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Abstract

Attribute reduction is one of the important topics in the
research on rough set theory, it plays an important role in
machine learning and data mining. However, is the deci-
sion performance of a decision table changed after an at-
tribute reduction? In this paper, we analyze the change of
the decision performance through using the positive-region
reduction and the Shannon entropy reduction. The change
principles of three decision measures caused by attribute re-
ductions are proposed. Experimental analysis is performed
for illuminating the change mechanism of a decision table’s
decision performance.

Keywords: Decision evaluation; rough set theory; attribute
reduction.

1. Introduction

Rough set theory proposed by Z. Pawlak has become
a popular mathematical framework for pattern recognition,
image processing, feature selection, conflict analysis, deci-
sion support, data mining and knowledge discovery process
from large data sets. As applications of rough set theory
in decision problems, a number of reduct techniques have
been proposed in the last twenty years [1, 3-8, 10, 11, 17-
23]. In these reduct approaches, attribute reduction based
on discernibility matrix and based on attribute dependency
are classical ones.

A set of decision rules can be generated from a decision
table by adopting any kind of reduction method mentioned
above [16]. How to evaluate the decision performance of a
decision rule is a very important issue in rough set theory. In
[2], based on information entropy, Düntsch suggested some
uncertainty measures of a decision rule and proposed three
criteria for model selection. Moreover, several other mea-
sures such as certainty degree and support degree are often

used to evaluate a decision rule [22]. However, all of these
measures are only defined for a single decision rule and are
not suitable for measuring the decision performance of a
rule set. There are two more kinds of measures in the liter-
ature [12], which are approximation accuracy for decision
classification and consistency degree for a decision table.
Although these two measures, in some sense, could be re-
garded as measures for evaluating the decision performance
of all decision rules generated from a decision table, they
have some limitations. To overcome the shortcomings of
the existing measures, in [15], three new measures are pro-
posed for this objective, which are certainty measure (α),
consistency measure (β), and support measure (γ).

In this paper, we mainly analyze the change of deci-
sion performance after performing any of attribute reduc-
tion based on the positive region and that based on the Shan-
non entropy. The rest of this paper is organized as follows.
Some preliminary concepts are briefly recalled in Section
2. In Section 3, three measures (α, β and γ) are recalled
for evaluating the decision performance of a set of rules. In
Section 4, we analyze the difference of the decision perfor-
mance between the reduced and the original decision table,
and experimental analysis of each of the three measures are
performed. Section 5 concludes this paper.

2. Preliminaries

In this section, we review some basic concepts such as
indiscernibility relation, partition, partial relation of knowl-
edge and decision tables.

Let S = (U,A) be an information system, where U is a
non-empty, finite set of objects and is called a universe and
A is a non-empty, finite set of attributes. For each a ∈ A,
a mapping a : U → Va is determined by an information
system, where Va is the domain of a.

Each non-empty subset B ⊆ A determines an indiscerni-



bility relation in the following way,

RB = {(x, y) ∈ U × U | a(x) = a(y),∀a ∈ B}.

The relation RB partitions U into some equivalence classes
given by U/RB = {[x]B | x ∈ U}, just U/B, where [x]B
denotes the equivalence class determined by x with respect
to B.

We define a partial relation ¹ on the family {U/B |
B ⊆ A} as follows: U/P ¹ U/Q (or U/Q º U/P ) if
and only if, for every Pi ∈ U/P , there exists Qj ∈ U/Q
such that Pi ⊆ Qj , where U/P = {P1, P2, · · · , Pm}
and U/Q = {Q1, Q2, · · · , Qn} are partitions induced by
P, Q ⊆ A, respectively.

Let S = (U,C ∪ D) with C ∩ D = Ø be an informa-
tion system, where C is called a condition attribute set, and
D is called a decision attribute set, then S is called as a
decision table. If U/C ¹ U/D, then S is said to be consis-
tent, otherwise it is said to be inconsistent. And, the relative
positive-region D with respect to C is defined as

POSC(D) =
n⋃

i=1

CYi

Definition 1.[12] Let S = (U,C ∪D) be a decision table,
B ⊆ C. If B satisfies the following condition:

(1) POSC(D) = POSB(D) and
(2) ∀a ∈ C, POSC(D) = POSC−{a}(D),

then B is a positive-region reduct of D with respect to C.
In[18], by means of shannon entropy, the uncertainty of

a decision table S = (U,C ∪D) is depicted as

H(D|C) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi ∩ Yj |
|Xi| log2

|Xi ∩ Yj |
|Xi| ,

where |Xi| ∈ U/C, |Yj | ∈ U/D.
Definition 2.[18] Let S = (U,C ∪D) be a decision table,
B ⊆ C. If B satisfies the following condition:

(1) H(D|C) = H(D|B) and
(2) for ∀a ∈ C, H(D|C) = H(D|C − {a}),

then B is a Shannon entropy reduct of D with respect to C.

