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Cluster ensemble is an important research content of ensemble learning, which is used to aggregate several 

base clusterings to generate a single output clustering with improved robustness and quality. Since clustering 

is unsupervised, where the “accuracy ” does not have a clear meaning, most of existing ensemble methods try 

to obtain the most consistent clustering result with base clusterings. However, it is difficult for these methods 

to realize “Multi-weaks equal to a Strong ”. For example, on a data set with nonlinearly separable clusters, if 

the base clusterings are produced by some linear clusterers, these methods generally cannot integrate them to 

obtain a good nonlinear clustering. In this paper, we select k -means as a base clusterer and provide an ensemble 

clusterer (algorithm) of multiple k -means clusterings based on a local hypothesis. In the new algorithm, we study 

the extraction of the local-credible labels from a base clustering, the production of different base clusterings, 

the construction of cluster relation and the final assignment of each object. The proposed ensemble clusterer not 

only inherits the scalability of k -means but also overcomes its limitation that it only can find linearly separable 

clusters. Finally, the experimental results illustrate its effectiveness and efficiency. 
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. Introduction 

Clustering is an important problem in statistical multivariate analy-

is, data mining and machine learning [1] . The goal of clustering is to

roup a set of objects into clusters so that the objects in the same cluster

re highly similar but remarkably dissimilar with objects in other clus-

ers [2] . To tackle this problem, various types of clustering algorithms

ave been developed in the literature (e.g., [3] and references therein),

ncluding partitional, hierarchical, density-based and grid-based cluster-

ng and so on. 

However, there is no single clustering algorithm that is suitable to

eal with all the clustering tasks. Each algorithm has its own strengths

nd weaknesses. On a given data set, different algorithms or the same al-

orithms with different input parameters often have distinct clusterings.

herefore, it is very difficult for users to determine which clustering is

uitable for a data set. Recently, the concept of “cluster ensemble ” or

clustering aggregation ” is emerged [4,5] to integrate several cluster-

ngs into a final clustering with improved robustness and quality. The

luster ensemble is seen as an unsupervised ensemble learning. In ma-

hine learning, ensemble learning is a very important research content,

hich trains multiple learners to solve the same problem. In contrast

o ordinary machine learning approaches which try to learn one hy-

othesis from training data, ensemble methods try to construct a set
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f hypotheses and combine them to use [6] . In cluster ensemble, each

ase clustering is seen as a learning result of a base learner or clusterer.

luster ensemble methods are used to combine these base clusterings

o produce a final clustering. Currently, several types of cluster ensem-

le methods, such as pairwise similarity, graph-based, relabeling-based,

nd feature-based methods, have been developed as effective solutions

7] . They already have good theoretical and practical contributions. A

etailed review of cluster ensemble methods can be found in Section 2 .

Cluster ensemble is different from supervised ensemble learning,

here the “accuracy ” has a clear meaning. Take a classification problem

or example. The label information Y on a training data set is used as a

rior guidance to integrate multiple weak classifiers and help users to

udge which objects on a data set are well performed by a weak classi-

er. However, it is very difficult for cluster ensemble to recognize the

ajor strength and weakness of a base clustering on an unlabeled data

et [8] . Therefore, the ensemble objective of most existing cluster en-

emble methods is to obtain the most consistent clustering with all the

ase clusterings. Their ensemble results strongly depend on the quali-

ies of base clusterings. Thus, they cannot realize “Multi-weaks equal

o a strong ”. Take a nonlinear clustering problem for example. Fig. 1 (a)

hows the data distribution of a synthetic data set, called Flame [9] , with

wo clusters which have different shapes. According to the figure, we can

ee that this data set cannot be linearly separable. Fig. 1 (b) shows that
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Fig. 1. (a) True class labels. (b) Multiple k - 

means clusterings. 
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he k -means algorithm [10] is employed to produce several base clus-

erings. We know that the k -means algorithm is a linear clusterer which

s well-known for efficiency. It needs very low computing costs but is

ensitive to data distributions [11] . 

If we do not consider the credibility of each label in these base

lusterings, their most consistent result cannot recognize the nonlin-

arly separable clusters. This brings about a question: Why do not we

irectly use some nonlinear clustering algorithm? Indeed, currently,

here are several nonlinear algorithms proposed in the literature. The

epresentative methods include the spectral clustering [12,13] algo-

ithms, the density-based spatial clustering of applications with noise

DBSCAN) [14] , and the clustering by fast search and find of density

eaks (CFSFDP) [15] . Although they can recognize clusters with any

hapes, they need expensive time costs, i.e., the pairwise-objects dis-

ance calculations, which are not suitable for large-scale data sets. Com-

ared to nonlinear clustering algorithms, linear clustering algorithms

re generally efficient for dealing with large-scale data sets. 

Therefore, it is a very key problem that how several linear clusterers

re integrated to rapidly cluster data sets with different shapes, instead

f a nonlinear clusterer. To solve the problem, we take k -means as a

ase clusterer and build an ensemble clusterer of multiple k -means clus-

erings to simulate a nonlinear clustering. The new algorithm need to

ddress the following subproblems: (1) How to extract credible labels

rom a base clustering; (2) How to produce multiple different k -means

lusterings to adequately describe the entire data; (3) How to build the

elation between clusters to judge which clusters represent the same

lusters; (4) How to determine the final label of each object. To solve

hese subproblems, we first assume that for a k -means clustering, the

bjects represented by a cluster center is credible in the local space.

ased on the assumption, we propose a multiple k -means clustering al-

orithm with the local-credible constraint to produce multiple cluster-

ngs with different local-credible labels. Furthermore, we construct a

elation graph for all the clusters from base clusterings based on the in-

irect overlap of their local-credible spaces. Finally, based on the label

redibility function and relabeled base clusterings, we determine the fi-

al label of each object by maximizing the consistency of its labels. The

ain contributions of this paper are highlighted as follows. 

• We define an evaluation function of cluster labels based on an local-

credible assumption. 
• We propose a multiple k -means clustering algorithm to rapidly solve

the nonlinearly separable clustering problem. 
• Experimental studies show the performance and scalability of the
proposed algorithm for nonlinearly separable clustering. w

37 
The outline of the rest of this paper is as follows. Section 2 reviews

he related work of the cluster ensemble problem. Section 3 presents an

nsemble clusterer of multiple k -means clusterings. Section 4 demon-

trates the performance of the proposed ensemble clusterer. Section 5

oncludes the paper with some remarks. 

. Related work 

Cluster ensemble, also called consensus clustering, is a kind of un-

upervised ensemble learning. Currently, there are a large amount of

iterature on cluster ensemble. Generally speaking, cluster ensemble in-

ludes two major research tasks: (1) constructing a generator to produce

 base clustering set Π and (2) devising an ensemble strategy to produce

he final partition. Their results affect the performance of a cluster en-

emble method. In the following, we will introduce the related work of

he two tasks, respectively. 

