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Abstract

Many real data increase dynamically in size. This phenomenon occurs in several fields including

economics, population studies and medical research. As an effective and efficient mechanism to

deal with such data, incremental technique has been proposed in the literature and attracted much

attention, which stimulates the result in this paper. When agroup of objects are added to a decision

table, we first introduce incremental mechanisms for three representative information entropies and

then develop a group incremental rough feature selection algorithm based on information entropy.

When multiple objects are added to a decision table, the algorithm aims to find the new feature

subset in a much shorter time. Experiments have been carriedout on eight UCI data sets and the

experimental results show that the algorithm is effective and efficient.

Index Terms
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I. INTRODUCTION

It has been observed in many fields that data grow with time in size. This has led to the

development of several new analytic techniques. Among these techniques, as an effective

and efficient mechanism, incremental approach is often usedto discover knowledge from a

gradually increasing data set, which can directly carry outthe computation using the existing

result from the original data set [1]–[3], [15], [19], [36],[41]. In recent years, feature selection,

as a common technique for data preprocessing in pattern recognition, machine learning, data

J.Y. Liang, F. Wang and Y.H. Qian are with Key Laboratory of Computational Intelligence and Chinese Information
Processing of Ministry of Education, the School of Computerand Information Technology, Shanxi University, Taiyuan
030006, Shanxi Province, China (e-mail: ljy@sxu.edu.cn; sxuwangfeng@126.com;jinchengqyh@126.com);

C.Y. Dang is with the Department of System Engineering and Engineering Management, City University of Hong Kong,
Hong Kong (e-mail: mecdang@cityu.edu.hk).

July 9, 2012 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

mining, etc., has attracted much attention [5], [7], [16], [24]. In this paper, we are concerned

with incremental feature selection, which is an extremely important research topic in data

mining and knowledge discovery.

On feature selection, a specific theoretical framework is Pawlak’s rough set model [13],

[31], [45], [53]–[55]. Feature selection based on rough settheory is also called attribute

reduction [8], [17], [39], [49], [50]. The feature subset obtained by using an attribute reduction

algorithm is called a reduct [29], [30]. Attribute reduction is able to select features that

preserve the discernibility ability of original ones, but do not attempt to maximize the

class separability [14], [18], [26], [40], [47]. In the lasttwo decades, based on rough set

theory, many techniques of attribute reduction have been developed [6], [11], [27], [33],

[34], [38], [44], [52]. However, most of them can only be applicable to static data tables.

When the number of objects increases dynamically in a database, these approaches often need

to carry out an attribute reduction algorithm repeatedly and thus consume a huge amount

of computational time and memory space. Hence, it is very inefficient to deal with dynamic

data tables using these reduction algorithms.

To deal with a dynamically-increasing data set, there exists some research on finding

reducts in an incremental manner based on rough set theory. Several incremental reduction

algorithms have been proposed to deal with dynamic data sets[10], [25], [28], [51]. A

common character of these algorithms is that they were only applicable when new data are

generated one by one, whereas many real data from applications are generated in groups.

When multiple objects are generated at a time in a database, these algorithms may be

inefficient since they have to be executed repeatedly in order to deal with the added group

of objects. In other words, whenM (e.g.M = 10, 000) objects are generated at a time, one

has to execute these algorithmsM times. This is obviously very time-consuming. If the size

of an added object group is very small (e.g.M = 10), the existing incremental algorithms

may also be effective, of course. However, when massive new objects are generated at a

time, this gives rise to much more waste of computational time and space when the existing

reduction incremental algorithms are applied. With the development of data processing tools,

the speed and volume of data generation increase dramatically. This further appeals for an

efficient group incremental attribute reduction algorithmto acquire information timely.

It is well known that the expression of information is usually uncertain and the uncertainties

come from disorder, vagueness, approximate expression, and so on. In rough set theory,

one of the most common uncertainty measures of data sets is information entropy or its

variants. Shannon introduced an entropy to measure the uncertainty of a system, which was

called information entropy [37]. Liang et al. introduced a new information entropy called
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complementary entropy to rough set theory [20]. The complementary entropy not only can

measure the uncertainty, but also the fuzziness of a rough set. In addition, Qian et al. proposed

another information entropy called combination entropy which can also be used to measure

the uncertainty of information systems [34]. As common measures of uncertainty, these three

entropies as well as their conditional ones have been widelyapplied to devise feature selection

algorithms [20], [21], [38], [44]. To save the computational time, an accelerator of feature

selection was also constructed based on those three entropies in [34]. Although an incremental

technique based on the complementary entropy was also reported in [20], it can only be used

to update core dynamically.

To fully explore the property of group increments of a data set in feature selection, this

paper mainly develops an efficient group incremental reduction algorithm based on the three

entropies. In view of that a key step of the development is thecomputation of entropy,

we first introduce in this paper three incremental mechanisms of the three entropies, which

determine an entropy by adding objects to a decision table ingroups. When a group of

objects are added, instead of recomputation on a given data set, the incremental mechanisms

derive new entropies by integrating the changes of conditional classes and decision classes

into existing entropies. With these mechanisms, a group incremental reduction algorithm is

proposed for dynamic decision tables. After a group of objects is added to a decision table, the

proposed algorithm generates a reduct for this expanded decision table by fully exploiting the

reduct of the original decision table. By doing so, when multiple objects are added to a given

decision table, the new reduct can be obtained by the proposed algorithm in a much shorter

time. Furthermore, in view of that incremental reduction algorithms based on entropies have

not yet been discussed so far, this paper also introduces an incremental reduction algorithm

for adding a single object to a decision table. Experiments have been carried out on nine

data sets downloaded from UCI. The experimental results show that the proposed algorithm

is effective and efficient.

For convenience of the following discussion, here is a description of the main idea in this

paper. To select effective features from a dynamically-increasing data set, an efficient group

incremental feature selection algorithm is proposed in theframework of rough set theory.

In the process of selecting useful features, this algorithmemploys information entropy to

determine feature significance, and significant features are selected as a final feature subset.

Experiments show that, compared with both the classical heuristic feature selection algorithm

based on information entropy and existing incremental feature selection algorithms, the

proposed algorithm can find a feasible feature subset in a much shorter time. The rest of this

paper is organized as follows. Some preliminaries in rough set theory are briefly reviewed in
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Section 2. Traditional heuristic reduction algorithms based on three representative entropies

are introduced in Section 3. Section 4 introduces the incremental feature selection algorithm

for adding a single object. And the incremental feature selection algorithm for adding objects

in groups is introduced in Section 5. In Section 6, eight UCI data sets are employed to

demonstrate the effectiveness and efficiency of the proposed algorithms. Section 7 concludes

this paper.

II. RELATIVE WORKS

In this section, previous research on incremental knowledge updating is reviewed.

Knowledge updating for dynamically-increasing data sets has attracted much attention.

By integrating the changes of discernibility-matrix, Shanet al. introduced an incremental

approach to obtain all maximally generalized rules of a changed decision table [36]. Bang

et al. introduced an incremental learning algorithm to find aminimal set of rules of a

decision table [2]. Tong et al. constructed the concept ofδ-decision matrix, and presented

an algorithm for incremental learning of rules [42]. Zheng et al. developed an effective

incremental algorithm which was called RRIA. This algorithm can learn from a domain

data set incrementally [56]. Guo et al. proposed an incremental rules extraction algorithm

based on the search tree, which is one kind of the first heuristic search algorithms [9].

Furthermore, under variable precision rough-set model (VPRS), Chen et al. introduced a new

incremental method for updating approximations of VPRS while objects in the information

system dynamically alter [4].

Feature selection is a common technique for data preprocessing. For incremental feature

selection, researchers have also proposed several approaches. Liu et al. proposed an incre-

mental reduction algorithm for the minimal reduct [25]. This algorithm can only be applied

to information systems without decision attribute. For decision tables, a reduction algorithm

was presented to update reduct in [28], but it was very time-consuming. To overcome the

deficiencies of these two algorithms, Hu et al. presented an incremental reduction algorithm

based on the positive region [10], and pointed out that this one was more efficient than those

two algorithms. Moreover, an incremental reduction algorithm based on the discernibility

matrix was proposed by Yang in [51].