3. Decision rule and decision performance
measurement in decision tables

In this section, we briefly recall certainty degree and sup-
port degree of a decision rule and the decision performance
measurement of a decision table in rough set theory.

Let S = (U,C ∪ D) be a decision table, Xi ∈ U/C,
Yj ∈ U/D and Xi ∩ Yj 6= Ø. By des(Xi) and des(Yj), we
denote the descriptions of the equivalence classes Xi and Yj

in the decision table S. A decision rule is formally defined
as Zij : des(Xi) → des(Yj).

Certainty degree and support degree of a decision
rule Zij are defined as follows: µ(Zij) = |Xi ∩
Yj |/|Xi| and s(Zij) = |Xi ∩ Yj |/|U |, where | · | is the car-
dinality of a set. It is clear that the value of each of µ(Zij)
and s(Zij) of a decision rule Zij falls into the interval [0, 1].
However, µ(Zij) and s(Zij) are only defined for a single
decision rule and are not suitable for measuring the deci-
sion performance of a decision-rule set.

To measure the decision performance of a decision-rule
set, in [15], three measures, certainty measure, consistency
measure and support measure was proposed, they was de-
fined as follow:
Definition 3.[15] Let S = (U,C ∪ D) be a decision ta-
ble, and RULE = {Zij |Zij : des(Xi) → des(Yj), Xi ∈
U/C, Yj ∈ U/D}, certainty measure α of S is defined as

α(S) =
m∑

i=1

n∑

j=1

s(Zij)µ(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi| ,

consistency measure β of S is defined as

β(S) =
m∑

i=1

|Xi|
|U | [1−

4
|Xi|

Ni∑

j=1

|Xi∩Yj |µ(Zij)(1−µ(Zij))],

support measure γ of S is defined as

γ(S) =
m∑

i=1

n∑

j=1

s2(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U |2 ,

where µ(Zij) and s(Zij) are the certainty degree and sup-
port degree of the rule Zij , respectively.

4. Change of decision performance induced by
two kinds of reduction approaches

In this section, we analyze the change of decision per-
formance of a decision table when some condition classes
combine. Furthermore, the difference between the decision
performance of an original decision table and that of each
of the reduced decision tables is investigated, which are re-
duced by the positive-region reduction and the Shannon en-
tropy reduction, respectively.

4.1 Change mechanism of decision perfor-
mance

Lemma 1. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, if B ¹ C, then

α(S) ≥ α(S′),
and, if and only if µ(Zuj) = µ(Zvj), ∀j ≤ n, then

α(S) = α(S′).



where µ(Zuj) and µ(Zvj) represent the certainty degrees of
the rules Zuj and Zvj in the table S respectively.
Proof. For simplicity, without any loss of the uni-
verse, let U/C = {X1, X2, · · · , Xm}, U/B =
{X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm, Xu∪
Xv} and U/D = {Y1, Y2, · · · , Yn}.

α∆ = α(S′)− α(S)

=
n∑

j=1

(|Xu ∩ Yj |+ |Xv ∩ Yj |)2
|U |(|Xu|+ |Xv|)

−
n∑

j=1

|Xu ∩ Yj |2
|U ||Xu| −

n∑

j=1

|Xv ∩ Yj |2
|U ||Xv|

= −
n∑

j=1

|Xu||Xv|(µ(Zuj)− µ(Zvj))2

|U |(|Xu|+ |Xv|) ≤ 0.

Obviously, when µ(Zuj) = µ(Zvj), α∆ = 0, i.e. α(S) =
α(S′). This completes the proof. ¤
Lemma 2. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, if B ¹ C and µ(Zuj) = µ(Zvj),
∀j ≤ n, then

β(S) = β(S′).

where µ(Zuj) and µ(Zvj) represent the certainty degrees of
the rules Zuj and Zvj in the table S respectively.
Proof. For simplicity, without any loss of the uni-
verse, let U/C = {X1, X2, · · · , Xm}, U/B =
{X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , X ′

m, Xu∪
Xv} and U/D = {Y1, Y2, · · · , Yn}.

