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a b s t r a c t

Ranking decision for interval data is a very important issue in decision making analysis. In recent years,
several ranking approaches based on dominance relations have been developed. In these approaches, a
dominance degree and an entire dominance degree are employed. However, one cannot obtain the com-
plete rank of objects. To address this problem, this work will propose a two-grade approach to ranking
interval data. In this approach, we keep the ranking result induced by the entire dominance degree in
the first grade, and then refine the objects that cannot be ranked through introducing a so-called entire
directional distance index. An example and a real case are employed to verify the effectivity of the two-
grade ranking approach proposed in this paper.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In reality, one often encounters a number of alternatives
which need to be evaluated on the basis of a set of criteria in
investment decision [28,31,39,41], universities ranking [10,34],
road safety risk evaluation [9], and so on. In these cases, the
alternatives and the related criteria are often combined to a data
table. In decision making, one needs to rank these alternatives
through using some criteria that are characterized by attributes
in the data table according to an increasing or a decreasing pref-
erence. This kind of decision making tasks are called ranking
decision, which is becoming an important research point in deci-
sion making analysis. At present, ranking decision has been
widely used in economy, management, engineering and other
broad areas.

For effective and rational ranking decision, many decision
making methods have been developed, which include TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution)
[13,51], AHP (Analytic Hierarchy Process) [16,32,35], ELECTRE
(ELimination Et Choix Traduisant la REalité) [33,37], and the meth-
ods based on fuzzy set theory [3,10–12,52,39], etc.

In the past twenty years, rough set theory introduced by
Pawlak [24–27], has increasingly played an important role in
the field of decision making analysis. One of its prominent
ll rights reserved.
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advantages is to effectively deal with vagueness and uncertainty
information without requiring any prior knowledge. As we know,
Pawlak’s rough set theory does not consider attributes with pref-
erence-ordered domains, that is, criteria. To solve the problem of
ranking decision, several extended rough set models have been
developed in the literature. Greco et al. [5–8] proposed an exten-
sion of rough set theory induced by a dominance relation, called
a dominance-based rough set approach (DRSA), in which the
ordering properties of criteria are taken into account. In what
follows, we briefly review several works related to dominance-
based decision making. By adding order relations on attribute
values, Yao et al. [34,50] studied ordered information tables,
and raised a convenient model to mine ordering rules through
transforming an ordered information table into a binary informa-
tion table. Yang et al. [47] introduced a similarity dominance
relation, and developed a new dominance-based rough set model
in incomplete ordered information systems. Hu et al. [11,12]
presented a fuzzy preference rough set model by integrating fuz-
zy preference relations with a fuzzy rough set model. Moreover,
evaluation on decision performance is also an important task in
rough set theory [30,40,42,44]. In Ref. [44], concepts of knowl-
edge granulation, knowledge entropy and knowledge uncertainty
have been given to measure the discernibility ability of different
knowledge in ordered information systems. Under the condition
of homomorphism, Wang et al. [40] researched data compression
in ordered information systems to perform equivalent attribute
reductions and rule extraction in the smaller compressed image
database for improving efficiency and saving decision-making
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Table 1
An interval information system.

U a1 a2 a3 a4 a5

x1 1 [0,1] 2 1 [1,2]
x2 [0,1] 0 [1,2] 0 1
x3 [0,1] 0 [1,2] 1 1
x4 0 0 1 0 1
x5 2 [1,2] 3 [1,2] [2,3]
x6 [0,2] [1,2] [1,3] [1,2] [2,3]
x7 1 1 2 1 2
x8 [1,2] [1,2] [2,3] 2 [2,3]
x9 [1,2] 2 [2,3] [0, 2] 3
x10 2 2 3 [0, 1] 3
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costs. In a word, the dominance-based rough set theory has con-
tributed a basic theoretical framework for ranking decision.

In decision making analysis, we often need to deal with various
types of data sets, in which objects may be characterized by single
value, set value, null value, or interval value [2,14,15,17,18,28–
31,36,45–49]. Among these kinds of data sets, interval data is an
important class of data and a generalized form of single-valued
data. Hence, how to rank objects with interval values is a very
desirable issue.

As mentioned above, although many results have been devel-
oped in the context of interval ordered information systems, how
to rank objects using a dominance relation has not been reported.
To address this problem, Qian et al. [28] proposed a ranking ap-
proach for all objects based on dominance classes and the entire
dominance degree. This is the first attempt to rank objects with
interval values. This method adopts a cautious decision strategy,
in which we say that one object is superior to the other object if
and only if the value of one object is dominant than that of the
other under each attribute. Obviously, this approach is credible be-
cause it meets with practical decision situations, in which the risk
aversion is one of major characteristics for decision makers.

However, it can be seen, from Qian’s work [28], that the final
rank obtained is not a complete rank, in which there may exist sev-
eral objects being put into the same place. To overcome this draw-
back, we will further develop a new version of Qian’s ranking
approach according to the following two motivations.

(1) In practical issues, decision makers often want to get a com-
plete rank of objects according to a user’s requirement. A
complete rank of objects will be helpful for obtaining a more
satisfactory decision scheme. This opinion can be illustrated
by using ranking decision of investment projects [31]. Gen-
erally, a complete rank of investment projects is necessary
since decision makers only have limited capital. If several
investment projects lie in the same place in final ranking
result, that will confuse decision makers. Therefore, how to
obtain a complete rank needs to be further addressed in
the context of interval ordered information systems.

(2) In the process of looking for a complete rank, the rank
induced by the entire dominance degree should be
remained. As we know, a cautious ranking project is often
desirable for the vast majority of decision makers. Hence,
we argue that looking for a complete rank should be based
on the cautious rank. For this reason, we will establish a
two-grade ranking approach considering the property of
rank preservation.

Therefore, in this paper, our objective is to develop an approach
to obtaining a complete rank of objects with interval values. In this
study, we first introduce the concept of a directional distance index
and give some of its nice properties. Then, we define an ordered
mutual information to calculate the weight of each criterion and
the directional distance index with weights. Based on this consid-
eration, we propose a two-grade approach to ranking objects with
interval values. Finally, we also employ a real case about stock
selection for verifying the effectivity of the proposed approach in
this paper.

The remainder of this paper is organized as follows. Section 2
reviews some preliminary concepts and important properties of
interval ordered information systems. Section 3 establishes a
two-grade approach to ranking completely objects with interval
values by combining a directional distance index with a dominance
degree. In Section 4, through introducing weights of criteria based
on an ordered mutual information, we propose a more rational
two-grade approach to ranking completely interval data. In Section
5, we use a stock selection case to illustrate how to make a decision
by using the ranking approach proposed in this paper. Finally, Sec-
tion 6 concludes this paper with a remark.

2. Preliminaries

In this section, we briefly review some basic concepts and
important properties of interval ordered information systems.

An information system (IS) is a quadruple S = (U,AT,V, f), where U
is a finite non-empty set of objects and AT is a finite non-empty set
of attributes, V =

S
a2ATVa and Va is a domain of attribute a,

f :U � AT ? V is a total function such that f(x,a) 2 Va for every
a 2 AT, x 2 U, called an information function [31]. An information
system is called an interval information system (IIS) if Va is a set
of interval numbers. We denote f(x,a) 2 Va by

f ðx; aÞ ¼ ½aLðxÞ; aUðxÞ� ¼ fpjaLðxÞ 6 p 6 aUðxÞ; aLðxÞ; aUðxÞ 2 Rg:

It is the interval number of x under the attribute a.
Here, single-valued information systems, in which f(x,a) = aL

(x) = aU(x), can be seen as a special form of interval information
systems. Example 2.1 shows an interval information system.