Rough set theory has been conceived as a powerful soft computing tool to analyze various

types of data [29], [30], and is also a specific framework of selecting useful features. Based on

rough set theory, to select useful features, a kind of commonapproaches is using information

entropy to measure the feature significance and selecting significant features as a final feature

subset [20], [21], [23], [38], [44]. Liang and Qian et al. proposed complementary entropy and
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combination entropy, respectively [20], [34]. These two entropies have been used to determine

feature significance in a feature selection algorithm [20],[34]. In [33], information entropy is

employed to determine feature significance in an accelerated feature selection algorithm. In

[22], Liang et al. proposed an effective feature selection algorithm from a multi-granulation

view. This algorithm was also designed based on informationentropy.

In this paper, to select useful features from a dynamically-increasing data set, we focus

on incremental feature selection in the framework of rough set theory. In view of that many

real data from applications are generated in groups, a groupincremental feature selection

algorithm is proposed in the framework of rough set theory. And this algorithm employs

information entropy to measure the feature significance.

III. PRELIMINARIES ON ROUGH SETS

In this section, several basic concepts in rough set theory are reviewed. In rough set theory,

a basic concept is data table, which provides a convenient framework for the representation

of records in terms of their attribute values. A data table isa quadrupleS = (U, A, V, f),

where the universeU is a finite nonempty set of objects (records) andA is a finite nonempty

set of attributes (features),V =
⋃

a∈A Va with Va being the domain ofa, andf : U ×A→ V

is an information function withf(x, a) ∈ Va for eacha ∈ A and x ∈ U . The tableS can

often be simplified asS = (U, A).

Each nonempty subsetB ⊆ A determines an indiscernibility relation, which isRB =

{(x, y) ∈ U × U | f(x, a) = f(y, a), ∀a ∈ B}. The relationRB partitions U into some

equivalence classes given byU/RB = {[x]B | x ∈ U}, just U/B, where [x]B denotes the

equivalence class determined byx with respect toB, i.e., [x]B = {y ∈ U | (x, y) ∈ RB}.

Given an equivalence relationR on the universeU andX ⊆ U , the lower approximation

and upper approximation ofX are defined by

RX =
⋃
{x ∈ U | [x]R ⊆ X}

and

RX =
⋃
{x ∈ U | [x]R ∩X 6= Ø},

respectively. The order pair(RX, RX) is called a rough set ofX with respect toR. The

positive region ofX is denoted byPOSR(X) = RX.

A partial relation� on the family{U/B | B ⊆ A} is defined as follows:U/P � U/Q (or

U/Q � U/P ) if and only if, for everyPi ∈ U/P , there existsQj ∈ U/Q such thatPi ⊆ Qj ,

where U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn} are partitions induced by
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P, Q ⊆ A, respectively. Then, we say thatQ is coarser thanP , or P is finer thanQ. If

U/P � U/Q and U/P 6= U/Q, we sayQ is strictly coarser thanP (or P is strictly finer

thanQ), denoted byU/P ≺ U/Q (or U/Q ≻ U/P ). It is clear thatU/P ≺ U/Q if and only

if, for every X ∈ U/P , there existsY ∈ U/Q such thatX ⊆ Y , and there existX0 ∈ U/P

andY0 ∈ U/Q such thatX0 ⊂ Y0.

A decision table is a data tableS = (U, C ∪ D) with C ∩ D = Ø, where an element

of C is called a condition attribute,C is called a condition attribute set, an element ofD

is called a decision attribute, andD is called a decision attribute set. GivenP ⊆ C and

U/D = {D1, D2, · · · , Dr}, the positive region ofD with respect to the condition attribute

setP is defined byPOSP (D) =
⋃r

k=1 PDk.

For a decision tableS andP ⊆ C, X ∈ U/P is consistent iff all its objects have the same

decision value; otherwise,X is inconsistent. A decision table is called a consistent decision

table iff all x ∈ U are consistent; and if∃x, y ∈ U are inconsistent, then the table is called an

inconsistent decision table. One can extract certain decision rules from a consistent decision

table and uncertain decision rules from an inconsistent decision table.

For a decision tableS andP ⊆ C, when a new objectx is added toS, x is indistinguishable

on B iff, ∃y ∈ U , ∀a ∈ P , such thatf(x, a) = f(y, a); and x is distinguishable onP iff,

∀y ∈ U , ∃a ∈ P such thatf(x, a) 6= f(y, a).

IV. ROUGH FEATURE SELECTION BASED ON INFORMATION ENTROPY

In rough set theory, a given data table usually has multiple reducts, whereas it has been

proved that finding its minimal is an NP-hard problem [39]. Toovercome this deficiency,

researchers have proposed many heuristic reduction algorithms which can generate a single

reduct from a given table [11], [12], [20], [21], [33]. Most of these algorithms are of greedy

and forward search type. Starting with a nonempty set, thesealgorithms keep adding one or

several attributes of high significance into a pool at each iteration until the dependence no

longer increases.

This section reviews the heuristic attribute reduction algorithms based on information

entropy for decision tables. The main idea of these algorithms is to keep the conditional

entropy of target decision unchanged. This section first reviews three representative entropies,

and then introduces the classic attribute reduction algorithm based on information entropy.

In [20], the complementary entropy was introduced to measure uncertainty in rough set

theory. Liang et al. also proposed the conditional complementary entropy to measure un-

certainty of a decision table in [21]. By preserving the conditional entropy unchanged, the

conditional complementary entropy was applied to construct reduction algorithms and reduce
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the redundant features in a decision table [33]. The conditional complementary entropy used

in this algorithm is defined as follows [20], [21], [33].

Definition 1: Let S = (U, C∪D) be a decision table andB ⊆ C. Then, one can obtain the

partitionsU/B = {X1, X2, · · · , Xm} andU/D = {Y1, Y2, · · · , Yn}. Based on these partitions,

a conditional entropy ofB relative toD is defined as

E(D|B) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj|

|U |

|Y c
j −Xc

i |

|U |
, (1)

whereY c
i andXc

j are complement set ofYi andXj respectively.

Another information entropy, called combination entropy,was presented in [34] to measure

the uncertainty of data tables. The conditional combination entropy was also introduced and

can be used to construct the heuristic reduction algorithms[34]. This reduction algorithm can

find a feature subset that possesses the same number of pairs of indistinguishable elements

as that of the original decision table. The definition of the conditional combination entropy

is defined as follows [34].

Definition 2: Let S = (U, C∪D) be a decision table andB ⊆ C. Then one can obtain the

partitionsU/B = {X1, X2, · · · , Xm} andU/D = {Y1, Y2, · · · , Yn}. Based on these partitions,

a conditional entropy ofB relative toD is defined as

CE(D|B) =
m∑

i=1

(
|Xi|

|U |

C2
|Xi|

C2
|U |

−
n∑

j=1

|Xi ∩ Yj|

|U |

C2
|Xi∩Yj |

C2
|U |

). (2)

whereC2
|Xi|

denotes the number of pairs of objects which are not distinguishable from each

other in the equivalence classXi.

Based on the classical rough set model, Shannon’s information entropy [37] and its con-

ditional entropy were also introduced to find a reduct in a heuristic algorithm [38], [44]. In

[44], the reduction algorithm keeps the conditional entropy of target decision unchanged, and

the conditional entropy is defined as follows [44].

Definition 3: Let S = (U, C∪D) be a decision table andB ⊆ C. Then, one can obtain the

partitionsU/B = {X1, X2, · · · , Xm} andU/D = {Y1, Y2, · · · , Yn}. Based on these partitions,

a conditional entropy ofB relative toD is defined as

H(D|B) = −
m∑

i=1

|Xi|

|U |

n∑

j=1

|Xi ∩ Yj|

|Xi|
log(
|Xi ∩ Yj|

|Xi|
). (3)

For convenience, a uniform notationME(D|B) is introduced to denote the above three
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entropies. For example, if one adopts Shannon’s conditional entropy to define the attribute

significance, thenME(D|B) = H(D|B). In [20], [33], [44], the attribute significance is

defined as follows (See Definitions 4-5).