In ensemble learning, it is observed that the diversity among clas-

ification results of base classifiers or clusterers, to some extent, can

nhance the performance of the ensemble learner. Currently, several

euristics have been proposed to produce different clusterings on a data

et, which can be classified into three categories: 

• Repeatedly run a single clustering algorithm with different initial

sets of parameters to produce base clusterings [16–18] . Fred and Jain

[16] applied k -means with the different numbers of clusters to pro-

duce a clustering set. Kuncheva and Vetrov [17] used k -means with

randomly selected different cluster centers. Zhang et al. [18] run the

spectral clustering algorithm with different kernel parameters. 
• Run different types of clustering algorithms to produce base cluster-

ings [5,19,20] . Gionis et al. [5] used several hierarchical clustering

and k -means to produce a clustering set. Law et al. [19] applied

multiple clustering algorithms with different objective functions as

base clusterings and transformed a clustering ensemble problem as a

multi-objective optimization. Yu et al. [20] studied how to integrate

multiple types of fuzzy clusterings. 
• Run one or more clustering algorithms on different subspaces or

subsamples from a data set [21–23,23–29] . Fischer and Buhmann

[21] applied the bootstrap method to obtain several data subsets.

Fern and Brodley [25] used the random projection method to obtain

several feature subspaces. Zhou et al. [26] used different kernel func-

tions to describe the data. Yang et al. [29] proposed a novel hybrid

sampling method for cluster ensemble by combining the strengths of

boosting and bagging. 

For ensemble strategy, there are several representative methods

hich can be classified into the following categories: 
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Table 1 

Description of the main symbols used in this paper. 

Symbol Description 

X A data set 

x 𝑖 The i th object in X 

N The number of objects in X 

Π A base clustering set 

𝜋h The h th base clustering 

T The number of base clusterings in Π
𝑇 max The maximum number of base clusterings in Π
𝜋∗ The final clustering 

k The final number of clusters 

C hl The l th cluster in 𝜋h 

V A set of all the cluster centers in Π
𝜈h A set of all the cluster centers in 𝜋h 

v ℎ𝑙 The cluster centers of C hl 

𝐵( x 𝑖 ) The 𝜀 -neighborhood of x 𝑖 
𝑑( x 𝑖 , x 𝑗 ) The distance between x 𝑖 and x 𝑗 
K A set of the numbers of clusters in Π
k h The number of clusters in 𝜋h 

𝜆h The label credibility function of the h th clustering 

E A consensus objective function 

Z A objective function of producing base clusterings 

Q A objective function of the graph cuts problem 

R A relabeled base clustering set 

G A weighted graph of clusters 

w xy The weight between cluster C x and C y 
A A set of all the cluster labels in Π
Ω A partition of A in G 

L ( C x ) The label of the subgraph which C x belongs to 
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• The pairwise similarity approach that makes use of co-occurrence re-

lationships between all pairs of data objects to aggregate multi-

ple clusterings [30–34] . Fred and Jain [30] proposed an ensemble

algorithm based on evidence accumulation and constructed a co-

association (CO) matrix. Yang et al. [31] made use of clustering va-

lidity functions as weights to construct a weighted similarity matrix.

Iam-On et al. [32,33] defined a link-based similarity matrix which

sufficiently considers the similarity between clusters. Huang et al.

[34] proposed an enhanced co-association (ECA) matrix, which is

able to simultaneously capture the object-wise co-occurrence rela-

tionship as well as the multi-scale cluster-wise relationship in en-

sembles. 
• The graph-based approach that expresses the base clustering informa-

tion as an undirected graph and then derives the ensemble clustering

via graph partitioning [4,35–38] . Strehl et al. [4] proposed three

hypergraph ensemble algorithms CSPA, HGPA, and MCLA. Brod-

ley et al. [35] proposed the HBGF algorithm where vertices rep-

resent both objects and clusters. Yu et al. [37] proposed using a

distribution-based normalized hypergraph cut algorithm to gener-

ate the final clustering. This algorithm fully consider the represen-

tative of cluster structures of base clusterings and select appropriate

cluster structures to participate in the cluster ensemble. Huang et al.

[38] proposed a graph-based algorithm based on random walk to

recognize uncertain links in cluster ensemble. 
• The relabeling-based approach that expresses the base clustering in-

formation as label vectors and then aggregates via label alignment

[22,23,39–41] . Its representative methods can be classified into two

types: crisp label correspondence and soft label correspondence. The

crisp methods [22,23,39] transfer the relabeling problem into a min-

imum cost one-to-one assignment problem. Long et al. [40] used an

alternating optimization strategy to solve the soft label alignment

problem. 
• The feature-based approach that treats the problem of cluster en-

semble as the clustering of categorical data [42–48] . Cristofor and

Simovici [42] integrated the information theory and genetic algo-

rithms to search for the most consistent clustering. Topchy et al.

[43] proposed a probabilistic framework and used the EM algorithm

for finding the consensus clustering. Nguyen et al. [46] made use of

the k -modes [47] as the consensus function for cluster ensemble. In

[48] , we proposed an information-theoretical framework for cluster

ensemble, which uses information entropy as a validity function to

evaluate the effectiveness of cluster ensemble. 
• The semi-supervised approach that makes use of few supervision in-

formation to enhance the effectiveness of the cluster ensemble. Rep-

resentative works can be found in the literature [49–51] . Yu et al.

sufficiently exploited the supervision information to deal with high-

dimensional data. 

Most existing algorithms mainly focus on how to obtain the most

onsistent clustering from base clusterings, which can improve the clus-

ering quality and robustness. Since the base clusterings are not required

o be from some particular clustering algorithm, they have good gener-

lization, i.e., they could be applied to different situations of cluster

nsemble. However, everything has two sides. Since their base cluster-

ngs may be from different types of clustering algorithms, they cannot

ecognize the credibility of each label. Thus, they do not easily inte-

rate multiple “weak ” clusterings to simulate a “strong ” clustering. For

xample, if all the base clusterings are produced by linear clusterers,

t is very difficult for them to produce a good nonlinear clustering. For

he label credibility and fast nonlinear clustering problems, Huang et al.

id some innovative works, as shown in the literature [38,52,53] . For

xample, they estimated the uncertainty of a cluster label [52] and the

ncertainty between clusters [38] , which fully considers the consensus

f the cluster with respect to all the base clusterings. Furthermore, they

roposed a fast approximation method for spectral clustering algorithm

nd use it as base clusterings to integrate multiple approximate result
38 
53] . However, It is worth noting that the research objective of this pa-

er is different from those of existing cluster ensemble algorithms. Our

esearch object is specified as k -means. The aim of our ensemble clus-

erer is to integrate multiple k -means clusterings to simulate a nonlinear

lustering and realize “Multi-weaks equal to a Strong ”. The ensemble

lusterer can overcome the limitation of k -means and rapidly discover

onlinearly separable clusters. 