Example 2.1 [28]. An interval information system is listed in Table
1, where U = {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10}, AT = {a1,a2,a3,a4,a5}.
Definition 2.1. An interval information system is called an interval
ordered information system (IOIS) if all attributes are criteria, that is,
the domain of each attribute is ordered according to an increasing
or a decreasing preference.

It is assumed that the domain of a criterion a 2 AT is completely
pre-ordered by an outranking relation <a; y<ax means that y is at
least as good as (outranks) x with respect to the criterion a. Fur-
thermore, we define y<Ax() 8a 2 AðA # ATÞ; y<ax.

Based on the above illustration, we review the dominance rela-
tion that identifies dominance classes especially in an interval or-
dered information system. In a given IOIS, we say that y dominates
x with respect to A # AT if y<Ax, and denoted by yRP

A x. That is

RP
A ¼ fðy; xÞ 2 U � UjaL

1ðyÞP aL
1ðxÞ; aU

1 ðyÞP aU
1 ðxÞ

ð8a1 2 A1Þ; aL
2ðyÞ 6 aL

2ðxÞ; aU
2 ðyÞ 6 aU

2 ðxÞ ð8a2 2 A2Þg
¼ fðy; xÞ 2 U � Ujðy; xÞ 2 RP

A g;

where the attributes set A1 according to increasing preference and
A2 according to decreasing preference, and A = A1 [ A2.

According to the definition of RP
A , the dominance class ½x�PA

which is the set of objects dominating x can be induced as follows

½x�PA ¼ fy 2 UjaL
1ðyÞP aL

1ðxÞ; aU
1 ðyÞP aU

1 ðxÞð8a1 2 A1Þ; aL
2ðyÞ

6 aL
2ðxÞ; aU

2 ðyÞ 6 aU
2 ðxÞð8a2 2 A2Þg ¼ fy 2 Ujðy; xÞ 2 RP

A g:

Analogously, R6A and ½x�6A can be defined too.
From the definitions of RP

A and ½x�PA , a partial order can be de-
fined on the attribute set. Let S = (U,AT,V, f) be an IOIS and A,
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B # AT. We say that A is coarser than B (or B is finer than A) if and
only if ½xi�PB # ½xi�PA , "i 2 {1,2, . . . , jUj}, just B ^ A.

Using the above definitions, one has the following properties
[28].

Property 2.1. Let S = (U,AT,V, f) be an IOIS and A # AT, we have that

(1) RP
A ¼

T
a2ARP

a ;
(2) R6A ¼

T
a2AR6a .
Property 2.2. Let S = (U,AT,V, f) be an IOIS and A # AT, we have that

(1) RP
A , R6A are reflexive;

(2) RP
A , R6A are unsymmetric; and

(3) RP
A , R6A are transitive.
Property 2.3. Let S = (U,AT,V, f) be an IOIS and A, B # AT, we have
that

(1) if B # A # AT, then RP
B � RP

A � RP
AT ;

(2) if B # A # AT, then ½x�PB � ½x�
P
A � ½x�

P
AT ;

(3) if B # A # AT, then AT ^ A ^ B;
(4) if xj 2 ½xi�PA , then ½xj�PA # ½xi�PA and ½xi�PA ¼

S
f½xj�PA : xj 2 ½xi�PA g;

and
(5) ½xi�PA ¼ ½xj�PA iff f(xi,a) = f(xj,a) ("a 2 A).

In the rest part of this paper, without any loss of generality, we
only consider all attributes with an increasing preference.

3. A two-grade approach to ranking interval data

Ranking objects is an important problem in many practical deci-
sion making fields. Under rough set theory framework, Zhang and
Qiu [53] proposed a ranking method in classical ordered informa-
tion systems by defining a concept of dominance degree. But this
approach only deals with the ranking problem aiming at single-
valued information systems. Through extending the definition of
dominance relation, Qian et al. [28] established an approach to
ranking objects in interval ordered information systems. However,
this method still needs to be further improved because it cannot
completely rank objects with interval values. In this section, we
will construct a two-grade ranking approach to obtaining a com-
plete rank of interval objects.

To further improve the ranking approach, we review the con-
cept of dominance degree and some of its properties in the
following.

Definition 3.1 [28]. Let S = (U,AT,V, f) be an IOIS and A # AT.
Dominance degree between two objects with respect to the
dominance relation RP

A is defined as

DAðxi; xjÞ ¼
j½xi�Pc

A [ ½xj�PA j
jUj ;

where j�j denotes the cardinality of a set, ½xi�Pc
A ¼ U � ½xi�PA , xi, xj 2 U.
Property 3.1 [28]. DA(xi,xj) has the following properties

(1) 1
jUj 6 DAðxi; xjÞ 6 1;

(2) if ðxj; xkÞ 2 RP
A , then DA(xi, xj) 6 DA(xi, xk); and

(3) if ðxj; xkÞ 2 RP
A , then DA(xj, xi) P DA(xk,xi).
Definition 3.2 [28]. Let S = (U,AT,V, f) be an IOIS and A # AT. Entire
dominance degree of each object is defined as

DAðxiÞ ¼
1

jUj � 1

X
j–i

DAðxi; xjÞ; xi; xj 2 U:

From Definitions 3.1 and 3.2, one can easily find that the entire
dominance degree of an object can be used to judge its ranking
place. The bigger the value of DA(xi), and the better this object. This
is illustrated by Example 3.1.
Example 3.1 (Continued from Example 2.1). Rank all objects in U
according to the entire dominance degree DAT(xi).

First, according to the definition of ½xi�PAT , we have that

½x1�PAT ¼ fx1; x5; x7; x8g; ½x2�PAT ¼ fx1; x2; x3; x5; x6; x7; x8; x9; x10g;

½x3�PAT ¼ fx1; x3; x5; x6; x7; x8g;
½x4�PAT ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g;

½x5�PAT ¼ fx5g; ½x6�PAT ¼ fx5; x6; x8g; ½x7�PAT ¼ fx5; x7; x8g;

½x8�PAT ¼ fx8g; ½x9�PAT ¼ fx9g; ½x10�PAT ¼ fx10g:

Therefore, one can obtain the dominance degree relation matrix as

1 1 1 1 0:7 0:8 0:9 0:7 0:6 0:6

0:5 1 0:7 1 0:2 0:4 0:4 0:2 0:2 0:2

0:8 1 1 1 0:5 0:7 0:7 0:5 0:4 0:4

0:4 0:9 0:6 1 0:1 0:3 0:3 0:1 0:1 0:1

1 1 1 1 1 1 1 0:9 0:9 0:9

0:9 1 1 1 0:8 1 0:9 0:8 0:7 0:7

1 1 1 1 0:8 0:9 1 0:9 0:7 0:7

1 1 1 1 0:9 1 1 1 0:9 0:9

0:9 1 0:9 1 0:9 0:9 0:9 0:9 1 0:9

0:9 1 0:9 1 0:9 0:9 0:9 0:9 0:9 1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

:

Then, we get that

DATðx1Þ ¼ 0:81; DATðx2Þ ¼ 0:42; DATðx3Þ ¼ 0:67;
DATðx4Þ ¼ 0:32; DATðx5Þ ¼ 0:97;

DATðx6Þ ¼ 0:87; DATðx7Þ ¼ 0:89; DATðx8Þ ¼ 0:97;
DATðx9Þ ¼ 0:92; DATðx10Þ ¼ 0:92:

Thus, according to the values of DAT(xi), the ranking result can be
listed as follows

x5

x8

� �
<

x9

x10

� �
<x7<x6<x1<x3<x2<x4:

Remark 3.1. From Example 3.1, we obtained a ranking result
by the dominance degree and the entire dominance degree.
However, decision makers often want to get a complete rank of
objects according to a user’s requirement. Therefore, it is not
satisfactory because some objects cannot be ranked completely in
present rank (seeing x5 and x8, x9 and x10). In fact, the entire
dominance degree DA(xi) is constructed based on the dominance
degree DA(xi,xj), and the value is determined by the comparison of
dominance classes of two objects. Obviously, DA(xi,xj) mainly
investigates the relative ranking position of objects in entire
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universe from the viewpoint of rank, while ignoring more detailed
difference of two objects under their attributes values. Hence, it is
inevitable that some objects may be put into the same place.

