values of new objects.
Hence, the performance of a set of decision rules may affegbredictive ability. Pawlak
introduced two measures to measure the certainty and ¢ensysin [30]. However, these
two measures cannot give elaborate depictions of the ngrtand consistency for a rule set
[35]. To evaluate the performance of a rule set, Qian et di3%h defined certainty measure
and consistency measure to evaluate the certainty andstemsy of a set of decision rules.
And these two measures have attracted considerable attdntimany researchers [32], [43],
[46]. Hence,a and 5 are employed to evaluated the decision performance of idacisles
induced by the found feature subset in this subsection.

Definition 9: Let S = (U,C'U D) be a decision table//C = { X1, Xs,---, X,,}, U/D =
{1.,Ys,---. Y, }, andRULE = {Z;;|Z;; : des(X;) — des(Y;), X, e U/C,Y; € U/D} . The
certainty measure: of the decision rules oy is defined as

I X NY)?
9= % i
and the consistency measureof the decision rules o is defined as

X XnYE Xy
)]
Zﬂﬂ mwz X )

The main objective of this subsection is to illustrate thidtA RC' can find a feasible feature

subset in a much shorter time, rather than find a more supam@rBy comparing witl' AR,
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TABLE V: Comparison of evaluation measures based on comgheany entropy

CAR GIARC
Data sets NSF AQ AP « Ié] Time/s NSF AQ AP « Ié] Time/s
Cancer 4 1.0000 1.0000 1.0000 1.0000 0.770001 4 1.0000 .000000 1.0000 0.060000
Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.941168 8 0.999®M00 1.0000 1.0000 0.220000
Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 91.35022 29 0.999W00 1.0000 1.0000 3.381309
Letter 12 0.9999 1.0000 1.0000 1.0000 4564.396 10 0.999990.90.9997 0.9994 102.0301
Krkopt 6 0.9999 1.0000 1.0000 1.0000 555.7041 6 0.9999 0.00®MO000 1.0000 93.51025
Shuttle 4 1.0000 1.0000 1.0000 1.0000 7913.254 4 1.000000.000000 1.0000 325.1453
PA 7 1.0000 1.0000 1.0000 1.0000 22220.29 7 1.0000 1.000000.01.0000 1022.153
(1.000000 1.0000 1.0000 62918.36

Poker-hand 10 1.0000 1.0000 1.0000 1.0000 868320.6 10

TABLE VI: Comparison of evaluation measures based on coatlin entropy

GIARC

CAR

Data sets NSF AQ AP « Ié] Time/s NSF AQ AP « Ié] Time/s

Cancer 4 1.0000 1.0000 1.0000 1.0000 0.820047 4 1.0000 @.000000 1.0000 0.066003
Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.881165 8 0.999®M00 1.0000 1.0000 0.189011
Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 36.10806 29 0.999W00 1.0000 1.0000 1.788102
Letter 12 0.9999 1.0000 1.0000 1.0000 3594.882 11 0.999900.01.0000 1.0000 106.2975
Krkopt 6 0.9999 1.0000 1.0000 1.0000 497.5545 6 0.9999 0.00®MO000 1.0000 182.5955
Shuttle 4 1.0000 1.0000 1.0000 1.0000 8693.969 4 1.000000.0D.0000 1.0000 795.0494
PA 7 1.0000 1.0000 1.0000 1.0000 25203.29 7 1.0000 1.000000.01.0000 996.1361
Poker-hand 10 1.0000 1.0000 1.0000 1.0000 951264.7 10 (1.000000 1.0000 1.0000 59039.11

if discernible ability (evaluated byl P and AQ) and decision performance (evaluated-bgnd

() of the feature subset found iy ARC' are very closed or even identical to that@H R,
then this feature subset can be considered to be feasibleuByng algorithmsG/ARC

and C AR on the eight employed data sets, following experiments @rtegt feasibility and

efficiency of GTARC.
For each data set in Table IV, 51% objects are taken as the @aisi set, and the remaining

49% objects are taken as incremental objects. When theneerial objects are added to the

basic data set, algorithmSAR and GIARC are employed to update reduct of each data
set. The experimental results are shows in Tables V-VIl.s€hmbles show the number of

selected features, evaluation results of found featureetatand computational time of each
employed data set. For simplicitthe Number of Selected Featurnsswritten as NSF in the

following.
It is easy to see from Tables V-VII that the values of the fowaleation measures of the

generated reducts after the updating are very close, amdigsetical on some data sets. But,
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TABLE VII: Comparison of evaluation measures based on Sbalrentropy

CAR GIARC

Data sets NSF AQ AP « Ié] Time/s NSF AQ AP « Ié] Time/s

Cancer 4 1.0000 1.0000 1.0000 1.0000 0.808046 4 1.0000 1.000000 1.0000 0.057004
Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.843163 8 0.999®M00 1.0000 1.0000 0.234013
Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 34.59698 29 0.999W00 1.0000 1.0000 6.522059
Letter 11 0.9998 0.9997 0.9997 0.9997 3671.897 12 0.999900.01.0000 1.0000 307.8133
Krkopt 6 0.9999 1.0000 1.0000 1.0000 489.0469 6 0.9999 0.00®MO000 1.0000 204.4492
Shuttle 4 1.0000 1.0000 1.0000 1.0000 8512.905 4 1.000000.000000 1.0000 808.6062
PA 7 1.0000 1.0000 1.0000 1.0000 23183.15 7 1.0000 1.000000.01.0000 1063.886
Poker-hand 10 1.0000 1.0000 1.0000 1.0000 865728.3 10 (1.000000 1.0000 1.0000 60022.59

the computational time o/ ARC is much smaller than that af’ AR. In other words, the
performance and decision making of the reduct foundzdy RC' are very close to that of
CAR, butGIARC' is more efficient. Hence, the experimental results indidad¢, compared
with the classic reduction algorithm based on entrogie$sR, the algorithmGIARC can
find a feasible feature subset in a much shorter time.