Definition 4: Let S = (U, C∪D) be a decision table andB ⊆ C. ∀a ∈ B, the significance

measure (inner significance) ofa in B is defined as

Siginner(a, B, D) = ME(D|B − {a})−ME(D|B). (4)

Definition 5: Let S = (U, C ∪ D) be a decision table andB ⊆ C. ∀a ∈ C − B, the

significance measure (outer significance) ofa in B is defined as

Sigouter(a, B, D) = ME(D|B)−ME(D|B ∪ {a}). (5)

Given a decision tableS = (U, C ∪ D) anda ∈ C. From the literatures [20], [21], [23],

[33], [34], [44], one can get that ifSiginner(a, C, D) > 0, then the attributea is indispensable,

i.e., a is a core attribute ofS. Based on the core attributes, a heuristic attribute reduction

algorithm can find an attribute reduct by gradually adding selected attributes to the core. The

definition of reduct based on information entropy is defined as follows [20], [21], [33], [44].

Definition 6: Let S = (U, C ∪D) be a decision table andB ⊆ C. Then the attribute set

B is a relative reduct ifB satisfies:

(1) ME(D|B) = ME(D|C);

(2) ∀a ∈ B, ME(D|B) 6= ME(D|B − {a}).

The first condition guarantees that the reduct has the same distinguish power as the whole

attribute set, and the second condition guarantees that there is no redundant attributes in the

reduct. Because the heuristic searching strategies in the three algorithms are similar to each

other, a common heuristic attribute reduction algorithm based on information entropy for

decision tables is introduced in the following [20], [21], [33], [44].

Algorithm 1. Classic heuristic attribute reduction algorithm based oninformation entropy

for decision tables (CAR)

Input: A decision tableS = (U, C ∪D)

Output: Reductred

Step 1: red← ∅;

Step 2: for (j = 1; j ≤ |C|; j + +)

{ If Siginner(aj , C, D) > 0, thenred← red ∪ {aj};}
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Step 4: P ← red, while (ME(D|P ) 6= ME(D|C)) do

{ Compute and select sequentiallySigouter(a0, P, D) = max{Sigouter(ai, P, D), ai ∈

C − P};

P ← P ∪ {a0};}

Step 5: red← P , returnred and end.

The time complexity ofCAR given in [33] isO(|U ||C|2). However, this time complexity

does not include the computational time of entropies. Computing entropies is obviously not

computationally costless according to the definitions of entropies, and is also a key step in

Algorithm 1. To analyze the exact time complexity of Algorithm 1, the time complexity of

computing entropies should be given as well.

According to Definitions 1-3, a decision table first needs to compute its conditional classes

and decision classes, and then computes its value of entropy. Xu et al. in [48] gave a

fast algorithm for partition with time complexity beingO(|U ||C|). So, the time complexity

of computing entropy isO(|U ||C| + |U | +
∑m

i=1 |Xi| ·
∑n

j=1 |Yj|) = O(|U |2) (the specific

introduction ofm, n, Xi andYj is shown in Definitions 1-3). Thus, the time complexity of

computing core (Steps 1-2) isO(|C||U |2), and the time complexity of computing reduct

according toCAR is O(|C||U |2 + |C|(|U ||C|+ |U |2)) = O(|C|2|U |+ |C||U |2).

V. INCREMENTAL FEATURE SELECTION ALGORITHM FOR ADDING A SINGLEOBJECT

Given a dynamic decision table, based on those three representative entropies, this section

introduces an incremental feature selection algorithm foradding a single object. This section

is divided into two parts. Subsection 4.1 introduces the incremental mechanisms for the three

entropies. When a new object is added to a given decision table, instead of recomputation

on the new decision table, the incremental mechanisms aim tocalculate new entropies by

integrating the changes of classes into the existing entropies of the original decision table.

Subsection 4.2 introduces the incremental feature selection algorithm based on information

entropy for adding a single object. Similarly, this incremental algorithm finds a new feature

subset on the available result of feature selection. The incremental mechanisms of entropies

are used in the steps of the algorithm where entropies are computed. To make the presentation

easier to follow, some illustrative examples are also givenin this section.

A. Incremental mechanism to calculate entropies after adding a single object

Given a dynamic decision table, with the increase of objects, recomputing entropy is

obviously time-consuming. To address this issue, this subsection introduces three incremental
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mechanisms for computing entropies. When a single object isadded to a decision table,

Theorems 1- 4 introduce the incremental mechanisms for the three entropies respectively.

In [23], when a single object is added to a given decision table, the incremental mechanism

of complementary conditional entropy (see Definition 1) hasbeen analyzed, which is shown

in Theorem 1.

Theorem 1:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm}

and U/D = {Y1, Y2, · · · , Yn}. The conditional complementary entropy ofD with respect

to B is EU (D|B). Suppose that objectx is added to the tableS, x ∈ X ′
p and x ∈ Y ′

q

(X ′
p ∈ U ∪{x}/B andY ′

q ∈ U ∪{x}/D ). Then the new complementary conditional entropy

becomes

EU∪{x}(D|B) =
1

(|U |+ 1)2
(|U |2EU(D|B) + 2|X ′

p − Y ′
q |).

Proof. The proof can be found in [23].

For the convenience of introducing incremental mechanism of combination entropy, here

gives a variant of the definition of combination entropy (seeDefinition 2). According to

C2
N = N(N−1)

2
, Definition 7 shows a variant of combination entropy. Based on this variant,

the incremental mechanism of combination entropy is introduced in Theorem 2.

Definition 7: Let S = (U, C ∪ D) be a decision table andB ⊆ C. One can obtain the

condition partitionU/B = {X1, X2, · · · , Xm} andU/D = {Y1, Y2, · · · , Yn}. The conditional

entropy ofB relative toD is defined as

CE(D|B) =
m∑

i=1

(
|Xi|

2(|Xi| − 1)

|U |2(|U | − 1)
−

n∑

j=1

|Xi ∩ Yj|
2(|Xi ∩ Yj| − 1)

|U |2(|U | − 1)
). (6)

Theorem 2:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm},

andU/D = {Y1, Y2, · · · , Yn}. The conditional combination entropy ofD with respect toB

is CEU(D|B). Suppose that a new objectx is added to the tableS, x ∈ X ′
p and x ∈ Y ′

q

(X ′
p ∈ U ∪ {x}/B and Y ′

q ∈ U ∪ {x}/D ). Then the new combination conditional entropy

becomes

CEU∪{x}(D|B) =
1

(|U |+ 1)2
(|U |(|U | − 1)CEU(D|B)+ |X ′

p−Y ′
q |(3|X

′
p|+3|X ′

p∩Y ′
q | − 5)).

The following two theorems are the introduction of incremental mechanism of Shannon’s

information entropy (see Definition 3).
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TABLE I: A decision table
c1 c2 c3 c4 d

x1 1 0 1 0 0
x2 1 0 1 0 1
x3 1 1 0 0 0
x4 0 1 0 0 1

Theorem 3:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm}

and U/D = {Y1, Y2, · · · , Yn}. The conditional Shannon’s entropy ofD with respect toB

is HU(D|B). Suppose that a new objectx is added to the tableS, x ∈ X ′
p and x ∈ Y ′

q

(X ′
p ∈ U ∪ {x}/B andY ′

q ∈ U ∪ {x}/D ). The new Shannon’s conditional entropy becomes

HU∪{x}(D|B) =
1

(|U |+ 1)
(|U |HU(D|B)−∆),

where∆ =
∑n−1

j=1 |(X
′
p−{x})∩Yj |log

|X′

p|−1

|X′

p|
+(|X ′

p ∩Y ′
q | − 1)log

(|X′

p|−1)|X′

p∩Y ′

q |

|X′

p|(|X
′

p∩Y ′

q |−1)
+ log

|X′

p∩Y ′

q |

|X′

p|
.

Obviously, the∆ in Theorem 3 is relatively complicated, which may give rise to much

waste of computational time, especially for large-scale data sets. Thus, Theorem 4 shows an

approximate computational formula.