To get a complete rank of objects, from the numerical point of
view, we first define a directional distance index to measure the
preferability degree of the object xi over the object xj.

Definition 3.3. Given two interval numbers f(xi,a) = [aL(xi),aU(xi)]
and f(xj,a) = [aL(xj),aU(xj)]. Directional distance index between two
objects under the attribute a is defined as

DDIaðxi; xjÞ ¼
1
2
þ 1

4
aUðxiÞ � aUðxjÞ þ aLðxiÞ � aLðxjÞ

max ðaUðxÞÞ �min ðaLðxÞÞ ;

where max(aU(x)) = max{aU(x1),aU(x2), . . . ,aU(xjUj)}, min (aL(x)) = min
{aL(x1),aL(x2), . . . ,aL(xjUj)}, and xi, xj 2 U. In particular, DDIaðxi; xjÞ ¼ 1

2
if max (aU(x)) = min (aL(x)).
Property 3.2. DDIa(xi, xj) has the following properties

(1) 0 6 DDIa(xi, xj) 6 1;
(2) if ðxj; xkÞ 2 RP

a , then DDIa(xi, xj) 6 DDIa(xi, xk);
(3) if ðxi; xjÞ 2 RP

a , then DDIaðxi; xjÞP 1
2;

(4) if DDIaðxi; xjÞP 1
2 and DDIaðxj; xkÞP 1

2, then DDIaðxi; xkÞP 1
2;

and
(5) DDIa(xi, xj) + DDIa(xj, xi) = 1.
Proof. Let f(xi,a) = [aL(xi),aU(xi)], f(xj,a) = [aL(xj),aU(xj)], and f(xk,
a) = [aL(xk),aU(xk)].

(1) According to the definitions of max(aU(x)) and min (aL(x)),
one has that
min ðaLðxÞÞ �max ðaUðxÞÞ 6 aUðxiÞ � aUðxjÞ 6 max ðaUðxÞÞ

�min ðaLðxÞÞ () � 1 6
aUðxiÞ � aUðxjÞ

max ðaUðxÞÞ �min ðaLðxÞÞ
6 1:
Similarly, we have that
�1 6
aLðxiÞ � aLðxjÞ

max ðaUðxÞÞ �min ðaLðxÞÞ 6 1:
Thus,
�2 6
aUðxiÞ � aUðxjÞ þ aLðxiÞ � aLðxjÞ

max ðaUðxÞÞ �min ðaLðxÞÞ 6 2() 0

6
1
2
þ 1

4
aUðxiÞ � aUðxjÞ þ aLðxiÞ � aLðxjÞ

maxðaUðxÞÞ �min ðaLðxÞÞ 6 1() 0

6 DDIaðxi; xjÞ 6 1:
(2) If ðxj; xkÞ 2 RP
a , it follows from the dominance relation RP

a

that the interval number f(xj,a) is bigger than the interval
number f(xk,a), i.e., aU(xj) P aU(xk) and aL(xj) P aL(xk). Then,
we have that
DDIaðxi;xjÞ�DDIaðxi;xkÞ¼
1
4

aUðxiÞ�aUðxjÞþaLðxiÞ�aLðxjÞ
maxðaUðxÞÞ�minðaLðxÞÞ

�1
4

aUðxiÞ�aUðxkÞþaLðxiÞ�aLðxkÞ
maxðaUðxÞÞ�minðaLðxÞÞ

¼1
4

aUðxkÞ�aUðxjÞþaLðxkÞ�aLðxjÞ
maxðaUðxÞÞ�minðaLðxÞÞ

6
1
4

aUðxjÞ�aUðxjÞþaLðxjÞ�aLðxjÞ
maxðaUðxÞÞ�minðaLðxÞÞ ¼0;
that is DDIa(xi,xj) 6 DDIa(xi,xk).
(3) If ðxi; xjÞ 2 RP

a , then the interval number f(xi,a) is bigger than
the interval number f(xj,a), i.e., aU(xi) P aU(xj) and
aL(xi) P aL(xj). Therefore,
DDIaðxi; xjÞ ¼
1
2
þ 1

4
aUðxiÞ � aUðxjÞ þ aLðxiÞ � aLðxjÞ

maxðaUðxÞÞ �min ðaLðxÞÞ

P
1
2
þ 1

4
aUðxiÞ � aUðxiÞ þ aLðxiÞ � aLðxiÞ

max ðaUðxÞÞ �min ðaLðxÞÞ

¼ 1
2
þ 0 ¼ 1

2
:

(4) If DDIaðxi; xjÞP 1
2 and DDIaðxj; xkÞP 1

2, then
DDIaðxi;xkÞ¼
1
2
þ1

4
aUðxiÞ�aUðxkÞþaLðxiÞ�aLðxkÞ

maxðaUðxÞÞ�minðaLðxÞÞ

¼1
2
þ1

4
aUðxiÞ�aUðxkÞþaLðxiÞ�aLðxkÞ�aUðxjÞþaUðxjÞ�aLðxjÞþaLðxjÞ

maxðaUðxÞÞ�minðaLðxÞÞ

¼1
2
þ1

4
½aUðxiÞ�aUðxjÞþaLðxiÞ�aLðxjÞ�þ½aUðxjÞ�aUðxkÞþaLðxjÞ�aLðxkÞ�

maxðaUðxÞÞ�minðaLðxÞÞ

¼1
2
þ1

4
aUðxiÞ�aUðxjÞþaLðxiÞ�aLðxjÞ

maxðaUðxÞÞ�minðaLðxÞÞ þ1
2
þ1

4
aUðxjÞ�aUðxkÞþaLðxjÞ�aLðxkÞ

maxðaUðxÞÞ�minðaLðxÞÞ

�1
2
¼DDIaðxi;xjÞþDDIaðxj;xkÞ�

1
2

P
1
2
þ1

2
�1

2
¼1

2
:

(5) From Definition 3.3, it follows that
DDIaðxi;xjÞþDDIaðxj;xiÞ¼
1
2
þ1

4
aUðxiÞ�aUðxjÞþaLðxiÞ�aLðxjÞ

maxðaUðxÞÞ�minðaLðxÞÞ

þ1
2
þ1

4
aUðxjÞ�aUðxiÞþaLðxjÞ�aLðxiÞ

maxðaUðxÞÞ�minðaLðxÞÞ

¼1þ1
4

aUðxiÞ�aUðxjÞþaLðxiÞ�aLðxjÞþaUðxjÞ�aUðxiÞþaLðxjÞ�aLðxiÞ
maxðaUðxÞÞ�minðaLðxÞÞ

¼1þ0¼1:
This completes the proof. h
Remark 3.2. From the numerical viewpoint, the index DDIa(xi,xj)
can measure the preferability degree of the object xi over the object
xj. From Definition 3.3, it is easy to see that DDIa(xi,xj) can
characterize both the difference of two interval numbers and the
partial directional property. In other words, when the object xi is
preferable to the object xj,one has that DDIaðxi; xjÞP 1

2, and vice
versa. In this paper, we hence call the index a directional distance
index.
In fact, from Definition 3.3, we can make a comparison between
two objects under an attribute in IOIS. Furthermore, it is no doubt
that two objects can be compared under all considered attributes
according to the following formula

DDIAðxi; xjÞ ¼
1
jAj
X
8a2A

DDIaðxi; xjÞ;

where A # AT, and jAj denotes the cardinality of a considered attri-
bute set.

