
Pattern Recognition Letters 159 (2022) 125–131 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Cross-modal propagation network for generalized zero-shot learning 

Ting Guo 

a , Jianqing Liang 

a , ∗, Jiye Liang 

a , Guo-Sen Xie 

b 

a Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information 

Technology, Shanxi University, Taiyuan, Shanxi, China 
b Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates 

a r t i c l e i n f o 

Article history: 

Received 11 March 2022 

Revised 5 May 2022 

Accepted 9 May 2022 

Available online 11 May 2022 

Edited by: Jiwen Lu 

Keywords: 

Zero-shot learning 

Generative adversarial network 

Meta-learning 

Label propagation 

a b s t r a c t 

Zero-shot learning (ZSL) aims to recognize unseen classes by transferring semantic knowledge from seen 

classes to unseen ones. Since only seen classes are available during training, the domain bias issue, i.e., 

the trained model is biased toward seen classes, is the key issue for ZSL. To alleviate the bias problem, 

generation-based approaches are proposed to build generative models that can generate fake visual fea- 

tures of unseen classes by utilizing semantic vectors. However, most of the existing generative methods 

still suffer some degree of domain bias caused by the ambiguous generation of fake features. In this paper, 

we propose a cross-modal propagation network (CMPN), which adopts an episode-based meta-learning 

strategy. CMPN incorporates the adaptive graph construction and label propagation into the generative 

ZSL framework for guaranteeing an unambiguous and discriminative fake feature generating. By further 

leveraging the manifold structure of different modalities in the latent space, CMPN can implicitly ensure 

intra-class compactness and inter-class separation through label propagation classification in latent space. 

Extensive experiments on four datasets validate the effectiveness of CMPN under both ZSL and general- 

ized ZSL (GZSL) settings. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The success of deep learning [1] , which has gained consider- 

ble development for various tasks [2,3] , relies on the availabil- 

ty of sufficient training data that is annotated by humans. How- 

ver, in realistic scenarios, some classes have a considerable num- 

er of training samples, while others have few or even no training 

ata. Since the collection of labeled data for some classes is labor- 

ntensive and sometimes impossible, zero-shot learning (ZSL) [4] is 

eveloped to address the limitations in deep learning. ZSL identi- 

es samples of classes that do not appear in the training set with 

he aid of semantic information, such as attribute vectors defined 

anually [5] or word embedding vectors [6] . Semantic information 

erves as a bridge to connect the seen classes and unseen ones, 

nd the ZSL model aims to recognize unseen classes by transfer- 

ing semantic knowledge from seen classes to unseen ones. 

In recent years, ZSL has received more attention in the field of 

ision. Most of the ZSL methods [7–9] learn a visual-semantic em- 

edding function that aims to obtain a latent representation space 

or both visual and semantic. However, generalized ZSL (GZSL), be- 

ng a more challenging task, tests both seen and unseen class im- 
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ges in the testing stage. Since only seen classes are available in 

he training stage, unseen test images will have a high probability 

f being misclassified as seen classes, which we call the domain 

ias problem. Some methods [10–19] have been proposed to allevi- 

te this problem in GZSL, of which generation-based methods [10–

5] have received considerable attention. Generation-based meth- 

ds mitigate the domain bias problem by training generators to 

ynthesize sufficient fake visual features for unseen classes using 

emantic vectors. SE-GZSL [10] proposes a feedback-driven mecha- 

ism to get an improved generator based on the framework of the 

onditional variational autoencoder. f-CLSWGAN [11] trains wasser- 

tein generative adversarial networks (WGAN) based on class- 

evel semantic information. CADA-VAE [12] trains variational auto- 

ncoder (VAE) to encode and decode visual and semantic features 

espectively, it also uses a cross-alignment (CA) loss and a dis- 

ribution aligned (DA) loss to train the generator. f-VAEGAN-D2 

13] combines the advantages of VAE and generative adversarial 

etworks (GAN), learning the marginal feature distribution of un- 

abeled images by utilizing unconditional discriminator. Consider- 

ng that previous methods optimize the model based only on seen 

lasses and neglect to explicitly learn to generate fake visual fea- 

ures of unseen ones in the training stage. The idea of episode- 

ased meta-learning [20,21] has inspired the community to solve 

he domain bias problem in GZSL. ZSML [14] has been proposed to 

eal with ZSL by exploiting a learning paradigm of meta-learning. 