Theorem 4:Let S = (U, C ∪ D) be a large-scale decision table,B ⊆ C, U/B =

{X1, X2, · · · , Xm} and U/D = {Y1, Y2, · · · , Yn}. The conditional Shannon’s entropy ofD

with respect toB is HU(D|B). Suppose that a new objectx is added to the tableS, x ∈ X ′
p

and x ∈ Y ′
q (X ′

p ∈ U ∪ {x}/B and Y ′
q ∈ U ∪ {x}/D ). The new Shannon’s conditional

entropy becomes

HU∪{x}(D|B) ≈
1

(|U |+ 1)
(|U |HU(D|B)− log

|X ′
p ∩ Y ′

q |

|X ′
p|

).

In the following, we employ an example to illustrate the above incremental mechanisms.

Example 1:Let Table I be a decision table. In this table,U = {x1, x2, x3, x4} is the

universe,C = {c1, c2, c3, c4} is the condition attribute set andD = {d} is the decision

attribute.

We have thatU/C = {{x1, x2}, {x3}, {x4}} andU/D = {{x1, x3}, {x2, x4}}.

According to Definitions 1-3 (or 1,3 and 7), we have thatEU(D|C) = 1
8
, CEU(D|C) = 1

12

andHU(D|C) ≈ 0.15.
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Suppose that new objectx5 = {1, 0, 1, 1, 1} is added to Table I. We haveX ′
p = {x5} and

Y ′
q = {x2, x4, x5}.

Then, according to Theorem 1, we have|X ′
p − Y ′

q | = |{x5} − {x2, x4, x5}| = 0 and

EU∪{x}(D|B) = 1
(4+1)2

(42 × 1
8

+ 2× 0) = 0.08.

According to Theorem 2, we have|X ′
p| = 1, |X ′

p ∩ Y ′
q | = 1 and |X ′

p − Y ′
q | = 0. Thus,

CEU∪{x}(D|B) = 1
(4+1)2

(4× (4− 1)× 1
12

+ 0× (3× 1 + 3× 1− 5)) = 0.04.

According to Theorem 3, we have|X ′
p| = 1 and |X ′

p ∩ Y ′
q | = 1. Thus,HU∪{x}(D|B) =

1
(4+1)

(4× 0.15− 0) = 0.12.

Because the size of Table I employed in this example is very small, we used Theorem 3 to

compute Shannon’s entropy. For the larger data sets employed in the section of experiments,

Theorem 4 is used to compute entropy.

B. Incremental algorithm for adding a single object

Based on the incremental mechanisms of the three entropies,this section introduces an

incremental feature selection algorithm based on information entropy in the framework of

rough set theory.

Given a decision tableS = (U, C ∪ D). Suppose thatB ⊆ C is a reduct ofS and x is

the new incremental object. There are three distinguishingsituations aboutx based on the

reductB:

(1) x is distinguishable onB, andx is also distinguishable onC;

(2) x is indistinguishable onB, andx is distinguishable onC;

(3) x is indistinguishable onB, andx is also indistinguishable onC.

For above three distinguishing situations, following three theorems introduce the changes

of the three entropies.

Theorem 5:Let S = (U, C ∪ D) be a decision table andB ⊆ C. Supposed thatB is a

reduct ofS andx is a new incremental object. Then, ifx is distinguishable on bothB and

C, thenMEU∪{x}(D|B) = MEU∪{x}(D|C).

Theorem 6:Let S = (U, C ∪ D) be a decision table andB ⊆ C. Supposed thatB is a

reduct ofS andx is a new incremental object. Then, ifx is indistinguishable onB and is

distinguishable onC, thenMEU∪{x}(D|B) 6= MEU∪{x}(D|C).

Theorem 7:Let S = (U, C ∪ D) be a decision table andB ⊆ C. Supposed thatB is a

reduct ofS andx is a new incremental object. Then, ifx is indistinguishable both onB and

C, thenMEU∪{x}(D|B) = MEU∪{x}(D|C).
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According to Theorems 5 and 7, if the added object is distinguishable or indistinguishable

on bothB and C, then new entropies ofD with respect toB and C are identical. Hence,

according to the definition of reduct (Definition 6), it only need to delete the reductant

attributes fromB for these two situations. If the added object is indistinguishable on the

previous reductB and is distinguishable on conditional attribute setC, finding new reduct

needs to add new attributes. On this basis, Algorithm 3 introduces an incremental algorithm

for reduct computation.

Algorithm 2. An incremental algorithm for reduct computation (IARC)

Input: A decision tableS = (U, C ∪ D), reductREDU on U , and the new incremental

objectx

Output: Attribute reductREDU∪{x} on U ∪ {x}

Step 1: B ← REDU . Find M ′
t : in U/B = {M1, M2, · · · , Ml}, if all of the attribute values

of x is identical to that ofMt on B, thenM ′
t = Mt ∪ {x}; elseM ′

t = {x}.

Step 2: If M ′
t = {x}, then turn toStep 5; if M ′

t = Mt ∪ {x}, then turn toStep 3.

Step 3: Find X ′
p: similarly, in U/C = {X1, X2, · · · , Xm}, if X ′

p = Xp ∪ {x}, then turn to

Step 5; if X ′
p = {x}, then turn toStep 4.

Step 4: While MEU∪{x}(D|B) 6= MEU∪{x}(D|C) do

{ For eacha ∈ C − B, computeSigouter
U∪{x}(a, B, D) (according to Theorem 1, 2 or

4 and Definition 5);

Selecta0 = max{Sigouter
U∪{x}(a, B, D)}, a ∈ C −B;

B ← B ∪ {a0}. }

Step 5: For eacha ∈ B do

{ ComputeSiginner
U∪{x}(a, B, D);

If Siginner
U∪{x}(a, B, D) = 0, thenB ← B − {a}. }

Step 6: REDU∪{x} ← B, returnREDU∪{x} and end.

An example is employed to illustrate Algorithm 2. For convenience, Example 2 shows the

process of computing reduct based on complementary entropy. In the same way, one can

compute core based on the other two entropies by using Algorithm 2.

Example 2: (Continued from Example 1)Computing new reduct based on complementary

entropy by using Algorithm 2.

For Table I, its previous reduct found by using Algorithm 1 based on complementary

entropy is{c1, c2}. Suppose that new objectx5 = {1, 0, 1, 1, 1} is added to Table I.

According to Step 1, we haveM ′
t = {x1, x2, x5}. Obviously,M ′

t 6= {x5}, then algorithm

turns to Step 3 according to Step 2.
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TABLE II: Comparison of time complexity

Entropy Classic Incremental

O(|U |2) O(|U ||C|+ |X ′
p||Y

′
q |)

Reduct CAR IARC

O(|C|2|U |+ |C||U |2) O(|C|2|U |+ |C||X ′
p||Y

′
q |)

According to Step 3, we haveX ′
p = {x5}. Hence, algorithm turns to Step 4 according to

Step 3.

From Theorem 1, one can getEU∪{x}(D|B) = 0.16, EU∪{x}(D|C) = 0.08, andEU∪{x}(D|B)

6= EU∪{x}(D|C). Thus, algorithm needs to add attributes fromC −B according to Step 4.

In the first circulation,Sigouter
U∪{x}(c3, B, D) = 0 and Sigouter

U∪{x}(c4, B, D) = 0.08. Then,

we haveB = {c1, c2} ∪ {c4} = {c1, c2, c4}. Now, we haveEU∪{x}(D|B) = 0.16 and

EU∪{x}(D|B) = EU∪{x}(D|C). Algorithm here stop the circulation in Step 4.

According to Step 5, there is no attribute inB need to be deleted. Thus,REDU∪{x} ← B

andREDU∪{x} = {c1, c2, c4}.

The following is the time complexities of Algorithm 2. Here are some explanations firstly.

Based on the analysis in Subsection 4.1, whenx is added to the table, one can also get

the new value of entropy by using the incremental formulas. And the time complexity of

computing entropy isO(|U ||C|+ |U |+ m|C|+ n + |X ′
p||Y

′
q |) = O(|U ||C|+ |X ′

p||Y
′
q |) ( the

explanations ofm, n, X ′
p and Y ′

q are shown in Theorems 1, 2 and 4). For convenience, we

makeΘ′ to denote the above time complexity, i.e.,Θ′ = O(|U ||C|+ |X ′
p||Y

′
q |).