β∆ = β(S′)− β(S)

=
1
|U | (|Xu|+ |Xv| − 4

n∑

j=1

(|Xu ∩ Yj |+ |Xv ∩ Yj |)2
|Xu|+ |Xv|

− (|Xu ∩ Yj |+ |Xu ∩ Yj |)3
(|Xu|+ |Xv|)2 )

− 1
|U | (|Xu| − 4

n∑

j=1

|Xu ∩ Yj |2
|Xu| − |Xu ∩ Yj |3

|Xu|2 )

− 1
|U | (|Xv| − 4

n∑

j=1

|Xv ∩ Yj |2
|Xv| − |Xv ∩ Yj |3

|Xv|2 ).

Let x = |Xu|, y = |Xv|, δj = |Xu∩Yj |
|Xu| and σj =

|Xv∩Yj |
|Xv| . It follows that

β∆ = 4
n∑

j=1

(δjx)2

x
− (δjx)3

x2
+ 4

n∑

j=1

(σjy)2

y
− (σjy)3

y2

−4
n∑

j=1

(δjx + σjy)2

x + y
− (δjx + σjy)3

(x + y)2
)

= 4
n∑

j=1

xy(δj − σj)2((1− 2δj − σj)x)
(x + y)2

+
(1− 2σj − δj)y)

(x + y)2
.

Obviously, δj = σj , ∀j ≤ n, i.e., µ(Zuj) = µ(Zvj),
β∆ = 0, β(S) = β(S′). This completes the proof. ¤
Lemma 3. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, if B ¹ C, then

γ(S′) ≥ γ(S).

Proof. For simplicity, without any loss of the uni-
verse, let U/C = {X1, X2, · · · , Xm}, U/B =
{X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , X ′

m, Xu∪
Xv} and U/D = {Y1, Y2, · · · , Yn}.

γ∆ = γ(S′)− γ(S)

=
n∑

j=1

(|Xu ∩ Yj |+ |Xv ∩ Yj |)2
|U |2

−
n∑

j=1

|Xu ∩ Yj |2
|U |2 −

n∑

j=1

|Xv ∩ Yj |2
|U |2

=
n∑

j=1

2|Xu ∩ Yj ||Xv ∩ Yj |
|U |2 ≥ 0.

This completes the proof. ¤

4.2 Change of decision performance in-
duced by positive-region reduction

Theorem 1. Let S = (U,C ∪ D) and S′ = (U,B ∪ D)
be two decision tables and B a positive-region reduct of C.
In the consistent part of the decision table S, if some of the
condition classes combine to a new condition class in S′,
then the certainty measure of arbitrary one of the original
rules equals that of another rule among them.
Proof. Let U/C = {X1, X2, · · · , Xm}, U/D =
{Y1, Y2, · · · , Yn} and U/B = {X ′

1, X
′
2, · · · , X ′

l}, (l ≤ m),
where B ⊆ C and B is a positive region reduct of C.

For simplicity, without any loss of the universe, suppose
that X1, X2, · · · , Xp is in the consistent part of the deci-
sion table S, X ′

1, X
′
2, · · · , X ′

q is in the consistent part of
the decision table S′ and the Xu, Xv(u, v ≤ p) become a
new condition class X ′

w(w ≤ q), i.e. X ′
w = Xu ∪ Xv

and other condition classes are unchanged. The condition
classes X ′

w is in the inconsistent part of the table S′ if
∃j ≤ n such that µ(Zuj) 6= µ(Zvj). Clearly, it is contradic-
tion with the assumption that B is a reduct of C. Therefore,
µ(Zuj) = µ(Zvj), ∀j ≤ n. This completes the proof. ¤



Theorem 2. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, where S is consistent, B ⊆ C. If B is
a positive-region reduct of C, then

α(S) = α(S′).

By Theorem 1 and lemma 1, Theorem 2 is easy to be
proved.
Theorem 3. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, B ⊆ C. If B is a positive-region reduct
of C, then

α(S) ≥ α(S′).

Proof. Let U/C = {X1, X2, · · · , Xm}, U/B =
{X ′

1, X
′
2, · · · , X ′

l} and U/D = {Y1, Y2, · · · , Yn}. Further-
more, suppose that the consistent part of the table S con-
sists of X1, X2, · · · , Xp, the inconsistent part of the table
consists of Xp+1, Xp+2, · · · , Xm, the consistent part of the
table S′ consists of X ′

1, X
′
2, · · · , X ′

q, and the inconsistent
part of the table S′ consists of X ′

q+1, X
′
q+2, · · · , X ′

l .
Through using the positive-region reduction, the change

of condition class has two cases, one is combination of con-
dition classes in consistent part of a decision table, the other
is combination of condition classes in inconsistent part of a
decision table. These two cases are listed as follows:

1) the condition classes combined in the consistent part
Let the Xu, Xv(u, v ≤ p) become a new condition

class X ′
w after performing the positive-region reduction,

i.e. X ′
w = Xu ∪ Xv , and the other condition classes are

unchanged. From Theorem 1, it follows that µ(Zuj) =
µ(Zvj), j ≤ n. Moreover, according to Lemma 1, α(S) =
α(S′).