B. Efficiency analysis

The experimental results in previous subsection has iteticdhatG/ ARC' is much more
efficient thanC' AR. In this subsection, we compa¢el ARC with TARC' in order to further
illustrate the efficiency of algorithm*/ ARC. For each data set in Table 1V, |16t denote its
universe and 51% object8.f1 « |U]) are selected as the basic data set. Then, we divide the
remaining 49% objects into five equal parts, denotedcpyjx;| = %*‘U' i=1,2,--,5). Let
X; = U§:1 x; (i=1,2, - -,5) denotes the incremental group. When each incremertalpgy;
is added to the basic data set, the two incremental reduatgorithms are used to update
the reduct, respectively. The efficiency of the two algonghare demonstrated by comparing
their computational time.

The experimental results are shown in Figs. 1-8. In thesedijuhe y-coordinate pertains
to the computational time for updating reduct, and the xrdimate pertains to the size of
incremental group, that is, coordinate value 1, 2, 3, 4 andrBespond to addind(;, X,

X3, X, and X5 to the basic data set, respectively. For simplicit RC' — L, IARC — C and
TARC — S denote algorithmi ARC based on complementary entropy, combination entropy
and Shannon’s entropy, respectively. SimilatWARC — L, GTARC —C andGIARC — S
denote algorithmGI ARC based on the three entropies respectively.

Figs. 1-8 depict the computational time for updating reduith the two reduction al-
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gorithms when different numbers of new objects are addediidw of paper length, for
each data set in Table 1V, the results of the three entropiesslaown in one figure. The
experimental results indicate that, in the context of eadhopy, GIARC' is more efficient
than TARC when multiple objects are added to the basic data set. Fortre, with the
number of added objects increasing, for most employed ddaga the efficiency ot/ ARC
is more and more obvious. Hence, the experimental resuits siat the group incremental
reduction algorithm proposed in this paper is very efficient

C. Comparison with other incremental algorithms

As mentioned in Section 1 (Introduction), there exist in litkerature several incremental
algorithms for updating redcut. Although an incrementauation algorithm for finding the
minimal reduct was proposed in [25], it is only applicable fioformation systems without
decision attribute. For decision tables, two incremeriggrithms were presented in [28] and
[41], respectively, whereas both of them are very time-oareg. To improve the efficiency,
Hu et al. presented an incremental reduction algorithmdasethe positive region [10] and
showed the experimental results that the algorithm was mfticeent than the two algorithms
developed in [28], [41]. Hence, to further illustrate effeeness and efficiency of algorithm
GIARC, we compare in this subsection it with the algorithm in [1B$r convenience, the
algorithm in [10] is written agd RPR (incremental reduction based on the positive region) in
the following. For each data set in Table 1V, 51% of the olgemte taken as the basic data
set, and the remaining 49% of the objects are taken as inatahgroups. Because Tables
V-VII have shown the results of computational time and exabn measures of: I ARC),
this subsection only provides in Table VIII the computasibtime for updating reduct with
IRPR and the decision performance of the found reduct.
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TABLE VIII: Computational time and evaluation measuresdshen/RPR

Data sets NSA AQ AP « 1] Time/s
Cancer 4 1.0000 1.0000 1.0000 1.0000 0.161009
Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.388137
Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 24.68441
Letter 11 0.9999 1.0000 1.0000 1.0000 334.6461
Krkopt 6 0.9999 1.0000 1.0000 1.0000 200.0974
Shuttle 4 1.0000 1.0000 1.0000 1.0000 903.9317
PA 7 1.0000 1.0000 1.0000 1.0000 2807.636
Poker-hand 10 1.0000 1.0000 1.0000 1.0000 95563.29

According to the experimental results in Tables V-VII andol@VIll, it is easy to get
that the values of the four evaluation measures of the fowddiats are very close, and
even identical on some data sets. But, the computational ¢ihd-/ ARC' is much less than
that of /RPR. In other words, the performance and decision making of #uict found
by GIARC are very close to that of RPR, but GTARC is more efficient. Hence, the
experimental results indicate that the algoritthhARC can find a feasible feature subset in

a much shorter time thahRPR.

VIIl. CONCLUSION AND FUTURE WORK

In this paper, in view of that many real data in databases aremted in groups, an
effective and efficient group incremental feature selecttgorithm has been proposed in
the framework of rough set theory. Compared with existinggegmental feature selection
algorithms, this algorithm has the following advantages.

1) Compared with classic heuristic feature selection dtigmis based on the three en-
tropies, the proposed algorithm can find a feasible featubset of a dynamically-
increasing data set in a much shorter time.

2) When multiple objects are added to a data set, the promigedthm is more efficient
than existing incremental feature selection algorithms.

3) With the number of added data increasing, the efficiencthefproposed algorithm is
more and more obvious.

4) This study provides new views and thoughts on dealing laithe-scale dynamic data
sets in applications.

Based on above results, some further investigations arellasvs.

1) The incremental mechanism of data expanding in groups i®ality the fusion of
two data tables. Thus, by generalizing the incremental sr@sm, future work would
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include the information fusion of multi-data tables or nwgltanularity.

2) Further analysis of dynamic data tables shows that thati@r of data tables can
also include the changes of data values. For data tables daiid values changing
dynamically, feature selection approaches based on rcetgimadel will be introduced
to discover knowledge from dynamic data tables.

3) With the variation of data sets, to predict the decisidre tules extracted from a
dynamic data set need to be updated in time. Therefore, #adsgsary to devise rules
extraction algorithms for a dynamic decision table.
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