In the algorithmIARC, the time complexity of Steps 1 and 3 isO(|U ||C|). In Step 4, the

time complexity of adding attributes isO(|C|Θ′). In Step 5, the time complexity of deleting

redundant attributes isO(|C|Θ′). Hence, the total time complexity of algorithmIARC is

O(|U ||C|+ |C|(|U ||C|+ |X ′
p||Y

′
q |)) = O(|U ||C|2+ |C||X ′

p||Y
′
q |). To stress the above findings,

Table II shows the time complexities of computing reduct.

From Table II, because of that|X ′
p||Y

′
q | is usually much smaller than|U |2, we can conclude

that the computational time of new incremental algorithms are usually much smaller than

that of the classic algorithms. Note that, sometimes,|X ′
p||Y

′
q | may be identical to|U |2, i.e.,

|X ′
p| = |U | and|Y ′

q | = |U |. In this situation, the discernibility ability of the attributes induced

|X ′
p| (or |Y ′

q |) is very weaker, and thus these attributes will have few contributions to select

effective feature subset. In other words, it is impossible that these attributes can be selected as

useful features. Hence,|X ′
p||Y

′
q | is more commonly much smaller than|U |2 in the process of
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selecting effective features, and the new incremental algorithms can save more computation

thanCAR.

VI. I NCREMENTAL FEATURE SELECTION ALGORITHM FOR ADDING MULTIPLE OBJECTS

In practice, the rapid development of data processing toolshas led to the high speed of

dynamic data updating. Thus many real data in applications may be generated in groups

instead of one by one. If multiple objects are added to databases, the feature selection algo-

rithm proposed in the previous section may be less efficient.In other words, the incremental

algorithm for single object needs to be re-performed repeatedly in order to deal with multiple

objects. This obviously gives rise to much waste of computational time. To overcome this

deficiency, this section introduces a group incremental feature selection algorithm, which

aims to deal with multiple objects at a time instead of repeatedly.

This section is divided into two parts to introduce the groupincremental algorithm. We

assume in this paper that the size of an added object set is smaller than that of the original

table. Subsection 5.1 introduces the incremental mechanisms of three entropies for adding

multiple objects. When multiple objects are added to a givendecision table, the incremental

mechanisms aim to compute new entropy by using the previous entropy instead of recompu-

tation on the decision table. Subsection 5.2 introduces thegroup incremental feature selection

algorithm based on information entropy. The incremental mechanisms of entropies are used

in the steps of the algorithm which need to compute entropy. To make the presentation easier

to follow, some examples are also given in this section.

A. Incremental mechanism to calculate entropies after adding multiple objects

Given a decision table, when multiple objects are added, theincremental mechanisms intro-

duced in Subsection 4.1 for computing entropy obviously need to repeat the operation many

times. Hence, this subsection introduces the group incremental mechanisms of entropies.

Theorems 8- 10 introduce the group incremental mechanisms of three entropies respectively.

For convenience, here are some explanations which will be used in the following theorems.

Given a decision tableS = (U, C ∪ D), B ⊆ C, U/B = {X1, X2, · · · , Xm} and U/D =

{Y1, Y2, · · · , Yn}. Suppose thatUX is the incremental object set,UX/B = {M1, M2, · · · , Mm′}

andUX/D = {Z1, Z2, · · · , Zn′}. In the view of that, betweenU/B andUX/B, there may be

some conditional classes with the identical attribute values onB, we might as well assume

that (U ∪UX)/B = {X ′
1, X

′
2, · · · , X

′
k, Xk+1, Xk+2, · · · , Xm, Mk+1, Mk+2, · · · , Mm′} and(U ∪

UX)/D = {Y ′
1 , Y

′
2 , · · · , Y

′
l , Yl+1, Yl+2, · · · , Yn, Zl+1, Zl+2, · · · , Zn′}. In (U ∪ UX)/B, X ′

i =

Xi ∪Mi (i = 1, 2, · · · , k) denote the combinative conditional classes, that is, the attribute
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values ofXi ∈ U/B and Mi ∈ UX/B are identical. AndXi ∈ U/B (i = k + 1, 2, · · · , m)

and Mj ∈ UX/B (j = k + 1, k + 2, · · · , m′) denote the conditional classes which can

not be combined. Similarly, in(U ∪ UX)/D, Y ′
i = Yi ∪ Zi (i = 1, 2, · · · , l) denote the

combinative of decision classes with the identical attribute values onD. And Yi ∈ U/D

(i = l +1, l +2, · · · , n) andZj ∈ UX/D (j = l +1, l +2, · · · , n′) denote the decision classes

which can not be combined.

Example 3:Let U = {x1, x2, x3, x4, x5, x6, x7, x8}, U/B = {{x1, x2}, {x3, x4}, {x5}, {x6,

x7}} and U/D = {{x1, x2, x3}, {x4}, {x5}, {x6, x7}}. The incremental data setUX =

{y1, y2, y3, y4}, UX/B = {{y1, y2}, {y3}} andUX/D = {{y1}, {y2, y3}}.

It is assumed that the attribute values of{y3} is identical to that of{x5} with respect to

B, and the decision attribute value of{y2, y3} is identical to that of{x6, x7}. Then, one have

(U ∪ UX)/B = {{x5, y3}, {x1, x2}, {x3, x4}, {x6, x7}, {y1, y2}},

where,X ′
1 = {x5, y3}, X2 = {x1, x2}, X3 = {x3, x4}, X4 = {x6, x7}, andM2 = {y1, y2}.

(U ∪ UX)/D = {{x6, x7, y2, y3}, {x1, x2, x3}, {x4}, {x5}, {y1}},

where,Y ′
1 = {x6, x7, y2, y3}, Y2 = {x1, x2, x3}, Y3 = {x4}, Y4 = {x5}, and Z2 = {y1}.

Obviously,m = 4, n = 4, m′ = 2, n′ = 2, k = 1 and l = 1.

Given a decision table, Theorem 8 introduces the incremental mechanism based on com-

plementary entropy.

Theorem 8:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm}

andU/D = {Y1, Y2, · · · , Yn}. The complementary conditional entropy ofD with respect toB

is EU(D|B). Suppose thatUX is an incremental object set,UX/B = {M1, M2, · · · , Mm′} and

UX/D = {Z1, Z2, · · · , Zn′}. We assume that(U ∪ UX)/B = {X ′
1, X

′
2, · · · , X

′
k, Xk+1, Xk+2,

· · · , Xm, Mk+1, Mk+2, · · · , Mm′} and(U∪UX)/D = {Y ′
1 , Y

′
2 , · · · , Y

′
l , Yl+1, Yl+2, · · · , Yn, Zl+1,

Zl+2, · · · , Zn′}. Then, the new complementary conditional entropy becomes

EU∪UX
(D|B) =

1

(|U ∪ UX |)2
(|U |2EU(D|B) + |UX |

2EUX
(D|B)) + ∆,

where∆ =
∑k

i=1(
∑l

j=1
|Xi∩Yj ||Mi−Zj |+|Mi∩Zj ||Xi−Yj |

(|U∪UX |)2
+

∑n
j=l+1

|Xi∩Yj ||Mi|

(|U∪UX |)2
+

∑n′

j=l+1
|Mi∩Zj ||Xi|

(|U∪UX |)2
).

In what following, the group incremental mechanism based oncombination entropy is

introduced in Theorem 9.