Analogously, DDIA(xi,xj) has the same properties as DDIa(xi,xj).
Based on the definition of DDIA(xi,xj), let (xi,xj) 2 U � U, one can

construct a directional distance index relation matrix with respect
to A. Furthermore, the entire directional distance index of each ob-
ject can be calculated through the constructed matrix, which is as
follows.

Definition 3.4. Let S = (U,AT,V, f) be an IOIS and A # AT. Entire
directional distance index of each object is defined as
DDIAðxiÞ ¼
1

jUj � 1

X
j–i

DDIAðxi; xjÞ; xi; xj 2 U:

According to the entire directional distance index of each
object, one can easily rank all objects on the basis of the values
of DDIA(xi).
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Remark 3.3. Essentially, the entire directional distance index
DDIA(xi) is mainly defined for ranking objects from the perspective
of distance under attributes values, which can help us to obtain a
much finer ranking result.

However, from the viewpoint of decision making, the entire
dominance degree DA(xi) only gives a cautious ranking result,
which is built on the basis of the decision strategy that one object
is superior to the other object under all considered attributes. As
we know, for practical decision making issues, a cautious ranking
result is often desirable since risk aversion is one of major
characteristics for decision makers. Therefore, we argue that DA(xi)
should be a prior grade and DDIA(xi) is a second grade, and the
latter can give a much finer ranking result. Based on this idea,
we establish a two-grade ranking approach in the following.

Definition 3.5. Let S = (U,AT,V, f) be an IOIS and A # AT, and xi,
xj 2 U.

If DA(xi) P DA(xj), then xi dominates xj, denoted by xi<xj;
If DA(xi) 6 DA(xj), then xi is dominated by xj, denoted by xi ^ xj;
If DA(xi) = DA(xj), then
(1) If DDIA(xi) P DDIA(xj), then xi dominates xj, denoted by
xi<xj;

(2) If DDIA(xi) 6 DDIA(xj), then xi is dominated by xj, denoted
by xi ^ xj;

(3) If DDIA(xi) = DDIA(xj), then xi is the same as xj, denoted by
xi = xj.
From Remark 3.1, it is known that some objects may be put into
the same place in the ranking result by using the entire dominance
degree DA(xi). According to the motivations of this paper, we try to
establish a complete ranking approach keeping the rank induced
by the entire dominance degree unchanged. From Definition 3.5,
the entire dominance degree DA(xi) is made as the first grade of this
ranking approach, and the entire directional distance index
DDIA(xi) as the second grade. Clearly, the first grade remains the
rank preservation, while the second grade is used to obtain a much
finer ranking result. Thus, we can get a complete rank of objects by
the two-grade ranking approach. In the following, the Example 3.2
will be employed for showing the effectivity of this approach.

Example 3.2 (Continued from Example 3.1). Rank all objects in U
according to the two-grade ranking approach.

Firstly, one can get the following ranking result according to the
first grade.

x5

x8

� �
<

x9

x10

� �
< x7 < x6 < x1 < x3 < x2 < x4:

Secondly, one can utilize the second grade to rank those objects,
x5 and x8, x9 and x10, which cannot be ranked by the first grade.
Here, the directional distance index relation matrix dose not need
to be calculated because there are only two objects in each com-
parison. Thus, we have that

DDIATðx5Þ ¼ DDIATðx5; x8Þ ¼
1
5

X5

m¼1

DDIam ðx5; x8Þ

¼ 1
5

5
8
þ 1

2
þ 5

8
þ 3

8
þ 1

2

� �
¼ 21

40
;

DDIATðx8Þ ¼ DDIATðx8; x5Þ ¼ 1� DDIATðx5; x8Þ ¼
19
40

<
21
40

¼ DDIATðx5Þ:
Therefore, we can conclude the result x5<x8.

Similarly,
DDIATðx9Þ ¼ DDIATðx9; x10Þ ¼
1
5

X5

m¼1

DDIam ðx9; x10Þ

¼ 1
5

3
8
þ 1

2
þ 3

8
þ 5

8
þ 1

2

� �
¼ 19

40
;

DDIATðx10Þ ¼ DDIATðx10; x9Þ ¼ 1� DDIATðx9; x10Þ ¼
21
40

>
19
40

¼ DDIATðx9Þ:

That is x10<x9.

Finally, we can easily obtain the complete ranking result, that is

x5 < x8 < x10 < x9 < x7 < x6 < x1 < x3 < x2 < x4:

From Example 3.2, a complete rank of objects can be obtained
by using the two-grade ranking approach. In the complete ranking
result, several objects (i.e., x5 and x8, x9 and x10) which are put into
the same place according to the entire dominance degree have
been further ranked. Simultaneously, the property of rank preser-
vation is still remained, that is to say, each of objects x5 and x8 also
dominates each of objects x9 and x10 in the complete rank. Obvi-
ously, the effectivity of the two-grade ranking approach has been
verified by Example 3.2. In fact, the directional distance index
DDIA(xi, xj) assumes that every attribute has the same weight of
wa ¼ 1

jAj ;8a 2 A. However, this assumption is only presented under

special circumstances in practical decision issues. This problem
will be addressed in next section.
4. The two-grade ranking approach with weights

In many situations, the significance of every attribute is often
not equal to each other. This implies an important problem of
how to determine the weight of each attribute for more rational
decision making. Under this consideration, the directional dis-
tance index DDIA(xi,xj) mentioned by Section 3 can be seen as
the index with equal weights. In this section, we continue to de-
velop the version of the directional distance index considering
weights.

For information systems (IS), entropy of a system is a useful
mechanism for characterizing the information content, which is
defined by Shannon [38], and gives a measure of uncertainty about
its actual structure. Several authors [1,4,10,19–23,43] have used
Shannon’s concept and its extension to measure uncertainty in
rough set theory. On this basis, mutual information induced by
information entropy has also been proved that is an effective tool
for measuring attributes importance [10]. In the following, through
substituting a dominance relation for an indiscernibility relation,
we will propose a new concept of ordered mutual information,
which considers complement behavior of information gain. It can
be used to modify the directional distance index DDIA(xi,xj) for
more rationally ranking interval data.

In what follows, we briefly review several related concepts of
information entropy in rough set theory.

Definition 4.1 [19]. Let S = (U,AT,V, f) be an IS and A # AT,
U/IND(A) = {X1,X2, . . . ,Xm}, information entropy of A in rough set
theory is defined as
EðAÞ ¼
Xm

i¼1

jXij
jUj
jXc

i j
jUj ¼

Xm

i¼1

jXij
jUj 1� jXij

jUj

� �
;

where Xc
i is the complement set of Xi, i.e., Xc

i ¼ U � Xi, jXij/jUj de-
notes the probability of Xi within the universe U, and Xc

i

�� ��=jUj is
the probability of the complement set of Xi within the universe U.
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Definition 4.2 [19]. Let S = (U,AT,V, f) be an IS and A, B # AT, U/
IND(A) = {X1,X2, . . . ,Xm}, and U/IND(B) = {Y1,Y2, . . . ,Yn}. Then, condi-
tional entropy E(BjA) is defined by

EðBjAÞ ¼
Xn

j¼1

Xm

i¼1

jYj \ Xij
jUj

Yc
j � Xc

i

��� ���
jUj

and mutual information E(B;A) is defined as

EðB; AÞ ¼
Xn

j¼1

Xm

i¼1

jYj \ Xij
jUj

jYc
j \ Xc

i j
jUj :
Remark 4.1. From Definition 4.2, it is clear that the mutual
information based on an indiscernibility relation can measure
the consistency of two partitions in the universe U. It is because
that it depicts both the overlap degree of two equivalent classes
(Xi and Yj) and that of their complement sets (Xc

i and Yc
j ). Never-

theless, it is also obvious that the mutual information in Definition
4.2 cannot characterize ordered consistency. Therefore, we need to
extend several definitions listed above to measure the uncertainty
in ordered information systems effectively.