https://doi.org/10.1016/j.patrec.2022.05.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.05.009&domain=pdf
mailto:liangjq@sxu.edu.cn
https://doi.org/10.1016/j.patrec.2022.05.009
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t designs episode learning based on model-agnostic meta-learning 

21] . The ZSL is simulated in each episode to learn to generate 

igh-quality features with the given semantic vectors. After mul- 

iple episodes, the model can gradually accumulate the ability of 

enerating unambiguous fake visual features. 

However, previous generative ZSL/GZSL approaches have not 

onsidered whether the synthesized fake visual features of unseen 

lasses can guide the classification of real visual features, that is, 

hose methods still fail to guarantee intra-class compactness and 

nter-class separation in latent space. Thus, the adaptive graph con- 

truction and label propagation are incorporated into the genera- 

ive ZSL model, which is termed as cross-modal propagation net- 

ork (CMPN). In CMPN, motivated by the assumption that sam- 

les with different modalities and the same semantics satisfy the 

anifold assumption in the latent space, we construct a graph of 

isual and semantic samples in latent space and implement cross- 

odal label propagation for classification. In this way, the fake vi- 

ual features generated by semantic vectors can propagate label in- 

ormation to visual features, achieving cross-modal label propaga- 

ion. Specifically, we adopt a meta-learning strategy for training. 

ur main contributions are summarized as follows: 

1) We propose a cross-modal propagation network (CMPN) 

based on meta-learning for advancing the previous generative 

ZSL/GZSL methods. CMPN guarantees intra-class compactness 

and inter-class separation in the latent space, which is a com- 

mon representation space for both visual and semantic modal. 

2) CMPN incorporates adaptive graph construction and label prop- 

agation into the generative ZSL/GZSL model in the latent space 

for generating unambiguous and discriminative fake features. 

3) CMPN is evaluated using conventional benchmark datasets, i.e. 

AWA1, AWA2, CUB, and aPY under ZSL and GZSL settings. Ex- 

tensive experiments on these benchmarks validate the effec- 

tiveness of CMPN. 

. Related work 

.1. Zero-shot learning 

Zero-shot learning (ZSL) [4] aims to identify the image of un- 

een classes, which do not appear in the training stage. The key 

f ZSL is transferring semantic knowledge from seen classes to un- 

een ones. Some works [7–9] are dedicated to obtaining a shared 

mbedding space for visual and semantic modal utilizing seen 

lasses. ZSL focuses only on the classification of unseen classes, 

owever, it is more realistic to include both seen and unseen 

lasses in the testing set. Thus generalized ZSL (GZSL) considers 

oth the classification of test seen and test unseen images dur- 

ng the testing. The methods of GZSL are dedicated to solving 

he bias problem, where unseen test images are often misclassi- 

ed into seen classes. These works can be divided into generation- 

ased methods [10–15,19] and attribute-based methods [16–18] . 

eneration-based GZSL trains the generative model based on the 

een classes, then generates unseen classes samples utilizing the 

iven semantic vectors, merging the seen class samples to con- 

truct a full-observed training dataset. After that, we can train 

 supervised classification model (e.g., SVM or softmax classifier) 

o achieve the classification of GZSL. Attribute-based GZSL uti- 

izes class attribute vectors to guide the transformation from visual 

pace to semantic space, increasing the separability of visual fea- 

ures in semantic space. After that, the classifier searches for the 

lass attribute vector with the highest compatibility. 

.2. Meta-learning 

To address the drawbacks of traditional machine learning where 

ata is rare or expensive unavailable, meta-learning [22] has been 
126 
roposed to improve learning performance by accumulating expe- 

ience. The meta-learning model uses a training model of mul- 

iple episodes. Meta-learning has advanced the development of 

eep learning and thus led to the explosion of research on meta- 

earning recently. Meta-learning has been successfully applied in 

everal domains, which include few shot image recognition [20] , 

einforcement learning [23] , and hyper-parametric optimization 

24] . Hospedales et al. [25] mention that meta-learning can im- 

rove the generalization of models for a given problem. 