Theorem 9:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm}

andU/D = {Y1, Y2, · · · , Yn}. The conditional combination entropy ofD with respect toB is

CEU(D|B). Suppose thatUX is an incremental object set,UX/B = {M1, M2, · · · , Mm′} and

July 9, 2012 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

UX/D = {Z1, Z2, · · · , Zn′}. We assume that(U∪UX)/B = {X ′
1, X

′
2, · · · , X

′
k, Xk+1, Xk+2, · · · ,

Xm, Mk+1, Mk+2, · · · , Mm′} and(U∪UX)/D = {Y ′
1 , Y

′
2 , · · · , Y

′
l , Yl+1, Yl+2, · · · , Yn, Zl+1, Zl+2,

· · · , Zn′}. Then, the new combination conditional entropy becomes

CEU∪UX
(D|B) =

1

(|U | + |UX |)2(|U |+ |UX | − 1)
(|U |2(|U | − 1)CEU(D|B)+

|UX |
2(|UX | − 1)CEUX

(D|B)) + ∆,

where∆ =
∑k

i=1(
|Xi||Mi|(3|Xi|+3|Mi|−2)
(|U |+|UX |)2(|U |+|UX |−1)

−
∑l

j=1
|Xi∩Yj ||Mi∩Zj |(3|Xi∩Yj |+3|Mi∩Zj |−2)

(|U |+|UX |)2(|U |+|UX |−1)
).

Based on Shannon’s entropy, the group incremental mechanism for adding multiple objects

is introduced in Theorem 10.

Theorem 10:Let S = (U, C ∪D) be a decision table,B ⊆ C, U/B = {X1, X2, · · · , Xm}

andU/D = {Y1, Y2, · · · , Yn}. The conditional Shannon’s entropy ofD with respect toB is

HU(D|B). Suppose thatUX is an incremental object set,UX/B = {M1, M2, · · · , Mm′} and

UX/D = {Z1, Z2, · · · , Zn′}. We assume that(U ∪ UX)/B = {X ′
1, X

′
2, · · · , X

′
k, Xk+1, Xk+2,

· · · , Xm, Mk+1, Mk+2, · · · , Mm′} and(U∪UX)/D = {Y ′
1 , Y

′
2 , · · · , Y

′
l , Yl+1, Yl+2, · · · , Yn, Zl+1,

Zl+2, · · · , Zn′}. Then, the new Shannon’s conditional entropy becomes

HU∪UX
(D|B) =

1

|U |+ |UX |
(|U |HU(D|B) + |UX |HUX

(D|B))−∆,

where∆ =
∑k

i=1(
∑l

j=1(
|Xi∩Yj |

|U |+|UX |
log

|Xi||X
′

i
∩Y ′

j
|

|X′

i
||Xi∩Yj |

+ |Mi∩Zj |

|U |+|UX |
log

|Mi||X
′

i
∩Y ′

j
|

|X′

i
||Mi∩Zj |

)+
∑n

j=l+1
|Xi∩Yj |

|U |+|UX |
log |Xi|

|X′

i
|
+

∑n′

j=l+1
|Mi∩Zj |

|U |+|UX |
log |Mi|

|X′

i
|
).

To illustrate above study clearly, here employs an example to introduce the process of

computing entropies in a group incremental way.

Example 4:For Table I, suppose thatUX = {x5, x6, x7} is the added object set.x5 =

{1, 0, 1, 1, 1}, x6 = {0, 1, 0, 0, 0} andx7 = {1, 1, 0, 0, 0}.

We have thatU/C = {{x1, x2}, {x3}, {x4}}, U/D = {{x1, x3}, {x2, x4}}, UX/C =

{{x5}, {x6}, {x7}} andUX/D = {{x5}, {x6, x7}}.

Then, one can get thatU ∪UX/C = {{x3, x7}, {x4, x6}, {x1, x2}, {x5}} andU ∪UX/D =

{{x1, x3, x6, x7}, {x2, x4, x5}}.

According to Definitions 1-3, we have thatEU(D|C) = 1
8
, CEU(D|C) = 1

12
, HU(D|C) ≈

0.15, andEU∪UX
(D|C) = CEU∪UX

(D|C) = HU∪UX
(D|C) = 0.

According to Theorem 8, we have thatk = 2, m = 3, m′ = 3, l = 2, n = 2, andn′ = 2.

And X ′
1 = {x3, x7}, X ′

2 = {x4, x6}, X3 = {x1, x2}, andM3 = {x5}. Y ′
1 = {x1, x3, x6, x7}

andY ′
2 = {x2, x4, x5}. Hence,EU∪UX

(D|C) = 1
72 × (42 × 1

8
+ 32 × 0) + 2

72 = 2
49

.
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According to Theorem 9, one can get thatCEU∪UX
(D|C) = 1

72×6
(42× (4−1)× 1

12
+32×

(3− 1)× 0) + 4
49×3

= 6
147

.

According to Theorem 10, one can get thatHU∪UX
(D|C) ≈ 1

7
× (4 × 0.6 + 3 × 0) −

(−0.086) = 0.17.

B. Incremental algorithms for adding multiple objects

Based on the incremental mechanisms of the three entropies,Algorithm 3 introduces a

group incremental algorithm for reduct computation based on information entropy.

Algorithm 3. A group incremental algorithm for reduct computation (GIARC)

Input: A decision tableS = (U, C ∪D), reductREDU on U , and the new object setUX

Output: ReductREDU∪UX
on U ∪ UX

Step 1: B ← REDU . ComputeU/B = {XB
1 , XB

2 , · · · , XB
m}, U/C = {XC

1 , XC
2 , · · · , XC

s },

UX/B = {MB
1 , MB

2 , · · · , MB
m′} andUX/C = {MC

1 , MC
2 , · · · , MC

s′ }.

Step 2: Compute(U ∪UX)/B = {X ′B
1 , X ′B

2 , · · · , X ′B
k , XB

k+1, X
B
k+2, · · · , X

B
m, MB

k+1, M
B
k+2,

· · · , MB
m′} and(U∪UX)/C = {X ′C

1 , X ′C
2 , · · · , X ′C

k′ , XC
k′+1, X

C
k′+2, · · · , XC

s , MC
k′+1, M

C
k′+2, · · · ,

MC
s′ }.

Step 3: If k = 0 andk′ = 0, turn to Step 4; else turnStep 5.

Step 4: ComputeMEUX
(D|B) andMEUX

(D|C). If MEUX
(D|B) = MEUX

(D|C), turn

to Step 7; else turn toStep 5.

Step 5: while MEU∪UX
(D|B) 6= MEU∪UX

(D|C) do

{ For eacha ∈ C − B, computeSigouter
U∪UX

(a, B, D);

Selecta0 = max{Sigouter
U∪UX

(a, B, D), a ∈ C − B};

B ← B ∪ {a0}.

}

Step 6: For eacha ∈ B do

{ ComputeSiginner
U∪UX

(a, B, D);

If Siginner
U∪UX

(a, B, D) = 0, thenB ← B − {a}.

}

Step 7: REDU∪UX
← B, returnREDU∪UX

and end.

An example is employed to illustrate Algorithm 3. Similarly, based on complementary

entropy, this example updates reduct by using Algorithm 3. And the other two entropies can

be used to compute attribute significance in this algorithm in the same way.

Example 5: (Continued from Example 1) Computing new redut based on complementary

entropy by using Algorithm 3.
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TABLE III: The complexities description

Reduct IARC GIARC

O(|C|2|U ||UX |+ |UX ||C||X
′
p||Y

′
q |) O(|C|2|U ||UX |)

For Table I, its previous reduct found by using Algorithm 1 based on complementary

entropy is{c1, c2}. Suppose thatUX = {x5, x6, x7} is the added object set.

According to Step 1,B = {c1, c2}, U ∪ UX/C = {{x3, x7}, {x4, x6}, {x1, x2}, {x5}} and

U ∪ UX/B = {{x3, x7}, {x4, x6}, {x1, x2, x5}}.

Because ofk = 2 andk′ = 3, example turns to Step 4.

According to Step 4, we haveEU∪UX
(D|B) = 6

49
andEU∪UX

(D|C) = 4
49

. Thus, example

needs to add attributes fromC − B.

In the first loop,Sigoutter
U∪UX

(c3, B, D) = 0 and Sigoutter
U∪UX

(c4, B, D) = 2
49

. Thus,B = B ∪

{c4} = {c1, c2, c4}. Now, we haveEU∪UX
(D|B) = EU∪UX

(D|C) = 4
49

. Example thus stops

in Step 4.