2) the condition classes combined in the inconsistent part
Let the Xu, Xv(p < u ≤ m, p < v ≤ m) are com-

bined to X ′
w after the positive-region reduction, i.e. X ′

w =
Xu ∪Xv , and other condition classes are unchanged. From
Lemma 1, it follows that α(S) = α(S′), if and only if
µ(Zuj) = µ(Zvj), ∀j ≤ n. Otherwise, α(S) > α(S′).
This completes the proof. ¤
Theorem 4. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, where S is consistent, B ⊆ C. If B is
a positive-region reduct of C, then

β(S) = β(S′).

By Theorem 1 and lemma 2, Theorem 4 is easy to be
proved.
Theorem 5. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, where S is consistent, B ⊆ C. If B is

a positive-region reduct of C, then

γ(S) ≤ γ(S′),

By Theorem 1 and lemma 3, Theorem 5 is easy to be
proved.
Theorem 6. Let S = (U,C ∪D) and S′ = (U,B ∪D) be
two decision tables, B ⊆ C. If B is a positive-region reduct
of C, then

γ(S) ≤ γ(S′),

Proof. Let U/C = {X1, X2, · · · , Xm}, U/B =
{X ′

1, X
′
2, · · · , X ′

l} and U/D = {Y1, Y2, · · · , Yn}.
X1, X2, · · · , Xp is in the consistent part of the decision ta-
ble S, Xp+1, Xp+2, · · · , Xm is in the inconsistent part of
the decision table S, X ′

1, X
′
2, · · · , X ′

q is in the consistent
part of the decision table S′, and X ′

q+1, X
′
q+2, · · · , X ′

l is in
the inconsistent part of the decision table S′.

After using the positive-region reduction, the change of
condition classes can be two cases. One is a combination
of condition classes in consistent part of a decision table,
the other is combination of condition classes in inconsis-
tent part of a decision table. These two cases are listed as
follows:

1) the condition class combined in the consistent part
Suppose that the Xu, Xv(u, v ≤ p) become a new

condition class X ′
w after the positive-region reduction, i.e.

X ′
w = Xu∪Xv , and other condition classes are unchanged.

According to Lemma 3, γ(S) ≤ γ(S′).
2) the condition class combined in the inconsistent part
Let the Xu, Xv(p < u ≤ m, p < v ≤ m) com-

bine to X ′
w through using the positive-region reduction, i.e.

X ′
w = Xu ∪Xv , and other condition classes is unchanged.

From Lemma 3, it follows that γ(S) ≤ γ(S′). This com-
pletes the proof. ¤

For general decision tables, in the following, through ex-
perimental analysis, we illustrate the change of the decision
performance after using the positive-region reduction. We
have download the mushroom data set from UCI database.
In order to verify their performance, we remove the incom-
plete part of from mushroom data set, and the rest 5644 ob-
jects are divided into eight parts with 1/8 of all objects step.
The first part is regard as the 1st data set, the combination
of the first and the second part is regard as the 2nd data set,
· · ·, the combination of all eight parts is regard as the 8th
data set. The comparison of value of the three performance
measures of original table and the one after using shannon
entropy reduction is shown in Table 1.

4.3 Change of decision performance in-
duced by Shannon entropy reduct

Theorem 7.[18] Let S = (U,C ∪D) and S′ = (U,B ∪D)
be two decision tables,B ⊆ C,U/C = {X1, X2, · · · , Xm},

U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · ,
X ′

m, Xu ∪Xv}, and U/D = {Y1, Y2, · · · , Yn}, then

H(D|B) ≥ H(D|C),



Table 1. the comparison of α, β, γ and those induced by a positive-region reduction
Measure data set

1st 2nd 3rd 4th 5th 6th 7th 8th
α 0.782979 0.740426 0.778251 0.829433 0.851631 0.846809 0.773455 0.728561
α′ 0.782979 0.740426 0.776359 0.821868 0.850496 0.845863 0.773455 0.718842
β 0.565957 0.480851 0.556501 0.666430 0.705910 0.711899 0.619588 0.559178
β′ 0.565957 0.480851 0.558392 0.658865 0.707045 0.712845 0.619588 0.568897
γ 0.001418 0.000709 0.000473 0.000355 0.000284 0.000236 0.000203 0.000177
γ′ 0.001459 0.001013 0.001286 0.015477 0.000918 0.000725 0.000441 0.019752

and if and only if |Xu∩Yj |
|Xu| = |Xv∩Yj |

|Xv| , ∀j < n, i.e.
µ(Zuj) = µ(Zvj), then

H(D|B) = H(D|C).