.3. Label propagation 

The label propagation (LP) [26] , a graph-based semi-supervised 

earning method, which is proposed to predict the label of un- 

abeled samples. It is an iterative algorithm that builds a graph 

odel by the relationship between samples, each node updates its 

abel guided by the neighboring samples. LP has two assumptions 

nder the semi-supervised learning setting: (i) The smoothness as- 

umption, where neighboring samples have the same label. (ii) The 

anifold assumption, where points on the same manifold structure 

ave the same labels. As such, when the data satisfies these two 

ssumptions, we can use LP to solve the semi-supervised learning 

roblem. LP has attracted tremendous attention because of its sim- 

le and easy implementation, short algorithm execution time, and 

ood classification effect, and has been widely applied to multi- 

edia information classification [27] , community mining [28] and 

ther fields. In this paper, we argue that samples with different 

odalities but the same semantics satisfy the smoothness assump- 

ion and manifold assumption in the latent space. 

. Methodology 

In this section, we introduce a cross-modal propagation net- 

ork (CMPN). Firstly, we give the problem definitions of ZSL and 

ZSL. Then, we present the proposed CMPN and illustrate different 

arts of it. 

.1. Problem definition 

We first formalize the ZSL and GZSL tasks. Given a train- 

ng set D = { (x i , y i , a (y i )) | x i ∈ X , y i ∈ Y 

S , a (y i ) ∈ A } , x i ∈ R 

d 1 ×1 is 

he d 1 -dimensional visual feature vector and y i is the label 

f x i in the training set. a (y i ) ∈ A is the class semantic em-

edding. In addition, we have a disjoint class label set U = 

 (y j , a (y j )) | y j ∈ Y 

U , a (y j ) ∈ A} of unseen classes, where visual fea- 

ures are missing. It is well known that, Y 

S ⋂ 

Y 

U = ∅ . The goal of

SL is to learn a prediction: X → Y 

U . In a generalizd setting, the

est images come from both seen and unseen classes. With D and 

, we learn a prediction: X → Y 

S ∪ Y 

U . 

.2. Cross-modal propagation network (CMPN) 

CMPN adopts a meta-learning strategy, as shown in Fig. 1 . In 

he meta-training stage, we randomly select 2 C classes from the 

een classes to construct an episode, where C classes are treated 

s seen classes, and other C classes are treated as fake unseen 

lasses. In an episode, the zero-shot task is simulated to classify 

mages of C fake unseen classes, provided that C seen classes are 

resent. After multiple episodes, the base model gradually accumu- 

ates the ability to handle zero-shot problems. In the meta-testing 

tage, the features are generated utilizing the semantic vector of 

nseen classes. 

For the base model training, we integrate the generative model, 

eature embedding, adaptive graph construction, and label prop- 

gation into a unified framework. The framework diagram of 

MPN is shown in Fig. 2 . The goal of CMPN is to ensure that
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Fig. 1. The architecture of meta ZSL. 
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he fake visual features generated by the semantic vectors have 

ntra-class compactness and inter-class separation. The generative 

odel, which is used to generate fake visual features, ensures that 

he visual and semantic information is aligned in the visual space. 

he feature embedding is a neural network that maps features in 

he visual space to a new latent space. In that space, we obtain 

he nearest neighbor graph via adaptive graph construction and 

erform label propagation. Adaptive graph construction computes 

he parameters of distance metric to explore the manifold struc- 

ure between different modalities and label propagation aims to 

se the label information of semantic features to predict the label 

f visual features. 

.2.1. Feature generation 

For each episode S i = { S tr , S te } , S tr is the samples of seen classes

ncluding visual samples X s and their corresponding semantic vec- 

ors A s , S te is the samples of fake unseen classes including visual 

amples X u and the corresponding semantic vectors A u . In CMPN, 

e use S tr and S te for transductive training under one episode. For 

he generator G : Z × A → X , random Gaussian noise z ∈ Z and se-

antic vector a ∈ A are the inputs of the generator to generate 

eatures ˆ x ∈ X . The discriminator D aims to discriminate whether 

he sample is a fake visual feature ˆ x or a real visual feature x .

e use the classical GAN [29] as the generator. The generator tries 

o generate fake visual features that can fool the discriminator D . 

ith G and D , we can construct the relationship between the vi- 

ual features and the semantic features. The discriminator D can be 

earned by optimizing the adversarial objective. The losses of G and 

 are defined as: L D = E [ D (x, a )] − E [ D ( ̂  x , a ) ] , L G = −E [ D ( ̂  x , a )] . 