According to Step 5, there is no attribute inB need to be deleted and the final reduct is

REDU∪UX
= {c1, c2, c4}.

The following is the time complexity of above Algorithm 3. Asmentioned above, we

give in this paper a specific explanation that|UX | < |U |. When a data set is added to the

decision tables, according to Theorems 8-10, the time complexity of computing entropy is

O(|U ||C|+|UX||C|+|UX|
2+|U ||X|), andX denotes the object set with identical conditional

attribute values inU and UX . In the algorithmGIARC, the time complexity of Step 2 is

O(|C|(|U ||UX||C|+ |U ||C| + |UX |
2 + |U ||X|)) = O(|C|2|U ||UX |). The time complexity of

Step 3 is alsoO(|C|2|U ||UX |), and the other steps are constant. So, the total time complexity

of algorithmGIARC is O(|C|2|U ||UX |). When a group of objects are added to a data table,

Table III shows the time complexities of computing reduct.

In Table III, we compare the time complexities ofGIARC with that ofIARC, respectively.

It is easy to see that, if the size of added object set is very small, i.e., |UX | is very small,

the computational time ofIARC is almost identical to that ofGIARC. However, with the

increases of|UX |, especially|UX | is close to|U |, the computational time of|UX ||C||X
′
p||Y

′
q |

is not computationally costless and should not be neglected. Hence, when massive new objects

in the databases are generated at once,GIARC is usually more efficient thanIARC.
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TABLE IV: Description of data sets
Data sets Samples Attributes Classes

1 Breast-cancer-wisconsin(Cancer) 683 9 2
2 Tic-tac-toe 958 9 2
3 Kr-vs-kp 3196 36 2
4 Letter-recognition(Letter) 20000 16 26
5 Krkopt 28056 6 18
6 Shuttle 58000 9 7
7 Person Activity (PA) 164860 8 11
8 Poker-hand 1025010 10 10

VII. EXPERIMENTAL ANALYSIS

The objective of the following experiments is to show effectiveness and efficiency of the

proposed group incremental algorithmGIARC. The data sets used in the experiments are

outlined in Table IV, which are all downloaded from UCI repository of machine learning

databases. All the experiments have been carried out on a personal computer with Windows

7, Inter(R) Core (TM) i7-2600 CPU (2.66 GHz) and 4.00 GB memory. The software used

is Microsoft Visual Studio 2005 and the programming language is C#. And in the data sets,

ShuttleandPoker-handare preprocessed using the data tool Rosetta.

Eight UCI data sets are employed in the testing. The experiments are divided into three

parts, which illustrate effectiveness, efficiency and givea comparison with the existing incre-

mental algorithms, respectively. In the first part, the effectiveness ofGIARC is illustrated

mainly through comparing it with the classic heuristic attribute reduction algorithm based on

information entropy (CAR). In the second part,IARC are first compared withGIARC and

the efficiency ofGIARC is then illustrated by comparing their computational time.The third

part contains the comparison with the existing incrementalalgorithms. The specific design

of experiments for each part is as follows.

A. Effectiveness analysis

In this subsection, to test the effectiveness ofGIARC, four common evaluation measures

in rough set theory are employed to evaluate the decision performance of the reducts found

by CAR and GIARC. The four evaluation measures are approximate classified precision,

approximate classified quality, certainty measure and consistency measure, which are shown

in Definitions 8-9.

In [29], [30], Pawlak defined the approximate classified precision (AP ) and approximate
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classified quality (AQ) to describe the precision of approximate classification inrough set

theory, namely, the discernible ability of a feature subset. If a feature subset has the sameAP

andAQ with original attributes, this feature subset is considered as has the same discernible

ability with original attributes. Hence, this subsection employs these two measures to estimate

the discernible ability of a generated feature subset.

Definition 8: Let S = (U, C ∪D) be a decision table andU/D = {X1, X2, · · · , Xr}. The

approximate classified precision ofC with respect toD is defined as

APC(D) =
|POSC(D)|
∑r

i=1 |CXi|
,

and the approximate classified quality ofC with respect toD is defined as

AQC(D) =
|POSC(D)|

|U |
.

In rough set theory, by adopting a reduction algorithm, one can get reducts for a given

decision table. Then, based on one reduct, a set of decision rules can be generated from the

decision table [29], [35]. Decision rules are used to predict decision values of new objects.

Hence, the performance of a set of decision rules may affect its predictive ability. Pawlak

introduced two measures to measure the certainty and consistency in [30]. However, these

two measures cannot give elaborate depictions of the certainty and consistency for a rule set

[35]. To evaluate the performance of a rule set, Qian et al. in[35] defined certainty measure

and consistency measure to evaluate the certainty and consistency of a set of decision rules.

And these two measures have attracted considerable attention by many researchers [32], [43],

[46]. Hence,α andβ are employed to evaluated the decision performance of decision rules

induced by the found feature subset in this subsection.

Definition 9: Let S = (U, C ∪D) be a decision table,U/C = {X1, X2, · · · , Xm}, U/D =

{Y1, Y2, · · · , Yn}, andRULE = {Zij|Zij : des(Xi)→ des(Yj), Xi ∈ U/C, Yj ∈ U/D} . The

certainty measureα of the decision rules onS is defined as

α(S) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj|
2

|U ||Xi|
,

and the consistency measureβ of the decision rules onS is defined as

β(S) =
m∑

i=1

|Xi|

|U |
[1−

4

|Xi|

n∑

j=1

|Xi ∩ Yj|
2

|Xi|
(1−

|Xi ∩ Yj|

|Xi|
)].

The main objective of this subsection is to illustrate thatGIARC can find a feasible feature

subset in a much shorter time, rather than find a more superiorone. By comparing withCAR,
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TABLE V: Comparison of evaluation measures based on complementary entropy

CAR GIARC

Data sets NSF AQ AP α β Time/s NSF AQ AP α β Time/s
Cancer 4 1.0000 1.0000 1.0000 1.0000 0.770001 4 1.0000 1.0000 1.0000 1.0000 0.060000

Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.941168 8 0.99991.0000 1.0000 1.0000 0.220000

Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 91.35022 29 0.9999 1.0000 1.0000 1.0000 3.381309
Letter 12 0.9999 1.0000 1.0000 1.0000 4564.396 10 0.9999 0.9997 0.9997 0.9994 102.0301

Krkopt 6 0.9999 1.0000 1.0000 1.0000 555.7041 6 0.9999 1.0000 1.0000 1.0000 93.51025
Shuttle 4 1.0000 1.0000 1.0000 1.0000 7913.254 4 1.0000 1.0000 1.0000 1.0000 325.1453

PA 7 1.0000 1.0000 1.0000 1.0000 22220.29 7 1.0000 1.0000 1.0000 1.0000 1022.153

Poker-hand 10 1.0000 1.0000 1.0000 1.0000 868320.6 10 1.0000 1.0000 1.0000 1.0000 62918.36

TABLE VI: Comparison of evaluation measures based on combination entropy

CAR GIARC

Data sets NSF AQ AP α β Time/s NSF AQ AP α β Time/s

Cancer 4 1.0000 1.0000 1.0000 1.0000 0.820047 4 1.0000 1.0000 1.0000 1.0000 0.066003
Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.881165 8 0.99991.0000 1.0000 1.0000 0.189011

Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 36.10806 29 0.9999 1.0000 1.0000 1.0000 1.788102

Letter 12 0.9999 1.0000 1.0000 1.0000 3594.882 11 0.9999 1.0000 1.0000 1.0000 106.2975
Krkopt 6 0.9999 1.0000 1.0000 1.0000 497.5545 6 0.9999 1.0000 1.0000 1.0000 182.5955

Shuttle 4 1.0000 1.0000 1.0000 1.0000 8693.969 4 1.0000 1.0000 1.0000 1.0000 795.0494
PA 7 1.0000 1.0000 1.0000 1.0000 25203.29 7 1.0000 1.0000 1.0000 1.0000 996.1361

Poker-hand 10 1.0000 1.0000 1.0000 1.0000 951264.7 10 1.0000 1.0000 1.0000 1.0000 59039.11

if discernible ability (evaluated byAP andAQ) and decision performance (evaluated byα and

β) of the feature subset found byGIARC are very closed or even identical to that ofCAR,

then this feature subset can be considered to be feasible. Byrunning algorithmsGIARC

andCAR on the eight employed data sets, following experiments are to test feasibility and

efficiency ofGIARC.