In fact, from Definition 4.1, we can directly induce a new infor-
mation entropy in interval ordered information systems, which has
been also mentioned in Xu’s work [44].

Definition 4.3. Let S = (U,AT,V, f) be an IOIS, A # AT, and
U=RP

A ¼ f½x1�PA ; ½x2�PA ; . . . ; ½xjUj�PA g. Then, interval ordered informa-
tion entropy of A is defined as

EðAPÞ ¼
XjUj
i¼1

1
jUj 1� j½xi�PA j

jUj

� �
:

In the following, we put forward the new definition of mutual
information in interval ordered information systems.
Definition 4.4. Let S = (U,AT,V, f) be an IOIS, A, B # AT, and
U=RP

A ¼ f½x1�PA ; ½x2�PA ; . . . ; ½xjUj�PA g; U=RP
B ¼ f½x1�PB ; ½x2�PB ; . . . ; ½xjUj�PB g.

Then, the joint entropy of AP [ BP is defined as

EðAP [ BPÞ ¼
XjUj
i¼1

1
jUj 1� j½xi�PA \ ½xi�PB j

jUj

� �
:

Property 4.1. E(AP [ BP) has the following properties:

(1) E(AP [ BP) P E(AP);
(2) E(AP [ BP) P E(BP).
Proof. They are straightforward. h
Corollary 4.1. Let S = (U,AT,V, f) be an IOIS and A, B # AT. If
BP

^ AP, then E(AP [ BP) = E(BP).
Definition 4.5. Let S = (U,AT,V, f) be an IOIS and A, B # AT, the con-
ditional entropy of AP with respect to BP is defined as

EðAPjBPÞ ¼
XjUj
i¼1

1
jUj

j½xi�PB j
jUj �

j½xi�PA \ ½xi�PB j
jUj

� �
:

Property 4.2. Let S = (U,AT,V, f) be an IOIS and A, B # AT. Then,
E(APjBP) = E(AP [ BP) � E(BP).
Proof. From Definition 4.5, we have that
EðAPjBPÞ ¼
XjUj
i¼1

1
jUj

j½xi�PB j
jUj �

j½xi�PA \ ½xi�PB j
jUj

� �

¼
XjUj
i¼1

1
jUj

j½xi�PB j
jUj � 1þ 1� j½xi�PA \ ½xi�PB j

jUj

� �

¼
XjUj
i¼1

1
jUj 1� j½xi�PA \ ½xi�PB j

jUj

� �
� 1� j½xi�PB j

jUj

� �� �

¼
XjUj
i¼1

1
jUj 1� j½xi�PA \ ½xi�PB j

jUj

� �
�
XjUj
i¼1

1
jUj 1� j½xi�PB j

jUj

� �

¼ EðAP [ BPÞ � EðBPÞ:

This completes the proof. h
Corollary 4.2. Let S = (U,AT,V, f) be an IOIS and A, B # AT. If
BP

^ AP, then E(APjBP) = 0.
Corollary 4.3. Let S = (U,AT,V, f) be an IOIS and A,B, D # AT. If
DP

^ BP
^ AP, then E(DPjBP) 6 E(DPjAP).
Definition 4.6. Let S = (U,AT,V, f) be an IOIS and A, B # AT.
Then, ordered mutual information between AP and BP is
defined as
EðAP; BPÞ ¼
XjUj
i¼1

1
jUj
j½xi�Pc

A \ ½xi�Pc
B j

jUj :
Property 4.3. Let S = (U,AT,V, f) be an IOIS and A, B # AT. Then,
E(AP;BP) = E(AP) � E(APjBP) = E(BP) � E(BPjAP).
Proof. From Definition 4.6, we have that

EðAP; BPÞ ¼
XjUj
i¼1

1
jUj
j½xi�Pc

A \ ½xi�Pc
B j

jUj ¼
XjUj
i¼1

1
jUj
jU � ½xi�PA [ ½xi�PB j

jUj

¼
XjUj
i¼1

1
jUj
jUj � j½xi�PA j � j½xi�PB j þ j½xi�PA \ ½xi�PB j

jUj

¼
XjUj
i¼1

1
jUj 1� j½xi�PA j

jUj

� �
� j½xi�PB j

jUj �
j½xi�PA \ ½xi�PB j

jUj

� �� �

¼
XjUj
i¼1

1
jUj 1� j½xi�PA j

jUj

� �
�
XjUj
i¼1

1
jUj

j½xi�PB j
jUj �

j½xi�PA \ ½xi�PB j
jUj

� �

¼ EðAPÞ � EðAPjBPÞ:

Similarly, E(AP;BP) = E(BP) � E(BPjAP) also can be proved.
This completes the proof. h
Property 4.4. Let S = (U,AT,V, f) be an IOIS and A,B # D # AT. If

j½xi�Pc
D \ ½xi�Pc

B jP j½xi�Pc
D \ ½xi�Pc

A j, then j½xi �PD \½xi �PB j
j½xi �PB j

P j½xi �PD \½xi �PA j
j½xi �PA j

.

Proof. From the term (2) in Property 2.3, we have that
½xi�PD # ½xi�PA ; ½xi�PD # ½xi�PB and ½xi�Pc

D � ½xi�Pc
A ; ½xi�Pc

D � ½xi�Pc
B . Thus,
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j½xi�PD \ ½xi�PB j
j½xi�PB j

¼ j½xi�PD j
j½xi�PB j

¼ j½xi�PD j
jUj � j½xi�Pc

B j
¼ j½xi�PD j
jUj � j½xi�Pc

D \ ½xi�Pc
B j

P
j½xi�PD j

jUj � j½xi�Pc
D \ ½xi�Pc

A j
¼ j½xi�PD j
jUj � j½xi�Pc

A j
¼ j½xi�PD j
j½xi�PA j

¼ j½xi�PD \ ½xi�PA j
j½xi�PA j

:

This completes the proof. h
Corollary 4.4. Let S = (U,AT,V, f) be an IOIS and A # D # AT. Then,
j½xi�PD j
jUj 6

j½xi�PD \ ½xi�PA j
j½xi�PA j

6 1;
where j½xi �PD \½xi �PA j
j½xi �PA j

¼ j½xi �PD j
jUj if j½xi�Pc

D \ ½xi�Pc
A j ¼ 0, and j½xi �PD \½xi �PA j

j½xi �PA j
¼ 1 if

½xi�Pc
D ¼ ½xi�Pc

A .
Remark 4.2. In this section, we aim to depict importance of crite-
ria through the ordered mutual information that considers comple-
ment behavior of information gain in interval ordered information
systems. From Definition 3.5 and Example 3.2 , the entire domi-
nance degree DA(xi) is the first grade, which can be used to induce
a cautious ranking result. Here, we call the cautious ranking result
as the prior rank, which is ensured by the dominance relation RP

A .
Therefore, we argue that the criterion a (a 2 A) is more important
when the rank induced by RP

a is more consistent with the prior
rank. In essence, this can be characterized by the consistency
j½xi �PA \½xi �Pa j
j½xi �Pa j

between ½xi�Pa and ½xi�PA . According to Property 4.4, the big-

ger j½xi�Pc
A \ ½xi�Pc

a j, the larger j½xi �PA \½xi �Pa j
j½xi �Pa j

. From Corollary 4.4, one

knows that the consistency of ½xi�PA and ½xi�Pa reaches the maximum
when ½xi�Pc

A equals ½xi�Pc
a , and vice versa. So, E(aP;AP) can measure

the consistency between ½xi�Pa and ½xi�PA . From the analysis, we draw
the conclusion that the ordered mutual information with comple-
ment behavior of information gain is suitable to measure the
importance of criterion a, "a 2 A.