. New cluster ensemble algorithm 

.1. Cluster ensemble problem 

Let 𝑋 = { x 𝑖 } 𝑁 

𝑖 =1 be a set of N objects, Π = { 𝜋ℎ } 𝑇 ℎ =1 be a set of T base

lusterings, 𝜋ℎ = { 𝐶 ℎ𝑙 } 
𝑘 ℎ 
𝑙=1 be the h th base clustering where k h is the num-

er of clusters and C hl is the l th cluster in 𝜋h , and 𝐾 = { 𝑘 ℎ } 𝑇 ℎ =1 be a set

f the number of clusters in each base clustering. 𝜋ℎ ( x 𝑖 ) is the cluster

abel of object x 𝑖 in the clustering 𝜋h . 𝜋ℎ ( x 𝑖 ) = 𝑙 denotes that object x 𝑖 
elongs to cluster C hl . The cluster ensemble problem aims to finding out

 final clustering 𝜋∗ of data set X based on the clustering set Π. The main

ymbols used in this paper are summarized in Table 1 . 

In this paper, we select the k -means algorithm [10] as a base clus-

erer. Its objective function F is described as 

 ( 𝜋ℎ , 𝜈ℎ ) = 

𝑘 ℎ ∑
𝑙=1 

∑
𝜋ℎ ( x 𝑖 )= 𝑙, x 𝑖 ∈𝑋 

𝑑( x 𝑖 , v ℎ𝑙 ) 2 , 

here 𝜈ℎ = { v ℎ𝑙 } 
𝑘 ℎ 
𝑙=1 and v ℎ𝑙 is the l th cluster center and 𝑑( x 𝑖 , v ℎ𝑙 ) =‖x 𝑖 − v ℎ𝑙 ‖2 is Euclidean distance between the object x 𝑖 and the cen-

er v ℎ𝑙 of the l th cluster. k -means makes use of alternatively updating

h and 𝜈h to solve the problem of minimizing F in finding cluster solu-

ions. Its clustering results are often different, while it runs with different

nitial cluster centers. Therefore, we attempt to produce multiple base

lusterings by k -means and integrate them to rapidly generate a good

lustering result on data sets with nonlinearly separable clusters. 

Given a base clustering set Π, we define the optimization problem of

luster ensemble as 

ax 
𝜋∗ 

[ 

𝐸( 𝜋∗ ) = 

𝑁 ∑
𝑖 =1 

𝑇 ∑
ℎ =1 

𝜆ℎ ( x 𝑖 ) 𝐼( 𝜋ℎ ( x 𝑖 ) = 𝜋∗ ( x 𝑖 )) 

] 

, (1)
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Fig. 2. Solving process of the cluster ensemble problem. 
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Fig. 3. A clustering of k -means. 

l  

e  

t  

b  

i  

𝜀

 

d

𝜆  

w  

n  

l  

d  

i

3

 

t  

w  

l

 

i

m

s∑
ℎ

 

w  

p  

c  

o  

h  

Z  

a

 

t  
here 

• I (.) is an indicator function which is used to measure the consistency

of two labels. I (.) takes 1 if two labels are equal, and 0 otherwise. 
• 𝜆h (.) is a boolean variable which is used to reflect the label credi-

bility in the h th base clustering. If. is credible, 𝜆h (.) takes 1, and 0

otherwise. 

The objective function E is used to reflect the overall consistency

etween a final clustering 𝜋∗ and base clusterings. We wish to maximize

t to obtain the most consensus 𝜋∗ . However, there are three important

actors which often affect the effectiveness of the optimization problem

s follows. 

• The credibility of each label . In a base clustering, there are some ob-

jects whose labels are not correct. If these objects have consistently

incorrect labels in the base clusterings, these labels are combined

into the final clustering, which leads to reducing the effectiveness of

ensemble. It is a key task for enhancing the ensemble effectiveness

to provide an evaluation criterion for label credibility. Thus, in the

objective function E , we use the variable 𝜆h (.) to show the credibility

of a label and reduce the effect of the incredible labels. 
• The difference among base clusterings . In cluster ensemble, people wish

each of base clusterings is different to some extent. The ensemble

learning uses the difference to find out a robust clustering result. If

most base clusterings in Π are very similar, it is not worth optimizing

the objective function E . Thus, optimizing the objective function E

is based on the difference of base clusterings. We wish to obtain

multiple complementary k -means clusterings to adequately describe

the entire data. 
• The relation of clusters . Unlike classification, each base clustering may

have a different representation of labels. Thus, we need to judge

which cluster labels represent the same clusters. Obtaining a good

relation of clusters is the prerequisite to optimize the objective func-

tion E . It is noted that the relation of clusters is different from that of

most existing relabeling methods. Since the clusters from the same

clustering also may represent the same cluster, the relation reflects

all the clusters from the same and different base clusterings. 

According to the above analysis, we see that a cluster ensemble prob-

em is a multi-objective optimization problem. Before optimizing the

bjective function E , we need to solve several subproblems produced by

he three factors. Fig. 2 summarizes a solving process of the clustering

nsemble problem. 

In the following, we will propose an ensemble clusterer of multiple k -

eans clusterings which can provide new solving methods for the above

ubproblems. 

.2. Label credibility function 

In k -means, a cluster center is used to represent a cluster. However,

f a cluster is nonlinearly separable with other clusters, the objects rep-

esented by a cluster center may come from different clusters. Take a

lustering of k -means shown in Fig. 3 for example. We can see that Clus-

er 1 consists of objects from different “true ” clusters. Thus, the cluster

enter obtained by k -means is not suitable to represent a nonlinear clus-

er. According to Fig. 3 , we also can find that as the size of a local space

epresented by the cluster center is gradually reduced, the “true ” cluster
39 
abels of objects in the local space are more consistent. Therefore, we

valuate the credibility of a cluster label based on a local hypothesis

hat the label of an object should be consistent with most of its neigh-

ors. We assume that if the objects represented by a cluster center fall

nto its local space, they are thought to have credible labels. In this, the

 -neighborhood of the cluster center is seen as its local space. 

Based on the local hypothesis, a label credibility function is formally

efined as 

ℎ ( x 𝑖 ) = 

{ 

1 , if x 𝑖 ∈ 𝐵( v ℎ𝑙 ) , 
0 , otherwise, 

(2)

here 𝑙 = 𝜋ℎ ( x 𝑖 ) and 𝐵( v ℎ𝑙 ) = { x 𝑗 ∈ 𝑋 |𝑑 ( x 𝑗 , v ℎ𝑙 ) ≤ 𝜀 } is the 𝜀 -

eighborhood of the cluster center v ℎ𝑙 which is also called as the

ocal-credible space of the cluster C hl , for 1 ≤ i ≤ N and 1 ≤ h ≤ T . The

efinition shows that we only retain the label information of the objects

n the 𝜀 -neighborhood of a cluster center. 

.3. Production of multiple base clusterings 

Since the difference among base clusterings is a precondition for ob-

aining a good result of cluster ensemble. Therefore, in the following,

e discuss how to obtain multiple k -means clusterings with different

ocal-credible labels. 