Theorem 8. Let S = (U,C ∪ D) and S′ = (U,B ∪ D)
be two decision tables, B ⊆ C. If B is a Shannon entropy
reduct of C, then

α(S) = α(S′).

Proof. Let U/C = {X1, X2, · · · , Xm}, U/B =
{X ′

1, X
′
2, · · · , X ′

l}, and U/D = {Y1, Y2, · · · , Yn}.
Through using shannon entropy reduction, without any

lose of the universe, we suppose that Xu and Xv(u, v ≤ m)
combine to X ′

w(w ≤ l). From Theorem 7, it follows that
µ(Zuj) = µ(Zvj). Moreover, by Lemma 1, α(S) = α(S′).
This completes the proof. ¤
Theorem 9. Let S = (U,C ∪ D) and S′ = (U,B ∪ D)
be two decision tables, B ⊆ C. If B is a Shannon entropy
reduct of C, then

β(S) = β(S′).

Proof. Let U/C = {X1, X2, · · · , Xm}, U/B =
{X ′

1, X
′
2, · · · , X ′

l}, and U/D = {Y1, Y2, · · · , Yn}.
For simplicity, without any lose of the universe, we sup-

pose that after using shannon entropy reduction, Xu and
Xv(u, v ≤ m) combine to X ′

w(w ≤ l). In terms of The-
orem 7, it follows that µ(Zuj) = µ(Zvj). Furthermore, by
Lemma 2, β(S) = β(S′). This completes the proof. ¤

Theorem 10. Let S = (U,C ∪ D) and S′ = (U,B ∪ D)
be two decision tables, B ⊆ C. If B is a Shannon entropy
reduct of C, then

γ(S) ≤ γ(S′).

Proof. Let U/C = {X1, X2, · · · , Xm}, U/B =
{X ′

1, X
′
2, · · · , X ′

l} and U/D = {Y1, Y2, · · · , Yn}.
For simplicity, without any lose of the universe, we sup-

pose that the Xu, Xv(p < u ≤ m, p < v ≤ m) combine to
X ′

w after the Shannon entropy reduct, i.e. X ′
w = Xu ∪Xv ,

and other condition classes is unchanged. By Lemma 3,
γ(S) ≤ γ(S′). This completes the proof. ¤

In the following, we illustrate the change of the decision
performance after using the shannon entropy reduction. We
use the same data sets in the table 1. The comparison of
value of the three performance measures of original deci-
sion table and the one after using shannon entropy reduction
is shown in Table 2.

From Table 1 and Table 2, it is easy to draw the following
conclusions:

1) through using a positive-region reduction, the cer-
tainty measure α is not bigger than the original certainty
measure, the support measure γ is not smaller than the orig-
inal support measure, and the change of the consistency
measure β is uncertain; and

2) after performing a Shannon entropy reduction, each
of the certainty measure α and the consistency measure β
is the same as each of those induced by a original decision
table, and the support measure γ is not smaller than the orig-
inal support measure.

5. Conclusion

In this paper, we have analyzed the change mechanism
of the decision performance after performing the positive-
region reduction and Shannon entropy reduction, and have
obtained some of their important properties. These three
measures may be changed through using a positive-region
reduction. However, the certainty measure and the consis-

tent measure are unchanged after using a Shannon entropy
reduction, and the support measure is usually increased.
These results may be helpful for determining which of the
positive-region reduction and the attribute reduction based
on Shannon entropy is preferred for a practical decision
problem in the context of complete decision tables.



Table 2. the comparison of α, β, γ and those induced by a Shannon entropy reduction
Measure data set

1st 2nd 3rd 4th 5th 6th 7th 8th
α 0.782979 0.740426 0.778251 0.829433 0.851631 0.846809 0.773455 0.728561
α′ 0.782979 0.740426 0.778251 0.829433 0.851631 0.846809 0.773455 0.728561
β 0.565957 0.480851 0.556501 0.666430 0.705910 0.711899 0.619588 0.559178
β′ 0.565957 0.480851 0.556501 0.666430 0.705910 0.711899 0.619588 0.559178
γ 0.001418 0.000709 0.000473 0.000355 0.000284 0.000236 0.000203 0.000177
γ′ 0.001459 0.001013 0.001278 0.017674 0.001044 0.000813 0.000441 0.081572
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