.2.2. Feature embedding 

Feature generation mainly generates fake visual features utiliz- 

ng semantic vectors, but we argue that the original visual space 
ig. 2. The architecture of CMPN for one episode. Different colors are used to distinguish t

Lion”, “Zebra” and “Panda”, respectively. 

127
ay lack discriminative ability. Therefore we map the real visual 

eatures and fake visual features to a new latent space E. To boot- 

trap the space E to be more discriminative, we perform adaptive 

raph construction and label propagation in this space. 

.2.3. Adaptive graph construction 

Manifold learning is to map the high-dimensional data to low- 

imensional space so that this low-dimensional data can reflect 

ome essential structural properties of the high-dimensional data. 

he most important factor in manifold learning is the construction 

f graph that reflects the true manifold of the data. Therefore, the 

hoice of distance metric is particularly important when construct- 

ng the graph. In this paper, we use Gaussian similarity function as 

istance metric: w i j = exp (−|| x i −x j || 2 
2 σ 2 ) , where σ is the length scale 

arameter. The nearest neighbor graph structure changes with dif- 

erent values of σ . For label propagation, the value of σ is worth 

onsidering. In this paper, we use the information of the sample 

tself to learn σ , so the P network is utilized to get the σ corre-

ponding to each sample in space E : σi = P (E(x i )) . 

 i j = exp(−1 

2 

|| E(x i ) 

σi 

, 
E(x j ) 

σ j 

|| 2 ) . (1) 

The adaptive graph construction utilizes the network to learn 

he length scale parameter σ . The similarity between nodes is cal- 

ulated utilizing the metric function and the graph is constructed 

sing k-nearest neighbors. As shown in Fig. 2 , the graph of an 

pisode is constructed where the nodes are E(x i ) and the edges 

re the relationship between two points. 

.2.4. Label propagation 

The goal of label propagation is to use the label information of 

 u to infer the label of samples in X u . It can be deduced that the

esign of the base model in CMPN is a transductive-style manner. 

he cross-modal label propagation learning aims to obtain a more 

iscriminative latent space. A symmetric adjacency matrix W has 

een constructed, w i j is the similarity of the sample pair. We then 

erform a graph Laplacian on W , R = D 

−1 / 2 W D 

−1 / 2 , where D is a

iagonal matrix, the value of D ii is the sum of i th row of W . The

abel matrix Y is further defined as follows: 

 i j = 

{
1 x i ∈ S tr 

∧ 

y i = j or x i ∈ 

ˆ X 

∧ 

y i = j 

0 x i ∈ X u . 
(2) 

Label propagation identifies the label iteratively: F = 

I − γ R ) −1 
Y , where I is the identity matrix, γ ∈ (0 , 1) is a 

arameter. The classification loss is calculated by measuring the 

rediction of label and ground truth of S tr and S te . F is converted

o probabilistic score by softmax: P ( ̃  y i = j) = 

exp(F i j ) ∑ 

j=1 exp(F i j ) 
, where ˜ y i 
he classes of the vectors, i.e. “blue”, “orange”, “green”, and “pink” represent “Tiger”, 
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Table 1 

The detail of the datasets. “Att” is the dimension of the attribute. “S/U”

is the number of seen classes and unseen classes. “Img (Tr)” is the num- 

ber of images of the train. “Img (Te-s)” is the number of images that be- 

long to seen classes of the test set. “Img (Te-u)” is the number of images 

that belong to unseen classes of the test set. 