We first define an optimization problem of producing base cluster-

ngs as follows. 

in 
Π

[ 

𝑍(Π) = 

𝑇 ∑
ℎ =1 

𝑁 ∑
𝑖 =1 

𝜃ℎ ( x 𝑖 ) 𝜆ℎ ( x 𝑖 ) 𝑑( x 𝑖 , v ℎ 𝜋ℎ ( x 𝑖 ) ) 

] 

, (3) 

ubject to 

𝑇 

 =1 
𝜃ℎ ( x 𝑖 ) 𝜆ℎ ( x 𝑖 ) = 1 , 1 ≤ 𝑖 ≤ 𝑁, (4)

here 𝜃ℎ ( x 𝑖 ) is a boolean variable which takes 1 if object x 𝑖 plays a

art in producing the h th base clustering, and 0 otherwise. It is used to

ontrol times each object plays a part. The constraint (4) requires each

bject to only once participate in producing a base clustering where it

as a local-credible label. The aim of minimizing the objective function

 is to make the objects with the local-credible labels in a base clustering

s different as possible from other base clusterings. 

We propose an incremental learning method to solve the optimiza-

ion problem. The method gradually produces multiple base clusterings
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Fig. 4. Example about a running procedure of the MKM algorithm. (a) The 1st clustering. (b) The 2nd clustering. (c) The 3rd clustering. (d) The 4th clustering. (e) 

The 5th clustering. (f) The 6th clustering. 

Fig. 5. A latent cluster between clusters. 
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y trying to optimize an incremental problem at each stage. The incre-

ental problem is described as follows. Given Π′
including the first g th

btained base clusterings (0 ≤ g < T ), 

in 
𝑔+1 

𝑍(Π′ ∪ { 𝜋𝑔+1 }) , (5)

ubject to 

𝑔+1 𝑖 = 

{ 

1 , 𝑖𝑓 
∑𝑔 

ℎ =1 𝜆ℎ ( x 𝑖 ) = 0 , 
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

(6)
40 
or 1 ≤ i ≤ N . According to the constraint (6) , we see that the objects

hich do not have local-credible labels in Π′
are required to play a part

n producing the 𝑔 + 1 th base clustering. 

The incremental learning method, called the multiple k -means clus-

ering (MKM) algorithm, proceeds as follows. We initially set ℎ = 1 ,
ℎ ( x 𝑖 ) = 1 for 1 ≤ i ≤ N and 𝑆 = 𝑋. At each stage, we randomly select k h
bjects as initial cluster centers from S and apply k -means with a con-

traint to cluster it. The constraint denotes that the cluster centers are

pdated by only considering the objects in their 𝜀 -neighborhoods, which

akes the final obtained cluster centers better represent the objects in

heir local-credible spaces. After k -means runs, we assign each of objects

n 𝑋 − 𝑆 to the cluster represented by its nearest cluster center. Further-

ore, we update 𝑆 = 𝑆 − 𝑆 ′, where S ′ is a set of the objects which have

ocal-credible labels in the h th base clustering, ℎ = ℎ + 1 and 𝜃ℎ ( x 𝑖 ) = 1 if
 𝑖 ∈ 𝑆 and 0 otherwise, for 1 ≤ i ≤ N . The above procedure is repeated

ntil the number of the objects in S is less than 𝑘 2 
ℎ 

or the number of

ase clusterings is equal to 𝑇 max which is the desired maximum number

f base clusterings. The incremental procedure makes the final cluster

enters obtained at each time represent different data subsets. Here, we

eed to explain why to set the end condition |𝑆| < 𝑘 2 
ℎ 
. Many scholars

ointed out in the literature [54,55] a rule of thumb that the maximum

umber of clusters on a set S of objects should be less than 
√|𝑆|. Thus,

hile the number of objects in S is less than 𝑘 2 
ℎ 
, we assume that S can-

ot be partitioned into k h clusters. In this case, although the number of

lusterings maybe less than 𝑇 max , we still terminate the iteration. 
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The formal description of the incremental method is shown in

lgorithm 1 . Next, let us continue taking the data set Flame for example

o illustrate the running procedure of the MKM algorithm. We set 𝜀 = 2 . 5
nd obtain six base clusterings on this data set. Fig. 3 shows the proce-

ure of gradually producing these base clusterings. In these figures, gray

bjects indicate they do not play a part in producing a new base clus-

ering. We see that these base clusterings have different local-credible

abels, which is beneficial to cluster ensemble. 

Algorithm 1: The MKM algorithm. 

Input : 𝑋, 𝐾, 𝜀 , 𝑇 max 
Output : Π, 𝑉 

Initialize Π = ∅, 𝑉 = ∅, 𝑆 = 𝑋, ℎ = 0 , and 𝜃ℎ +1 ( x 𝑖 ) = 1 for 

1 ≤ 𝑖 ≤ 𝑁 ; 

while |𝑆| ≥ 𝑘 2 
ℎ 
∧ ℎ ≤ 𝑇 max do 

Set 𝐹 = 0 , 𝐹 ′ = 1 , ℎ = ℎ + 1 and 𝜈ℎ is made up of randomly 

selected 𝑘 ℎ objects on 𝑆; 

while 𝐹 < 𝐹 ′ do 

𝐹 ′ = 𝐹 ; 

for each x 𝑖 ∈ 𝑆 do 

𝜋ℎ ( x 𝑖 ) = arg min 𝑘 ℎ 
𝑙=1 𝑑( x 𝑖 , v ℎ𝑙 ) ; 

for 1 ≤ 𝑙 ≤ 𝑘 ℎ do 

𝐷 = { 𝜋ℎ ( x 𝑖 ) = 𝑙 ∧ x 𝑖 ∈ 𝐵( v ℎ𝑙 ) , x 𝑖 ∈ 𝑆} ; 

v ℎ𝑙 = 

∑
x 𝑖 ∈𝐷 x 𝑖 |𝐷| ; 

𝐹 = 

𝑘 ℎ ∑
𝑙=1 

∑
𝜋ℎ ( x 𝑖 )= 𝑙, x 𝑖 ∈𝑆 

𝑑( x 𝑖 , v ℎ𝑙 ) 2 ; 

for each x 𝑖 ∈ 𝑋 − 𝑆 do 

𝜋ℎ ( x 𝑖 ) = arg min 𝑘 ℎ 
𝑙=1 𝑑( x 𝑖 , v ℎ𝑙 ) ; 

𝑆 ′ = { 𝜆ℎ ( x 𝑖 ) = 1 , x 𝑖 ∈ 𝑆} ; 
for 𝑖 = 1 ∶ 𝑁 do 

if x 𝑖 ∈ 𝑆 ′ then 

𝜃ℎ +1 ( x 𝑖 ) = 0 ; 

else 

𝜃ℎ +1 ( x 𝑖 ) = 𝜃ℎ ( x 𝑖 ) ; 

Update Π = Π
⋃
{ 𝜋ℎ } , 𝑉 = 𝑉 

⋃
𝜈ℎ , and 𝑆 = 𝑆 − 𝑆 ′; 

The time complexity of the MKM algorithm is 𝑂( 𝑁 

∑𝑇 

ℎ =1 𝑡 ℎ 𝑘 ℎ ) , where

 h is the number of iterations of k -means in the process of producing the

 th base clustering and T is the number of the produced base clusterings.

he outputs of the algorithm are a base clustering set Π = { 𝜋ℎ , 1 ≤ ℎ ≤

 } and a cluster center set 𝑉 = { 𝜈ℎ , 1 ≤ ℎ ≤ 𝑇 } . Note that if 𝑇 max is set to

 very large value, T depends on the parameter 𝜀 . The T value generally

ncreases as the 𝜀 value decreases. The main reason is that a small 𝜀 value

ndicates each base clustering includes few local-credible labels. Thus, in

his case, we need more base clusterings to describe the entire data set.

herefore, how to set 𝜀 depends on the requirement of users. The users

an regulate the parameter to control the number of base clusterings,

ccording to own need. 