For each data set in Table IV, 51% objects are taken as the basic data set, and the remaining

49% objects are taken as incremental objects. When the incremental objects are added to the

basic data set, algorithmsCAR and GIARC are employed to update reduct of each data

set. The experimental results are shows in Tables V-VII. These tables show the number of

selected features, evaluation results of found feature subsets and computational time of each

employed data set. For simplicity,the Number of Selected Featuresis written as NSF in the

following.

It is easy to see from Tables V-VII that the values of the four evaluation measures of the

generated reducts after the updating are very close, and even identical on some data sets. But,
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TABLE VII: Comparison of evaluation measures based on Shannon’s entropy

CAR GIARC

Data sets NSF AQ AP α β Time/s NSF AQ AP α β Time/s
Cancer 4 1.0000 1.0000 1.0000 1.0000 0.808046 4 1.0000 1.0000 1.0000 1.0000 0.057004

Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.843163 8 0.99991.0000 1.0000 1.0000 0.234013

Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 34.59698 29 0.9999 1.0000 1.0000 1.0000 6.522059
Letter 11 0.9998 0.9997 0.9997 0.9997 3671.897 12 0.9999 1.0000 1.0000 1.0000 307.8133

Krkopt 6 0.9999 1.0000 1.0000 1.0000 489.0469 6 0.9999 1.0000 1.0000 1.0000 204.4492
Shuttle 4 1.0000 1.0000 1.0000 1.0000 8512.905 4 1.0000 1.0000 1.0000 1.0000 808.6062

PA 7 1.0000 1.0000 1.0000 1.0000 23183.15 7 1.0000 1.0000 1.0000 1.0000 1063.886

Poker-hand 10 1.0000 1.0000 1.0000 1.0000 865728.3 10 1.0000 1.0000 1.0000 1.0000 60022.59

the computational time ofGIARC is much smaller than that ofCAR. In other words, the

performance and decision making of the reduct found byGIARC are very close to that of

CAR, but GIARC is more efficient. Hence, the experimental results indicatethat, compared

with the classic reduction algorithm based on entropiesCAR, the algorithmGIARC can

find a feasible feature subset in a much shorter time.

B. Efficiency analysis

The experimental results in previous subsection has indicated thatGIARC is much more

efficient thanCAR. In this subsection, we compareGIARC with IARC in order to further

illustrate the efficiency of algorithmGIARC. For each data set in Table IV, letU denote its

universe and 51% objects (0.51 ∗ |U |) are selected as the basic data set. Then, we divide the

remaining 49% objects into five equal parts, denoted byxi (|xi| =
0.49∗|U |

5
, i=1,2,· · ·,5). Let

Xi =
⋃i

j=1 xi (i=1,2,· · ·,5) denotes the incremental group. When each incremental group Xi

is added to the basic data set, the two incremental reductionalgorithms are used to update

the reduct, respectively. The efficiency of the two algorithms are demonstrated by comparing

their computational time.

The experimental results are shown in Figs. 1-8. In these figures, the y-coordinate pertains

to the computational time for updating reduct, and the x-coordinate pertains to the size of

incremental group, that is, coordinate value 1, 2, 3, 4 and 5 correspond to addingX1, X2,

X3, X4 andX5 to the basic data set, respectively. For simplicity,IARC−L, IARC−C and

IARC − S denote algorithmIARC based on complementary entropy, combination entropy

and Shannon’s entropy, respectively. Similarly,GIARC−L, GIARC−C andGIARC−S

denote algorithmGIARC based on the three entropies respectively.

Figs. 1-8 depict the computational time for updating reductwith the two reduction al-
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Fig. 2: Tic-tac-toe based on LE
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Fig. 4: Tic-tac-toe based on LE
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Fig. 8: Tic-tac-toe based on LE

gorithms when different numbers of new objects are added. Inview of paper length, for

each data set in Table IV, the results of the three entropies are shown in one figure. The

experimental results indicate that, in the context of each entropy, GIARC is more efficient

than IARC when multiple objects are added to the basic data set. Furthermore, with the

number of added objects increasing, for most employed data sets, the efficiency ofGIARC

is more and more obvious. Hence, the experimental results show that the group incremental

reduction algorithm proposed in this paper is very efficient.

C. Comparison with other incremental algorithms

As mentioned in Section 1 (Introduction), there exist in theliterature several incremental

algorithms for updating redcut. Although an incremental reduction algorithm for finding the

minimal reduct was proposed in [25], it is only applicable for information systems without

decision attribute. For decision tables, two incremental algorithms were presented in [28] and

[41], respectively, whereas both of them are very time-consuming. To improve the efficiency,

Hu et al. presented an incremental reduction algorithm based on the positive region [10] and

showed the experimental results that the algorithm was moreefficient than the two algorithms

developed in [28], [41]. Hence, to further illustrate effectiveness and efficiency of algorithm

GIARC, we compare in this subsection it with the algorithm in [10].For convenience, the

algorithm in [10] is written asIRPR (incremental reduction based on the positive region) in

the following. For each data set in Table IV, 51% of the objects are taken as the basic data

set, and the remaining 49% of the objects are taken as incremental groups. Because Tables

V-VII have shown the results of computational time and evaluation measures ofGIARC,

this subsection only provides in Table VIII the computational time for updating reduct with

IRPR and the decision performance of the found reduct.
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TABLE VIII: Computational time and evaluation measures based onIRPR
Data sets NSA AQ AP α β Time/s
Cancer 4 1.0000 1.0000 1.0000 1.0000 0.161009

Tic-tac-toe 8 0.9999 1.0000 1.0000 1.0000 2.388137

Kr-vs-kp 29 0.9999 1.0000 1.0000 1.0000 24.68441
Letter 11 0.9999 1.0000 1.0000 1.0000 334.6461

Krkopt 6 0.9999 1.0000 1.0000 1.0000 200.0974
Shuttle 4 1.0000 1.0000 1.0000 1.0000 903.9317

PA 7 1.0000 1.0000 1.0000 1.0000 2807.636

Poker-hand 10 1.0000 1.0000 1.0000 1.0000 95563.29

According to the experimental results in Tables V-VII and Table VIII, it is easy to get

that the values of the four evaluation measures of the found reducts are very close, and

even identical on some data sets. But, the computational time of GIARC is much less than

that of IRPR. In other words, the performance and decision making of the reduct found

by GIARC are very close to that ofIRPR, but GIARC is more efficient. Hence, the

experimental results indicate that the algorithmGIARC can find a feasible feature subset in

a much shorter time thanIRPR.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, in view of that many real data in databases are generated in groups, an

effective and efficient group incremental feature selection algorithm has been proposed in

the framework of rough set theory. Compared with existing incremental feature selection

algorithms, this algorithm has the following advantages.

1) Compared with classic heuristic feature selection algorithms based on the three en-

tropies, the proposed algorithm can find a feasible feature subset of a dynamically-

increasing data set in a much shorter time.

2) When multiple objects are added to a data set, the proposedalgorithm is more efficient

than existing incremental feature selection algorithms.

3) With the number of added data increasing, the efficiency ofthe proposed algorithm is

more and more obvious.

4) This study provides new views and thoughts on dealing withlarge-scale dynamic data

sets in applications.

Based on above results, some further investigations are as follows.

1) The incremental mechanism of data expanding in groups is in reality the fusion of

two data tables. Thus, by generalizing the incremental mechanism, future work would
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include the information fusion of multi-data tables or multi-granularity.

2) Further analysis of dynamic data tables shows that the variation of data tables can

also include the changes of data values. For data tables withdata values changing

dynamically, feature selection approaches based on rough set model will be introduced

to discover knowledge from dynamic data tables.

3) With the variation of data sets, to predict the decision, the rules extracted from a

dynamic data set need to be updated in time. Therefore, it is necessary to devise rules

extraction algorithms for a dynamic decision table.
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