Dataset Att S/U Img (Tr) Img (Te-s) Img (Te-u) 

AWA1 85 40/10 19,832 4958 5685 

AWA2 85 40/10 23,527 5882 7913 

CUB 1024 150/50 7057 1764 2967 

aPY 64 20/12 5932 1483 7924 
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s the predicted label of the i th sample. The classification loss is 

omputed as: 

 C = 

C×(N 1 + N 2 ) ∑ 

i =1 

2 C ∑ 

j=1 

−I (y i == j) log(P ( ̃  y i = j| x i )) , (3)

here N 1 and N 2 are the number of samples for each class in S tr 

nd S ts respectively, and y i is the ground truth of x i . Indicator func-

ion I (b) , I (b) == 1 if b is true, else I (b) == 0 . The objective L GC is

iven as: L GC = αL G + βL C , where α, β are hyperparameters. We 

rain an episode in an end-to-end style. After several episodes of 

raining, we believe that the model has accumulated experience in 

andling zero-shot problems. Therefore, the total loss of our model 

n an episode takes the form of: L = L D + L GC . 

.3. Testing procedure 

After training, we get the trained generator and network for 

eature embedding, so we can generate the labeled samples of un- 

een classes. For ZSL, we use the synthesized samples to train a 

lassification model, such as SVM. For GZSL, the synthesized sam- 

les of unseen classes merge the samples of the seen class to train 

 classification model. Finally, we make predictions for the input 

est visual features v . f (E(v )) = arg max y ∈ ̃ Y M(y | E(v ) ; θ ′ ) . Where θ ′ 
s the parameter of the classification model M. For ZSL, ˜ Y = Y 

U , for

ZSL, ˜ Y = Y 

S ∪ Y 

U . 

. Experiments 

.1. Datasets and settings 

We evaluate our model on four benchmark datasets, as shown 

n Table 1 , including Animals with Attributes 1 (AWA1) [4] , Ani- 

als with Attributes 2 (AWA2) [30] , Caltech-UCSD Birds (CUB) [31] , 

nd Attribute Pascal and Yahoo (aPY) [32] , where the criteria of 

ataset partition follows the [30] . Each dataset consists of visual 

eatures that are extracted from ResNet-101 pre-trained on Ima- 

eNet and semantic vectors are designed by humans ( Table 1 ). 

The whole framework consists of a generator ( G ), a discrimina- 

or ( D ), a network for feature embedding ( E), and a length scale pa-

ameter calculator ( P ). For all the data we set the output dimension

f generator G to 2048, which is consistent with the visual dimen- 

ion, the output dimension of network for feature embedding E to 

12, and the output of parameter calculator P to 1 dimension. The 

enerator G and discriminator D contain three fully-connected lay- 

rs with LeakyReLU activation. The network E contains one fully- 

onnected layer with LeakyReLU activation. The length scale pa- 

ameter calculator P consists of two convolution blocks, each con- 

aining a 3 × 3 convolution, batch normalization, ReLU activation, 

nd 2 × 2 max-pooling. 

We use the episode-training paradigm of meta-learning, in an 

pisode, S tr includes 10 classes with 5 samples each, S te includes 

0 classes with 3 samples each. For parameters α and β , we take 

= 0 . 1 , β = 1 for ZSL task and α = 1 , β = 10 for GZSL task. The
128 
alue of γ of label propagation is set to 0.99. For ZSL, the AWA1 

ataset needs to generate 100 samples per class, 100 samples per 

lass for AWA2 dataset, 50 samples per class for CUB dataset, and 

00 samples per class for aPY dataset. For GZSL, the AWA1 dataset 

eeds to generate 50 0 samples per class, 60 0 samples per class 

or AWA2 dataset, 50 samples per class for CUB dataset, and 600 

amples per class for aPY dataset. We train the model for 50 0 0 it-

rations for the CUB dataset and 500 iterations for the aPY dataset. 

he AWA1 and AWA2 datasets converge after 20,0 0 0 iterations. For 

SL, the evaluation criterion is classification accuracy, and for GZSL, 

he evaluation criterion is a harmonic mean which is defined as 

 = 

2 ×As ×Au 
As + Au 

, H is determined by the class average accuracy of seen 

lasses As and class average accuracy of unseen classes Au . The 

igher H is, the better the GZSL algorithm is. 