.4. Construction of cluster relation 

Unlike classification where the class labels represent specific classes,

he cluster labels only express grouping characteristics of the data and

re not directly comparable across different clusterings in cluster anal-

sis. Therefore, in cluster ensemble, the labels of different clusterings

hould be aligned. Besides, since the k -means algorithm only can recog-

ize linearly separable clusters, two clusters from a base clustering may

epresent the same cluster. Therefore, we also need to analyze their re-

ation. 

Currently, there are several similarity or dissimilarity measures be-

ween clusters proposed in existing cluster ensemble algorithms [6] .
41 
mong these measures, the degree of overlap between two clusters, i.e.,

he number of their common objects, is widely used to reflect their sim-

larity, which can be seen in the graph-based algorithms proposed by

trehl et al. [4] and the relabeling-based algorithms proposed by Zhou

t al. [23] . However, this measure cannot be used to evaluate the sim-

larity between clusters from the same clusterings, since they have no

ommon objects. To solve the problem, Iam-On et al. [32] proposed

 link-based similarity measure between clusters, which compares the

verlap of them with other clusters. Although these existing measures

lready have good practical contributions, they do not consider the cred-

bility of cluster labels. The objects with incredible labels generally af-

ect the performance of these measures. Therefore, we need to design a

ew similarity measure to overcome the shortcoming. 

According to the MKM algorithm, we know that the produced base

lusterings Π are with different local-credible labels. Thus, we want to

easure the overlap between the local-credible spaces of two clusters

o reflect their similarity. Let C hl and C gj be two clusters, v ℎ𝑙 and v 𝑔𝑗 be

heir cluster centers. If 𝑑( v ℎ𝑙 , v 𝑔𝑗 ) is no more than 2 𝜀 , their local-credible

paces are overlapped. However, for any two clusters, the overlap of

heir local-credible spaces is generally small or null, due to the produc-

ng mechanism of the base clusterings by the MKM algorithm. Therefore,

e introduce a latent cluster to evaluate their “indirect ” overlap. Next,

e need to answer a question: How do we judge whether the local-

redible spaces of two clusters are indirect overlapped? Let 
v ℎ𝑙 + v 𝑔𝑗 

2 be

he midpoint of the two centers v ℎ𝑙 and v 𝑔𝑗 . We assume there is a latent

luster C z whose cluster center is 
v ℎ𝑙 + v 𝑔𝑗 

2 . If 𝑑( v ℎ𝑙 , v 𝑔𝑗 ) is no more than

 𝜀 , the local-credible spaces of both the clusters C hl and C gj are over-

apped with that of the latent cluster C z , which can be seen in Fig. 5 .

n this case, the local-credible spaces of C hl and C gj are thought to be

ndirectly overlapped with respect to the latent cluster. 

Furthermore, we consider the following two factors to measure the

imilarity between clusters C hl and C gj as follows. 

• The distance between their cluster centers. 
• The number of objects in the local-credible space of the latent cluster. 

We know that the smaller 𝑑( v ℎ𝑙 , v 𝑔𝑗 ) is, the more overlapped the

ocal-credible spaces between them and C z are. Therefore, we think their

imilarity should be inversely proportional to 𝑑( v ℎ𝑙 , v 𝑔𝑗 ) . Besides, since

he k -means algorithm is a linear clusterer, the spaces of any two clus-

ers are separated by the midline between their cluster centers. If the

urrounding area of their midpoint includes few objects, they can be

learly distinguished. 

According to the above analysis, we think that their similarity should

e proportional to the number of objects in the local-credible space of

he latent cluster. Therefore, the similarity measure for two clusters is

ormally defined as follows. 

( 𝐶 ℎ𝑙 , 𝐶 𝑔𝑗 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
|𝐵( v ℎ𝑙 + v 𝑔𝑗 2 ) |
𝑑( v ℎ𝑙 , v 𝑔𝑗 ) 

, 𝑖𝑓 𝑑( v ℎ𝑙 , v 𝑔𝑗 ) ≤ 4 𝜀, 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

(7)

Based on the similarity measure, we construct a undirected and

eighted graph 𝐺 = < 𝐴, 𝑊 > to reflect the relation of these clusters.

n the graph G, A is a set of vertices each representing a cluster label

rom Π. Thus, A is also seen as a set of all the cluster labels in Π. W is a

eight set of edges between clusters. For any two clusters, we use their

imilarity as the weight of the edges between them, i.e., 𝑤 𝑥𝑦 = 𝛿( 𝐶 𝑥 , 𝐶 𝑦 ) ,
, y ∈ A . The larger similarity they are, the more possibly they represent

he same cluster. 

After the weighted graph is obtained, the problem of constructing a

luster relation can be transferred to a normalized graph cuts problem

hich is described as follows [12] . 

in 
Ω

⎡ ⎢ ⎢ ⎢ ⎣ 𝑄 (Ω) = 

1 
𝑘 

𝑘 ∑
𝑙=1 

∑
𝑥 ∈𝐴 𝑙 ,𝑦 ∈𝐴 − 𝐴 𝑙 

𝑤 𝑥𝑦 ∑
𝑥 ∈𝐴 𝑙 ,𝑧 ∈𝐴 

𝑤 𝑥𝑧 

⎤ ⎥ ⎥ ⎥ ⎦ , (8) 
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Fig. 6. Example about a procedure of constructing cluster relation. (a) A graph of cluster relation. (b) A pairwise-clusters similarity matrix. (c) A min-cut of graph. 
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Algorithm 2: The KMCE algorithm. 