Next, on the basis of Definition 4.6, we will give a new definition
of DDI�Aðxi; xjÞ and propose a two-grade ranking approach with cri-
terion weights in interval ordered information systems.

Definition 4.7. Directional distance index DDI�Aðxi; xjÞ which consid-
ered weights of criteria between two objects under attributes set
A(A # AT) is defined as
DDI�Aðxi; xjÞ ¼
X
8a2A

EðaP; APÞP
8a2A

EðaP; APÞ
DDIaðxi; xjÞ:

Here, DDI�Aðxi; xjÞ has the same properties with DDIA(xi,xj).
Definition 4.8. Let S = (U,AT,V, f) be an IOIS and A # AT. Entire
directional distance index with criterion weights is defined as

DDI�AðxiÞ ¼
1

jUj � 1

X
j–i

DDI�Aðxi; xjÞ; xi; xj 2 U:

Analogously, a two-grade ranking approach considering
weights of criteria can be established.
Definition 4.9. Let S = (U,AT,V, f) be an IOIS and A # AT, xi, xj 2 U.
If DA(xi) P DA(xj), then xi dominates xj, denoted by xi<xj;
If DA(xi) 6 DA(xj), then xi is dominated by xj, denoted by xi ^ xj;
If DA(xi) = DA(xj), then

(1) If DDI�AðxiÞP DDI�AðxjÞ, then xi dominates xj, denoted by
xi<xj;

(2) If DDI�AðxiÞ 6 DDI�AðxjÞ, then xi is dominated by xj, denoted
by xi ^ xj;

(3) If DDI�AðxiÞ ¼ DDI�AðxjÞ, then xi is the same as xj, denoted
by xi = xj.

Definition 4.9 gives the two-grade ranking approach with
weights, in which the first grade is the same as the two-grade rank-
ing approach in Section 3, while the second grade is modified. The
modified entire directional distance index DDI�AðxiÞ is constructed
by the directional distance index DDI�Aðxi; xjÞ considering the
importance of criteria. It is obvious that this approach not only
meets with the motivations of this paper but also takes the practi-
cal decision situations into account. Therefore, a more reasonable
rank regarding decision behaviors of decision makers can be
acquired.

The modified ranking approach can be designed as the follow-
ing algorithm.
Algorithm 1. A modified two-grade ranking approach for interval
data (TGRA).

Input: Decision table S = (U,AT,V, f);
Output: The ranked array I.
Step 1: I [x1,x2, . . . ,xjUj]; // Initializing the array I, I(1) = x1,

I(2) = x2, . . . , I(jUj) = xjUj
Step 2: For i = 1 to jUj

{for j = 1 to jUj
{compute DAðIðiÞÞ ¼ 1

jUj�1

P
j–iDAðIðiÞ; IðjÞÞ}};

Step 3: For i = 1 to jUj
{for j = 1 to jUj
{if DA(I(i)) < DA(I(j))
x = I(i), I(i) = I(j), I(j) = x; //x is a temporary variable
if DA(I(i)) = DA(I(j))
compute DDI�AðxiÞ ¼ 1

jUj�1

P
j–iDDI�Aðxi; xjÞgg;

Step 4: For i = 1 to jUj
{for j = 1 to jUj
{if DAðIðiÞÞ ¼ DAðIðjÞÞ&DDI�AðIðiÞÞ < DDI�AðIðjÞÞ
x = I(i), I(i) = I(j), I(j) = x}}; //x is a temporary variable

Step 5: Return I and end.
Example 4.1. (Continued from Example 3.1). Rank all objects in U
according to the two-grade ranking approach with weights.

Based on Example 3.1, we rank those objects in U which cannot
be ranked by the entire dominance degree.

Firstly, according to the definition of EðaP
m ; ATPÞ, we have that
E aP
1 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a1
\ ½xi�Pc

AT j
jUj

¼ 1
10

5
10
þ 1

10
þ 1

10
þ 0þ 8

10
þ 5

10
þ 4

10
þ 6

10
þ 6

10
þ 8

10

� �

¼ 44
100
¼ 11

25
;



P. Song et al. / Knowledge-Based Systems 27 (2012) 234–244 241
E aP
2 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a2
\ ½xi�Pc

AT j
jUj

¼ 1
10

3
10
þ 0þ 0þ 0þ 5

10
þ 5

10
þ 4

10
þ 5

10
þ 8

10
þ 8

10

� �

¼ 38
100

¼ 19
50

;

E aP
3 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a3
\ ½xi�Pc

AT j
jUj

¼ 1
10

4
10
þ 1

10
þ 1

10
þ 0þ 8

10
þ 5

10
þ 4

10
þ 6

10
þ 6

10
þ 8

10

� �

¼ 43
100

;

E aP
4 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a4
\ ½xi�Pc

AT j
jUj

¼ 1
10

4
10
þ 0þ 4

10
þ 0þ 7

10
þ 7

10
þ 4

10
þ 9

10
þ 6

10
þ 2

10

� �

¼ 43
100

;

E aP
5 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a5
\ ½xi�Pc

AT j
jUj

¼ 1
10

3
10
þ 0þ 0þ 0þ 5

10
þ 5

10
þ 4

10
þ 5

10
þ 8

10
þ 8

10

� �

¼ 38
100

¼ 19
50

Then, DDI�ATðxiÞ can be calculated

DDI�ATðx5Þ ¼ DDI�ATðx5; x8Þ ¼
X5

m¼1

EðaP
m ; ATPÞP5

m¼1EðaP
m ; ATPÞ

DDIam ðx5; x8Þ

¼ 0:44
2:06

� 5
8
þ 0:38

2:06
� 1

2
þ 0:43

2:06
� 5

8
þ 0:43

2:06
� 3

8
þ 0:38

2:06
� 1

2
¼ 0:53;
DDI�ATðx8Þ ¼ DDI�ATðx8; x5Þ ¼ 1� DDI�ATðx5; x8Þ ¼ 0:47 < 0:53

¼ DDI�ATðx5Þ;

DDI�ATðx9Þ ¼ DDI�ATðx9; x10Þ ¼
X5

m¼1

EðaP
m ; ATPÞ

P5
m¼1

EðaP
m ; ATPÞ

DDIam ðx9; x10Þ

¼ 0:44
2:06

� 3
8
þ 0:38

2:06
� 1

2
þ 0:43

2:06
� 3

8
þ 0:43

2:06
� 5

8
þ 0:38

2:06
� 1

2
¼ 0:47;
DDI�ATðx10Þ ¼ DDI�ATðx10; x9Þ ¼ 1� DDI�ATðx9; x10Þ ¼ 0:53 > 0:47

¼ DDI�ATðx9Þ:

Therefore, the ranking result can be obtained as follows

x5 < x8 < x10 < x9 < x7 < x6 < x1 < x3 < x2 < x4:

From Example 4.1, a complete rank of objects can also be ob-
tained. Obviously, according to the two-grade ranking approach
with weights, object x5 and object x8 in the original rank have been
distinguished, and objects x9 and x10 have the similar result. More-
over, the property of rank preservation is also kept. In fact, from the
perspective of decision-making situations, determining the weight
of each criterion is a crucial step for more rational ranking decision.
Hence, the order mutual information EðaP

m ; ATPÞ with complement
behavior of information gain is introduced to measure the impor-
tance of criterion am. This approach to determining weights can re-
flect both the characteristics of data sets and decision behaviors of
decision makers, which seems more rational and comprehensive.
5. Case study

Stock selection is an important research issue in financial field.
In essence, the problem of stock selection is to rank alternatives on
the basis of their values of some indicators. The purpose of this sec-
tion is, through an actual issue of stock selection, to verify the
effectivity of the proposed two-grade ranking approach.