.2. Comparisons with state-of-the-art methods 

Table 2 shows the results of CMPN compared to the state-of- 

he-art GZSL methods. Our CMPN achieves significant improve- 

ents of at least 1 . 1% , 0 . 9% , 1 . 9% and 2 . 9% of the harmonic mean

n AWA1, AWA2, CUB and aPY, respectively. Specifically, our ap- 

roach achieves competitive results compared to the current meta 

SL methods [14,36] . These results demonstrate the superiority and 

reat potential of CMPN for feature generation. 

Table 3 shows the comparison of CMPN with the existing state- 

f-the-art methods for ZSL. Our CMPN achieves significant im- 

rovements of at least 2 . 1% , 6 . 5% , 3 . 0% and 0 . 3% of the classifi-

ation accuracy on AWA1, AWA2, CUB and aPY, respectively. Com- 

ared with relation net [36] and ZSML [14] , CMPN considers the 

ross-modal label information propagation during training to en- 

ure the generation of discriminative features. 

.3. Analysis of hyper-parameters 

We evaluate the impact of the different number of selected 

een and fake unseen classes in an episode. We restrict the num- 

er of classes of seen and fake unseen classes to be the same. The 

umber of classes ranged from 5 to 20 with an interval of 5. As can

e seen in Fig. 3 (a), the choice of the number of classes greatly af-

ects the classification performance. We think it is most appropri- 

te to choose 10 seen classes and 10 fake unseen classes form an 

pisode. 

By constraining the total number of seen classes and fake un- 

een classes to be constant, we investigate the performances with 

ifferent proportion of seen class number in S tr versus fake un- 

een class number in S te . Particularly, proportions from [1 : 4 , 1 :

 , 2 : 3 , 1 : 1 , 3 : 2 , 3 : 1 , 4 : 1] are utilized, e.g. 1 : 4 stands for se-

ecting 4 seen classes and 16 fake unseen classes with a constant 

otal class number of 20. As shown in Fig. 4 , in the generalized

etting, As tends to increase and Au tends to decrease while the 

roportions increase for CUB and AWA2. The changing tendency of 
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Table 2 

GZSL results on AWA1, AWA2, CUB, and aPY. As/Au : the class average accuracy of seen/unseen classes ( % ). H: the harmonic mean accuracy ( % ). Best and second best results 

are marked with bold and underlined. 