Input : 𝑋, 𝑘 , 𝐾, 𝜀 , 𝑇 max 
Output : 𝜋∗ 

Π = arg min 𝑍(Π) by Algorithm 1; 

for 𝑖 = 1 ∶ 𝑁 do 

for ℎ = 1 ∶ |Π| do 

Compute 𝜆ℎ ( x 𝑖 ) by Eq.~(2); 

𝐴 = a set including all the cluster labels in Π; 

for 𝑥, 𝑦 ∈ 𝐴 do 

𝑤 𝑥𝑦 = 𝛿( 𝐶 𝑥 , 𝐶 𝑦 ) ; 

Obtain a graph 𝐺 = < 𝐴, 𝑊 > where 𝑊 = { 𝑤 𝑥𝑦 } 𝑥,𝑦 ∈𝐴 ; 
Ω = arg min 𝑄 (Ω) by the NSC algorithm; 

Obtain the relabeled base clustering set 𝑅 by Eq.~(10); 

𝜋∗ = arg max 𝐸( 𝜋∗ ) by Eq.~(12); 

(
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here Ω = { 𝐴 𝑙 } 𝑘 𝑙=1 is a partition of vertices in the graph G and A l is

he l th subset of A . we wish to obtain such a partition by minimizing

he objective function Q that the vertices in the same subsets have very

igh similarity but are very dissimilar with vertices in other subsets.

n order to solve the optimization problem, we apply the normalized

pectral clustering (NSC) algorithm [13] to obtain a final partition of A .

he vertices in the same subsets are used to represent a cluster. Thus,

et L ( C x ) be the label of the subset which C x belongs to, we have 

 ( 𝐶 𝑥 ) = 𝑙, 𝑖𝑓 𝐶 𝑥 ∈ 𝐴 𝑙 , (9)

or 1 ≤ l ≤ k and x ∈ A . The time complexity of constructing cluster

elation is 𝑂( 𝑁( 
∑𝑇 

ℎ =1 𝑘 ℎ ) 
2 ) . Let us continue considering the example of

he data set Flame to show a procedure of constructing cluster relation.

n Fig. 4 , the MKM algorithm produces 12 clusters. Fig. 6 (a) and (b)

how their relation graph and their similarity matrix, respectively. We

mploy the NSC algorithm to obtain a min-cut of this graph which is

hown in Fig. 6 (c). All the clusters in each subgraph are used to represent

he same cluster. 

.5. Generation of final clustering 

After relabeling the clusters from base clusterings, Π can be trans-

ormed into a relabeled base clustering set R as follows. 

 ℎ ( x 𝑖 ) = 𝐿 ( 𝐶 ℎ 𝜋ℎ ( x 𝑖 ) ) , (10)

or 1 ≤ i ≤ N and 1 ≤ h ≤ T . Given R , the consensus function E can be

ewritten as follows. 

( 𝜋∗ ) = 

𝑁 ∑
𝑖 =1 

𝑇 ∑
ℎ =1 

𝜆ℎ ( x 𝑖 ) 𝐼( 𝑅 ℎ ( x 𝑖 ) = 𝜋∗ ( x 𝑖 )) . (11)

e can maximize the objective function E by the following equation 

∗ ( x 𝑖 ) = arg 
𝑘 

max 
𝑙=1 

|{ 𝜆ℎ ( x 𝑖 ) 𝑅 ℎ ( x 𝑖 ) = 𝑙, 1 ≤ ℎ ≤ 𝑇 } |, (12)

or 1 ≤ i ≤ N . The time complexity of generating the final clustering is

 ( NT ). 

.6. Overall implementation 

We integrate the above steps to form a new multiple k -means

lustering ensemble (KMCE) algorithm. This algorithm is described

n Algorithm 2 . The overall time complexity of the KMCE algo-

ithm is 𝑂( 𝑁 

∑𝑇 

ℎ =1 𝑡 ℎ 𝑘 ℎ + 𝑁 

∑𝑇 

ℎ =1 𝑘 ℎ + 𝑁( 
∑𝑇 

ℎ =1 𝑘 ℎ ) 
2 + 𝑁𝑇 ) . We see that

he time complexity is linear with the number of objects. Generally,
42 
∑𝑇 

ℎ =1 𝑘 ℎ 

)2 
≪ 𝑁 . In this case, the time complexity is less than O ( N 

2 ).

e know that the time complexities of most nonlinear clustering algo-

ithms are no less than O ( N 

2 ). This indicates that the KMCE algorithm is

uitable to deal with large-scale data sets, compared to other nonlinear

lustering algorithms. 

. Experimental analysis 

In this section, we carry out the KMCE algorithm on 5 synthetic and

 real data sets and evaluate its effectiveness by two validity measures

nd time costs. 

.1. Data sets 

Table 2 shows the details of these tested data sets. The data distribu-

ions of the synthetic data sets are shown in Fig. 7 . The synthetic and real

ata sets are downloaded from https://github.com/deric/clustering-

enchmark and http://www.ics.uci.edu/mlearn/MLRepository.html ,

espectively. 

.2. Evaluation criteria 

We employ the two widely-used external criteria ARI [56] and NMI

57] to measure the similarity between the clustering result and the true

http://www.ics.uci.edu/mlearn/MLRepository.html
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Fig. 7. Data distribution of synthetic data. (a) Ring. (b) Banana. (c) Complex. (d) Chainlink. (e) Atom. 

Table 2 

Description of data sets: Number of Data Objects (N), 

Number of Dimensions (D), Number of Clusters (k). 

Data set N D k 

Synthetic data Ring 1500 2 3 

Banana 2000 2 2 

Complex 3031 2 9 

Chainlink 1000 3 2 

Atom 800 3 2 

Real data Iris 150 4 3 

Wine 178 13 3 

Breast 569 30 2 

Digits 5620 63 10 

Statlog 6435 36 7 

KDD99 1,048,576 39 2 

Table 3 

Notation for the contingency table for com- 

paring two partitions. 

C \ P p 1 p 2 ⋅⋅⋅ 𝑝 𝑘 ′ Sums 

c 1 n 11 n 12 ⋅⋅⋅ 𝑛 1 𝑘 ′ b 1 
c 2 n 21 n 22 ⋅⋅⋅ 𝑛 2 𝑘 ′ b 2 
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 
c k n k 1 n k 2 ⋅⋅⋅ 𝑛 𝑘𝑘 ′ b k 
Sums d 1 d 2 ⋅⋅⋅ 𝑑 𝑘 ′
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the highest ARI and NMI values for comparison. 
artition on a data set. Given a data set X with N objects and two parti-

ions of these objects, namely 𝐶 = { 𝑐 1 , 𝑐 2 , … , 𝑐 𝑘 } (the clustering result)

nd 𝑃 = { 𝑝 1 , 𝑝 2 , … , 𝑝 
𝑘 
′ } (the true partition), the overlappings between

 and P can be summarized in a contingency table ( Table 3 ) where n ij 
enotes the number of common nodes of groups c i and p j : 𝑛 𝑖𝑗 = |𝑐 𝑖 ∩ 𝑝 𝑗 |.