In the case study, we will employ twenty stocks xi

(i = 1,2, . . . ,20) from the tourism sector in Chinese A-share stock
markets. We select three attributes for evaluating these stocks,
which are earnings per share, book-to-market equity, and total as-
sets turnover, denoted by am (m = 1,2,3). Among these three indi-
cators, earnings per share and total assets turnover reflect the
profitability and operational capacity of enterprises, while book-
to-market equity is also recognized as an important factor which
is positive correlation with stock returns. Therefore, we will use
these indicators for this case study.

Generally, the attribute values of each stock are depicted by a
numerical number. However, it is difficult for us to analyze the
range of the value of objects under each attribute. In order to better
reveal the entirety of a data set, we can adopt such a strategy to
transform a single-valued data set into an interval-valued data
set based on the idea of data-packaging. Here, we will make use
of quarterly data of each stock from 2008 to 2009, where the min-
imum value is denoted by aL

mðxiÞ and the maximum value is wrote
by aU

mðxiÞ under every attribute. Through data processing, the inter-
val ordered information system about stock selection is estab-
lished, which is shown in Table 2, where U = {x1,x2, . . . ,x20} and
AT = {a1,a2,a3}.

Firstly, according to the definition of ½xi�PAT , we have that

½x1�PAT ¼ fx1; x4; x16g;
½x2�PAT ¼ fx2; x4; x7; x11; x13; x14; x15; x16; x17; x20g;

½x3�PAT ¼ fx3g; ½x4�PAT ¼ fx4g; ½x5�PAT ¼ fx4; x5; x9; x14; x15; x16g;

½x6�PAT ¼ fx6; x14; x15; x20g;
½x7�PAT ¼ fx7; x14; x15g; ½x8�PAT ¼ fx8; x9; x14; x15; x16; x20g;

½x9�PAT ¼ fx9g; ½x10�PAT ¼ fx4; x10; x14; x15; x16; x20g;
½x11�PAT ¼ fx4; x11; x14; x15; x16g;

½x12�PAT ¼ fx12g; ½x13�PAT ¼ fx4; x13; x15g;
½x14�PAT ¼ fx14g; ½x15�PAT ¼ fx15g;

½x16�PAT ¼ fx16g; ½x17�PAT ¼ fx14; x16; x17; x20g; ½x18�PAT ¼ fx18g;

½x19�PAT ¼ fx4; x9; x10; x13; x14; x15; x16; x19; x20g; ½x20�PAT ¼ fx20g:

Therefore, one can obtain the dominance relation matrix as
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1 0:95 0:85 0:9 0:95 0:85 � � � 0:85 0:9 0:9 0:85 0:95 0:85

0:6 1 0:55 0:55 0:7 0:65 � � � 0:55 0:55 0:7 0:5 0:8 0:55

0:95 0:95 1 0:95 0:95 0:95 � � � 0:95 0:95 0:95 0:95 0:95 0:95

1 1 0:95 1 1 0:95 � � � 0:95 0:95 0:95 0:95 1 0:95

0:8 0:9 0:7 0:75 1 0:8 � � � 0:75 0:75 0:8 0:7 0:95 0:7

0:8 0:95 0:8 0:8 0:9 1 � � � 0:85 0:8 0:9 0:8 0:95 0:85

0:85 1 0:85 0:85 0:95 0:95 � � � 0:9 0:85 0:9 0:85 0:95 0:85

0:75 0:9 0:7 0:7 0:9 0:85 � � � 0:75 0:75 0:85 0:7 0:95 0:75

0:95 0:95 0:95 0:95 1 0:95 � � � 0:95 0:95 0:95 0:95 1 0:95

0:8 0:95 0:7 0:75 0:9 0:85 � � � 0:75 0:75 0:85 0:7 1 0:75

0:85 1 0:75 0:8 0:95 0:85 � � � 0:8 0:8 0:85 0:75 0:95 0:75

0:95 0:95 0:95 0:95 0:95 0:95 � � � 0:95 0:95 0:95 0:95 0:95 0:95

0:9 1 0:85 0:9 0:95 0:9 � � � 0:9 0:85 0:85 0:85 1 0:85

0:95 1 0:95 0:95 1 1 � � � 0:95 0:95 1 0:95 1 0:95

0:95 1 0:95 0:95 1 1 � � � 1 0:95 0:95 0:95 1 0:95

1 1 0:95 0:95 1 0:95 � � � 0:95 1 1 0:95 1 0:95

0:85 1 0:8 0:8 0:9 0:9 � � � 0:8 0:85 1 0:8 0:95 0:85

0:95 0:95 0:95 0:95 0:95 0:95 � � � 0:95 0:95 0:95 1 0:95 0:95

0:65 0:85 0:55 0:6 0:8 0:7 � � � 0:6 0:6 0:7 0:55 1 0:6

0:95 1 0:95 0:95 0:95 1 � � � 0:95 0:95 1 0:95 1 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Then, we can get that

DATðx1Þ ¼ 0:8895; DATðx2Þ ¼ 0:6237; DATðx3Þ ¼ 0:95;
DATðx4Þ ¼ 0:9684;

DATðx5Þ ¼ 0:7947; DATðx6Þ ¼ 0:8632; DATðx7Þ ¼ 0:9;
DATðx8Þ ¼ 0:7921;

DATðx9Þ ¼ 0:9579; DATðx10Þ ¼ 0:8053;
DATðx11Þ ¼ 0:8395; DATðx12Þ ¼ 0:95;

DATðx13Þ ¼ 0:8974; DATðx14Þ ¼ 0:9737;

DATðx15Þ ¼ 0:9737; DATðx16Þ ¼ 0:9711;

DATðx17Þ ¼ 0:8632; DATðx18Þ ¼ 0:95;

DATðx19Þ ¼ 0:6684; DATðx20Þ ¼ 0:9658:
Table 2
An interval ordered information system about stock selection.