AWA1 AWA2 CUB aPY 

Method Au As H Au As H Au As H Au As H 

ESZSL [7] 6.6 75.6 12.1 5.9 77.8 11.0 12.6 63.8 21.0 2.4 70.1 4.6 

SJE [33] 11.3 74.6 19.6 8.0 73.9 14.4 23.5 59.2 33.6 – – –

LATEM [8] 7.3 71.7 13.3 11.5 77.3 20.0 15.5 57.3 24.0 0.1 73.0 0.2 

ALE [34] 16.8 76.1 27.5 14.0 81.8 23.9 23.7 62.8 34.4 – – –

SYNC [9] 8.9 87.3 16.2 10.0 90.5 18.0 11.5 70.9 19.8 7.4 66.3 13.3 

DEM [35] 32.8 84.7 47.3 30.5 86.4 45.1 19.6 57.9 29.2 11.1 75.1 19.4 

RN [36] 31.4 91.3 46.7 30.0 93.4 45.3 38.1 61.1 47.0 – – –

DCN [37] – – – 25.5 84.2 39.1 28.4 60.7 38.7 14.2 75.0 23.9 

TCN [38] 49.4 76.5 60.0 61.2 65.8 63.4 52.6 52.0 52.3 – – –

EDE [39] 36.9 90.6 52.4 35.2 93.0 51.1 21.0 66.0 31.9 7.8 75.3 14.1 

GAZSL [40] 29.6 84.2 43.8 35.4 86.9 50.3 31.7 61.3 41.8 – – –

SE-GZSL [10] 56.3 67.8 61.5 68.1 58.3 62.8 41.5 53.3 46.7 – – –

f -CLSWGAN [11] 61.4 57.9 59.6 57.9 61.4 59.6 43.7 57.7 49.7 – – –

cycle-CLSGAN [41] 56.9 64.0 60.2 – – – 45.7 61.0 52.3 – – –

ABP [42] 57.3 67.1 61.8 55.3 72.6 62.6 47.0 54.8 50.6 – – –

CADA-VAE [12] 57.3 72.8 64.1 55.8 75.0 63.9 47.2 35.7 40.6 14.7 30.5 19.8 

F-VAEGAN-D2 [13] – – – 57.6 70.6 63.5 48.4 60.1 53.6 – – –

Zero-VAE-GAN [15] 58.2 66.8 62.3 57.1 70.9 62.5 43.6 47.9 45.5 32.0 52.2 39.7 

AMAZ [43] 64.4 63.6 64.1 60.1 69.2 64.3 58.2 55.7 56.9 – – –

DUET [44] – – – 48.2 90.2 63.4 39.7 80.1 53.1 21.8 55.6 31.3 

ZSML [14] 57.4 71.1 63.5 58.9 74.6 65.8 60.0 52.1 55.7 36.3 46.6 40.9 

CMPN 61.0 70.1 65.2 58.6 77.3 66.7 59.5 58.0 58.8 31.3 68.5 42.9 

Table 3 

ZSL results on AWA1, AWA2, CUB, and aPY ( % ). Best and sec- 

ond best results are marked with bold and underlined. 

Method AWA1 AWA2 CUB aPY 

ESZSL [7] 58.2 58.6 53.9 38.3 

LATEM [8] 55.1 55.8 49.3 35.2 

SYNC [9] 54.0 46.6 55.6 23.9 

DEM [35] 68.4 67.1 51.7 35.0 

DCN [37] – 65.2 56.2 43.6 

SE-GZSL [10] 69.5 69.2 59.6 –

f -CLSWGAN [11] – 68.2 57.3 –

F-VAEGAN-D2 [13] 71.1 – 61.0 –

CADA-VAE [12] 62.3 64 60.4 –

Zero-VAE-GAN [15] 71.4 69.3 54.8 37.4 

LisGAN [45] 70.6 70.4 58.8 –

APNet [17] 68.0 68.0 57.7 41.3 

RN [36] 68.2 64.2 55.6 –

EDE [39] 70.1 66.5 57.1 20.4 

EXEM (1NNs) [46] 68.1 64.6 58.0 –

ZSML [14] 73.5 76.1 69.7 64.0 

CMPN 75.6 82.6 72.7 64.3 

Fig. 4. Effect of the proportion of the seen class number versus fake unseen class 

number in an episode. 
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Table 4 

Experimental results of ZSL of four datasets with differ- 

ent dimensions of the latent space E. 

Dimensions of E AWA1 AWA2 CUB aPY 

512 75.6 82.6 72.7 64.3 

1024 72.9 77.5 72.6 64.5 

2048 73.7 75.5 74.5 63.6 
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c  
, overall, is stable. S te ensures that the fake visual features gener- 

ted by semantic vectors can propagate label information to visual 

eatures, and as the amount of S te classes decreases, this ability 

ecreases, leading to a decrease of Au . To compromise between As 
129 
nd Au , we chose a proportion of 1 : 1 , i.e. 10 classes for both S tr 

nd S te to ensure the discriminability of the generated samples. 

For graph construction, we use K nearest neighbors and the 

hoice of K affects the graph structure, different graph structures 

ffect the results of label propagation. We choose different K, from 

0 to 25, with an interval of 5. As can be seen in Fig. 3 (b), the

hoice of K greatly affects the classification performance. When K

akes the value of 20, the H results of all four datasets reach the 

est. 

To obtain a more discriminative space, we map the real and 

ake visual features to a new space E. We show the effect of dif- 

erent dimensions of E on the CMPN model. We analyze the ZSL 

esults with 512, 1024, 2048 dimensions in E. From Table 4 , we 

bserve that for ZSL, setting the dimension of E to 512 is desirable, 

hich can achieve a trade-off between performance and computa- 

ional cost. 

.4. Ablation study 

CMPN consists of four components, the generative model GAN, 

he network for feature embedding E, a length scale parameter cal- 

ulator P , and the label propagation LP. As shown in Fig. 6 , we re-

ove one of the components to measure the impact of that com- 

onent on the results. Besides, we also validate the effectiveness of 

he episode-training paradigm. 