The adjusted rand index [56] is defined as 

𝑅𝐼 = 

∑
𝑖𝑗 

(𝑛 𝑖𝑗 
2 

)
− [ 

∑
𝑖 

(𝑏 𝑖 
2 

)∑
𝑗 

(𝑑 𝑗 
2 

)
]∕ 
(𝑁 

2 

)
1 
2 [ 
∑

𝑖 

(𝑏 𝑖 
2 

)
+ 

∑
𝑗 

(𝑑 𝑗 
2 

)
] − [ 

∑
𝑖 

(𝑏 𝑖 
2 

)∑
𝑗 

(𝑑 𝑗 
2 

)
]∕ 
(𝑁 

2 

)
here n ij , b i , d j are values from the contingency table ( Table 3 ). The

ormalized mutual information (NMI) [57] is defined as 

 𝑀 𝐼 = 

2 
∑

𝑖 

∑
𝑗 𝑛 𝑖𝑗 log 

𝑛 𝑖𝑗 𝑁 

𝑏 𝑖 𝑑 𝑗 

− 

∑
𝑖 𝑏 𝑖 log 

𝑏 𝑖 

𝑁 

− 

∑
𝑗 𝑑 𝑗 log 

𝑑 𝑗 

𝑁 

. 

f a clustering result is close to the true partition, then its ARI and NMI

alues are high. 

.3. Compared methods 

In order to properly examine the performance of the proposed algo-

ithm, we compare it with the following cluster ensemble algorithms.

he codes of these compared algorithms are open and accessible, which

an be found from the personal homepage of these authors. 

• Pairwise similarity algorithms include the co-association similarity

matrix (CO) proposed by Fred and Jain [16] and the three link-
43 
based similarity matrices WCT, WTQ and CSM proposed by Iam-On

et al. [32] . The single-link (SL) and the average-link (AL) algorithms

are used to derive the final solution. 
• Graph-based algorithms include the cluster-based similarity partition-

ing algorithm (CSPA), hyper graph partitioning algorithm (HGPA)

and meta-clustering (MCLA) algorithm proposed by Strehl and

Ghosh [4] . 
• Relabeling-based algorithms include the selectively un-weighted and

weighted ensemble algorithms SV and SWV proposed by Zhou and

Tang [23] . 
• Feature-based algorithms include the expectation maximization (EM)

algorithm for cluster ensemble proposed by Topchy et al. [43] and

the iterative voting consensus (IVC) algorithm proposed by Nguyen

et al. [46] . 

Besides, we compare KMCE with three nonlinear clustering algo-

ithms including the normalized spectral clustering algorithm (NSC)

13] , the density-based spatial clustering of applications with noise (DB-

CAN) [14] and the clustering by fast search and find of density peaks

CFSFDP) [15] . The aim of the comparison is to show the simulation of

MCE for nonlinear clustering. 

.4. Experimental settings 

To ensure that the comparisons are in a uniform environmental con-

ition, several settings of these compared algorithms are listed as fol-

ows. 

• For existing cluster ensemble algorithms, we run k -means T times,

each with a random and different initialization of cluster centers, to

produce base clusterings on a data set. The number of clusters k h in

each base clustering is equal to the true number of classes on each of

the given data sets. For the parameter T , we test each of these algo-

rithms with 𝑇 = 10 , 20 , 30 , 40 , 50 respectively, and select the highest

ARI and NMI values for comparison. For other parameters of these

algorithms, we set them, according to the suggestions of the authors.
• The DBSCAN, CFSFDP and KMCE algorithms are required to in-

put the parameter 𝜀 . We estimate the 𝜀 value by using 𝑑 =
1 
𝑛 

∑𝑛𝑑 

𝑖 =1 ( x 𝑖 , =x ) where =x = 

∑𝑛 

𝑗=1 
x 𝑗 

𝑛 
. However, each of these algo-

rithms may need different 𝜀 values on each data set. Thus, we

test each of these algorithms with 10 different values, i.e., 𝜀 =
𝑑 , 𝑑 ∕2 , 𝑑 ∕3 , 𝑑 ∕4 , 𝑑 ∕5 , 𝑑 ∕6 , 𝑑 ∕7 , 𝑑 ∕8 , 𝑑 ∕9 , and 𝑑 ∕10 and select the high-

est ARI and NMI values on each data set for comparison. However,

different from DBSCAN and CFSFDP, the KMCE algorithm has a cer-

tain randomness. Therefore, we need to run the KMCE algorithm 50

times on each data set and compute the average ARI and NMI values

for comparison. Besides, we set 𝑇 max = 50 for the KMCE algorithm. 
• For the NSC algorithm, we use Gaussian kernel to obtain a pairwise-

objects similarity matrix and set the kernel parameter 𝛿2 in the inter-

val [0.1,2] with the step size as 0.1. In these parameters, we select
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Table 4 

ARI measures of different methods on synthetic data sets. 

Methods Synthetic data sets 

Ring Banana Complex Chainlink Atom 

CO-SL 0.5002 0.5039 0.6267 0.0927 0.1456 

CO-AL 0.1305 0.5039 0.3726 0.0927 0.1456 

WCT-SL 0.0259 0.5039 0.6268 0.0927 0.1456 

WCT-AL 0.1382 0.5039 0.3635 0.0927 0.1456 

WTQ-SL 0.4115 0.5039 0.6158 0.0927 0.1456 

WTQ-AL 0.1389 0.5039 0.3705 0.0927 0.1456 

CSM-AL 0.0046 0.5039 0.5878 0.0927 0.1456 

CSM-SL 0.1448 0.5039 0.4199 0.0927 0.1456 

CSPA 0.3163 0.4926 0.3418 0.0927 0.0021 

HGPA 0.0004 -0.0004 0.1966 -0.0010 -0.0013 

MCLA 0.0004 0.5039 0.3736 0.0927 0.1554 

SV 0.0847 0.5039 0.1406 0.1002 0.1736 

SWV 0.1809 0.5039 0.1966 0.1002 0.1736 

EM 0.0302 0.0031 0.3240 0.0896 0.2617 

IVC 0.3231 0.5039 0.4097 0.0927 0.1178 

NSC 1.0000 1.0000 0.9848 1.0000 1.0000 

DBSCAN 1.0000 1.0000 0.8513 0.4947 0.3786 

CFSFDP 0.3227 1.0000 0.8043 0.6853 0.4154 

KMCE 1.0000 1.0000 0.9879 1.0000 1.0000 

Table 5 

ARI measures of different methods on real data sets. 