U Stock code a1 a2 a3

x1 000007 [�0.1577,0.2254] [0.2279,0.6261] [0.0488,0.0854]
x2 000033 [�0.0382,0.0212] [0.1971,0.5813] [0.0309,0.0382]
x3 000069 [0.0180,0.3270] [0.3758,0.7145] [0.0249,0.3628]
x4 000428 [0.0000,0.2585] [0.5779,1.0334] [0.0580,0.1142]
x5 000430 [�0.1600,0.1000] [0.3270,0.6165] [0.0254,0.1140]
x6 000524 [�0.0900,0.0630] [0.4382,0.9639] [0.0582,0.0947]
x7 000610 [�0.0321,0.0285] [0.4760,0.9029] [0.0614,0.1285]
x8 000802 [�0.1527,0.0481] [0.3513,0.7635] [0.0595,0.0783]
x9 000888 [�0.0539,0.2142] [0.4422,0.7668] [0.0757,0.1813]
x10 000978 [�0.0440,0.1190] [0.3856,0.8101] [0.0421,0.0701]
x11 002033 [0.0000,0.1700] [0.3411,0.7464] [0.0391,0.0692]
x12 002059 [�0.0300,0.0861] [0.7967,1.1671] [0.0216,0.1968]
x13 002159 [�0.0330,0.1230] [0.5325,0.9263] [0.0390,0.1118]
x14 600,138 [0.0403,0.1772] [0.4922,0.9721] [0.1830,0.4405]
x15 600,175 [0.0000,0.1700] [0.6648,0.9762] [0.1151,0.2449]
x16 600,258 [0.1044,0.3731] [0.3867,0.9343] [0.1563,0.3060]
x17 600,358 [0.0010,0.0410] [0.2819,0.6104] [0.0397,0.0623]
x18 600,593 [�0.1407,0.2700] [0.4161,1.0364] [0.0177,0.1035]
x19 600,749 [�0.0941,0.0918] [0.3569,0.7586] [0.0066,0.0635]
x20 601,007 [0.0290,0.1390] [0.6873,1.0706] [0.0644,0.0978]
According to the definition of DAT(xi), the prior rank can be obtained
as follows

x14

x15

� �
< x16 < x4 < x20 < x9 <

x3

x12

x18

0
B@

1
CA < x7 < x13 < x1 <

x6

x17

� �
< x11 < x10 < x5 < x8 < x19 < x2:

From the prior rank, one sees that several stocks cannot be
ranked (seeing x14 and x15, x3, x12 and x18, x6 and x17). As we know,
stock selection is a typical issue of investment decision, in which
limited capital is a major constraint. So a complete rank of alterna-
tives is desirable for investors. However, the dominance degree
DA(xi,xj) only gives the preferability degree of the object xi over xj

through investigating the relative ranking position of objects,
which is difficult to obtain a complete rank. Next, we will adopt
the second grade DDI�AðxiÞ to rank these objects for a complete rank.

Here, we need to calculate the ordered mutual information
E aP

m ; ATP� �
as weights of criteria.

E aP
1 ;ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a1
\½xi�Pc

AT j
jUj ¼ 1

20
15
20
þ 8

20
þ18

20
þ17

20
þ 7

20

�

þ 8
20
þ10

20
þ 5

20
þ16

20
þ11

20
þ14

20
þ12

20
þ12

20
þ18

20
þ14

20

þ19
20
þ15

20
þ17

20
þ 9

20
þ17

20

�
¼262

400
¼131

200
;

E aP
2 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a2
\ ½xi�Pc

AT j
jUj ¼ 1

20
3

20
þ 0þ 7

20
þ 17

20
þ 3

20

�

þ 14
20
þ 13

20
þ 7

20
þ 12

20
þ 9

20
þ 5

20
þ 19

20
þ 15

20
þ 15

20
þ 17

20

þ 12
20
þ 2

20
þ 17

20
þ 7

20
þ 18

20

�
¼ 212

400
¼ 53

100
;

E aP
3 ; ATP� �

¼
XjUj
i¼1

1
jUj
j½xi�Pc

a3
\ ½xi�Pc

AT j
jUj ¼ 1

20
11
20
þ 5

20
þ 18

20
þ 14

20
þ 13

20

�

þ 13
20
þ 15

20
þ 13

20
þ 16

20
þ 9

20
þ 8

20
þ 15

20
þ 13

20
þ 19

20
þ 17

20

þ 18
20
þ 8

20
þ 9

20
þ 2

20
þ 15

20

�
¼ 251

400
:

Then, we will rank such stocks that cannot be ranked by DAT(xi).
(1) Let us rank the objects x14 and x15.
DDI�AT ðx14Þ ¼ DDI�AT ðx14;x15Þ ¼
X3

m¼1

E aP
m ; ATP� �

P3
m¼1E aP

m ; ATP� �DDIam ðx14;x15Þ

¼ 0:655
1:8125

1
2
þ 1

4
0:1772� 0:17þ 0:0403� 0

0:3731� ð�0:16Þ

� �

þ 0:53
1:8125

1
2
þ 1

4
0:9721� 0:9762þ 0:4922� 0:6648

1:1671� 0:1971

� �

þ 0:6275
1:8125

1
2
þ 1

4
0:4405� 0:2449þ 0:183� 0:1151

0:4405� 0:0066

� �

¼ 0:5473;
DDI�ATðx15Þ ¼ DDI�ATðx15; x14Þ ¼ 1� DDI�ATðx14; x15Þ
¼ 1� 0:5473 ¼ 0:4527:
Obviously, we can conclude x14<x15.
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(2) Let us rank the objects x3, x12 and x18. Through the definition
of DDI�ATðxi; xjÞ, one can obtain the directional distance index
relation matrix as
0:5 0:5169 0:5624

0:4831 0:5 0:5455

0:4376 0:4545 0:5

0
BB@

1
CCA:
From the above matrix, one can easily obtain the following result
DDI�ATðx3Þ ¼
1
2

DDI�ATðx3; x12Þ þ DDI�ATðx3; x18Þ
	 


¼ 0:5397;
DDI�ATðx12Þ ¼
1
2

DDI�ATðx12; x3Þ þ DDI�ATðx12; x18Þ
	 


¼ 0:5143;

DDI�ATðx18Þ ¼
1
2

DDI�ATðx18; x3Þ þ DDI�ATðx18; x12Þ
	 


¼ 0:4461;
Thus we can conclude x3<x12<x18.
(3) Let us rank the objects x6 and x17.

DDI�ATðx6Þ ¼ DDI�ATðx6; x17Þ ¼ 0:5369;

DDI�ATðx17Þ ¼ DDI�ATðx17; x6Þ ¼ 1� DDI�ATðx6; x17Þ ¼ 1� 0:5369

¼ 0:4631:

Thus we can conclude x6<x17.

Therefore, according to Definition 3.5 and Algorithm 1, we can
get a complete ranking result as follows

x14 < x15 < x16 < x4 < x20 < x9 < x3 < x12 < x18 < x7 < x13 <

x1 < x6 < x17 < x11 < x10 < x5 < x8 < x19 < x2:

In this case, we try to completely rank all stocks for a more sat-
isfactory investment decision. However, there are seven stocks
cannot be ranked through the first grade DA(xi) in the entire stocks.
Then, the second grade DDI�AðxiÞ is employed for measuring more
detailed difference of objects, where each weight of criteria is at-
tained by the presented ordered mutual information. Clearly, using
the developed ranking approach, we have obtained a complete
ranking result of the stocks.

6. Conclusions

As to ranking decision, existing approaches cannot obtain the
complete rank of objects with interval values. We want to over-
come this shortcoming based on the three viewpoints: (1) one
keeps the rank induced by original entire dominance degree un-
changed; (2) the objects lying in the same place in this rank should
be further ranked; and (3) the difference in-between objects in the
same place can be characterized by their values under every attri-
bute. Taking these three viewpoints into account, in this paper, we
first have proposed an entire directional distance index, which can
be used to further distinguish the difference among objects with
the same place in the rank induced by Qian’s approach. Based on
this proposed index, we have then developed a two-grade ap-
proach to ranking objects with interval values, which can obtain
a complete rank without destroying the rank induced by Qian’s ap-
proach. In order to rank objects more rationally, we have also pre-
sented a concept of ordered mutual information, which can be
used to calculate the weight of each criterion. The two-grade rank-
ing approach with weights is a much better choice to ranking ob-
jects. Finally, we have employed a case about stock selection for
verifying the effecitivity of the proposed two-grade ranking ap-
proach. Results show that the proposed two-grade approach is
much better than the original one to ranking objects with interval
values.
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