Effectiveness of episode-training paradigm To verify the effective- 

ess of this learning approach, we select 0 fake unseen classes 

hen constructing episodes. C classes are randomly selected and 

 1 samples from each class are chosen as S tr . From C classes, 

hich are consistent with the S tr , N 2 samples from each class are 

hosen as S te . As shown in Fig. 5 , we can conclude that the Au
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Fig. 5. Effectiveness of episode-training paradigm. 

Fig. 6. Effects of different components on four datasets with GZSL setting. 
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Fig. 8. t-SNE visualizations of several randomly selected seen and unseen classes 

on CUB. ∗ indicates unseen classes, • indicates seen classes. 
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nd H of all datasets decrease significantly in the case without 

he episode-training paradigm. Indicating that the episode-training 

aradigm plays a role in CMPN, increasing the generalization per- 

ormance of the model by learning from multiple simulated ZSL 

asks. 

Effectiveness of feature embedding We argue that the obtained 

pace E has stronger discriminative power compared to the orig- 

nal visual space. To prove the conjecture, we remove the net- 

ork E from the CMPN model and perform label propagation in 

he original visual space. The As metric of model GAN+P+LP is less 

han CMPN, and the H is also less than CMPN, indicating that the 

eature mapping has improved the accuracy of the seen class to 

ome extent. Space E is more discriminative than the original vi- 

ual space. 
Fig. 7. t-SNE visualizations of synthesized unseen samples on 

130
Effectiveness of learning the length scale parameter To verify the 

ffectiveness of this graph construction method, we set the length 

cale parameter σ to 1. For datasets AWA1, aPY, the Au , H metric 

f model GAN + E + LP is less than CMPN. For datasets AWA2, CUB,

he Au , As , and H metric of model GAN + E + LP is less than CMPN.

his shows that learning the length scale parameter σ through the 

etwork is practical and effective for adaptive graph construction. 

Effectiveness of label propagation As for baseline model, we only 

onsider GAN loss. The results of the baseline model in metric As , 

u , and H are less than those of CMPN, which indicates that it is 

rucial to consider the high quality of the synthesized samples and 

nsure that the generated samples can guide the classification of 

eal visual samples. 

.5. Visualizations 

We show t-SNE [47] visualizations of synthesized unseen sam- 

les on AWA2/CUB under ZSL for ZSML and CMPN. From Fig. 7 it 

an be concluded that: (1) CMPN is able to generate features with 

ore inter-class discriminability and intra-class compactness; (2) 

MPN consistently outperforms baseline ZSML for both datasets 

WA2 and CUB. 

To further demonstrate that CMPN can the manifold structure 

o ensure intra-class compactness and inter-class separation in the 

atent space, we show the t-SNE visualization of several randomly 

elected seen and unseen class samples on CUB. Fig. 8 (a) visual- 

zes the classes in the latent space without considering the man- 

fold structure (the design of the classification loss does not con- 

ider the manifold structure and only focuses on the classification 

f the generated samples), and Fig. 8 (b) shows the visualization 

f the classes under the CMPN model. We can obtain that: (1) 

ince the unseen classes are generated, the unseen classes in (a) 

nd (b) have good properties. (2) Compared to Fig. 8 (a), the vis- 

ble classes in Fig. 8 (b) are separable between classes and more 

ompact within classes. (3) Compared to Fig. 8 (a), there are more 

iversity between the seen and unseen classes in Fig. 8 (b). 
AWA2/CUB under ZSL for ZSML and CMPN, respectively. 
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. Conclusion and future work 

In this paper, we propose a new meta ZSL model, the 

ross-modal propagation network model (CMPN), which uses an 

pisode-training paradigm. To ensure intra-class compactness and 

nter-class separability in the latent space, the CMPN integrates 

daptive graph construction and label propagation into the gen- 

rative model. CMPN also can guarantee the unambiguous and 

iscriminative fake feature generating. Extensive experiments on 

hese benchmarks validate the effectiveness of CMPN. The effec- 

iveness of the proposed CMPN is further demonstrated by abla- 

ion experiments. In the future, we will further explore the struc- 

ural information of multimodal to pursue better performance of 

ero-shot learning. 
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