Methods Real data sets 

Iris Wine Breast Digits Statog KDD99 

CO-SL 0.7302 0.8471 0.7302 0.1651 0.3248 0.9584 

CO-AL 0.7302 0.8471 0.7302 0.6050 0.5700 0.9584 

WCT-SL 0.7302 0.8471 0.7302 0.1047 0.4101 0.9584 

WCT-AL 0.7302 0.8471 0.7302 0.6046 0.5699 0.9584 

WTQ-SL 0.7302 0.8471 0.7302 0.1651 0.4101 0.9584 

WTQ-AL 0.7302 0.8471 0.7302 0.6049 0.5699 0.9584 

CSM-AL 0.7302 0.8471 0.7302 0.0000 0.4101 0.9584 

CSM-SL 0.7302 0.8471 0.7302 0.6146 0.5699 0.9584 

CSPA 0.6521 0.7808 0.3414 0.7573 0.4329 0.9370 

HGPA 0.1026 0.1286 -0.0007 0.3750 0.2619 -0.0005 

MCLA 0.7302 0.8471 0.7302 0.6935 0.5127 0.9584 

SV 0.0067 0.8685 0.7302 0.3244 0.4533 0.9584 

SWV 0.0002 0.8685 0.7302 0.4641 0.4546 0.9584 

EM 0.6008 0.7855 0.6328 0.6205 0.5074 0.7652 

IVC 0.5970 0.6875 0.0487 0.6006 0.4188 0.7425 

NSC 0.7455 0.9310 0.7493 0.7536 0.5308 0.9604 

DBSCAN 0.5162 0.3587 0.0478 0.5052 0.4319 0.9793 

CFSFDP 0.7028 0.7414 0.7305 0.7584 0.4963 0.9604 

KMCE 0.7565 0.8687 0.7700 0.7841 0.6211 0.9715 
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.5. Experimental results 

.5.1. Performance analysis 

We first test these algorithms on the given data sets to compare

heir clustering accuracies. Due to the fact that the KDD-CUP’99 data

et is very large, some algorithms cannot be implemented on the entire

ata set. Therefore, we sample a subset which includes 5000 normal-

onnected and 5000 abnormal-connected records from the data set for

he accuracy comparison. 

Tables 4 –7 show the ARI and NMI values of different algorithms on

ynthetic and real data sets, respectively. According to these tables, we

ee that the clustering accuracies of the KMCE algorithm are obviously

uperior to other cluster ensemble algorithms on these synthetic data

ets. The experimental results conclude that: (1) While clustering non-

inearly separable data sets, the base clusterings produced by k -means

nclude lots of incredible labels. However, since the existing ensemble

lgorithms do not evaluate these label credibilities, they cannot inte-

rate them to recognize nonlinear clusters. (2) The proposed ensemble

lgorithm can effectively discover nonlinearly separable clusters and im-

rove the performance of the k -means algorithm. On the real data sets,
s

44 
he KMCE algorithm also has better performance, compared to other

luster ensemble algorithms. 

Besides, these tables also show the comparison results of the KMCE

lgorithm with three nonlinear clustering algorithms on the given data

ets. We can see that the clustering validity of the KMCE algorithm is

uperior or close to the best results of these algorithms. The experiments

ell us that the proposed algorithm can well simulate nonlinear cluster-

ng results. 

Due to the fact that the KMCE algorithm has a certain randomness,

e test it 50 times on each data sets. Tables 8 and 9 show the standard

eviation (std) of the ARI and NMI values for its 50 clustering results.

e can see that the std value is less than 0.1 on each data set. This

ndicates that the randomness has limited impact on the performance of

he KMCE algorithm. 

Furthermore, we compare the efficiency of the KMCE algorithm with

hese nonlinear algorithms on the KDD-CUP’99 data set. In the experi-

ent, we fix 𝑘 = 2 and 𝜀 = 0 . 14 . Fig. 8 shows the running time of these

lgorithms with different numbers of objects. We can see that the pro-

osed algorithm is very efficient, compared to other algorithms. This

ndicates that the KMCE algorithm is a good choice for clustering large-
cale data sets. 
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Table 6 

NMI measures of different methods on synthetic data sets. 

Methods Synthetic data sets 

Ring Banana Complex Chainlink Atom 

CO-SL 0.6948 0.4035 0.6888 0.0686 0.2631 

CO-AL 0.2112 0.4035 0.6343 0.0686 0.2631 

WCT-SL 0.1207 0.4035 0.6887 0.0686 0.2631 

WCT-AL 0.2162 0.4035 0.6302 0.0686 0.2631 

WTQ-SL 0.5407 0.4035 0.6781 0.0686 0.2631 

WTQ-AL 0.2174 0.4035 0.6370 0.0686 0.2631 

CSM-AL 0.0218 0.4035 0.7166 0.0686 0.2631 

CSM-SL 0.2211 0.4035 0.6630 0.0686 0.2631 

CSPA 0.3785 0.3927 0.6071 0.0686 0.0024 

HGPA 0.0008 0.0000 0.3656 0.0000 0.0000 

MCLA 0.0013 0.4035 0.6334 0.0686 0.2713 

SV 0.1758 0.4035 0.2049 0.0743 0.2863 

SWV 0.2487 0.4035 0.4339 0.0743 0.2863 

EM 0.1495 0.0042 0.5730 0.0663 0.3404 

IVC 0.3813 0.4035 0.6467 0.0686 0.1942 

NSC 1.0000 1.0000 0.9853 1.0000 1.0000 

DBSCAN 1.0000 1.0000 0.8719 0.4828 0.2773 

CFSFDP 0.3792 1.0000 0.8451 0.6544 0.4592 

MKCE 1.0000 1.0000 0.9892 1.0000 1.0000 

Table 7 

NMI measures of different methods on real data sets. 

Methods Real data sets 

Iris Wine Breast Digits Statog KDD99 

CO-SL 0.7582 0.8347 0.6231 0.5145 0.5263 0.9263 

CO-AL 0.7582 0.8347 0.6231 0.7307 0.6322 0.9263 

WCT-SL 0.7582 0.8347 0.6231 0.4119 0.5526 0.9263 

WCT-AL 0.7582 0.8347 0.6231 0.7305 0.6321 0.9263 

WTQ-SL 0.7582 0.8347 0.6231 0.5145 0.5526 0.9263 

WTQ-AL 0.7582 0.8347 0.6231 0.7306 0.6321 0.9263 

CSM-AL 0.7582 0.8347 0.6231 0.0032 0.5526 0.9263 

CSM-SL 0.7582 0.8347 0.6231 0.7309 0.6321 0.9263 

CSPA 0.6803 0.7771 0.2981 0.7857 0.5425 0.8816 

HGPA 0.1609 0.1705 0.0007 0.4932 0.326 0.0000 

MCLA 0.7582 0.8347 0.6231 0.7627 0.5903 0.9263 

SV 0.0183 0.8529 0.6231 0.3782 0.4481 0.9263 

SWV 0.0110 0.8529 0.6231 0.6085 0.5248 0.9263 

EM 0.6727 0.7980 0.5400 0.7271 0.5837 0.7388 

IVC 0.6801 0.7281 0.0415 0.7208 0.5256 0.7425 

NSC 0.7980 0.9016 0.6328 0.8119 0.6243 0.9291 

DBSCAN 0.5904 0.4451 0.0303 0.7163 0.5021 0.9584 

CFSFDP 0.7277 0.7528 0.6152 0.8645 0.5644 0.9291 

MKCE 0.8042 0.8542 0.6667 0.8593 0.6646 0.9466 

Table 8 

Standard deviation of the KMCE algorithm for the ARI and NMI 

measures on synthetic data sets. 

Indices Synthetic data sets 

Ring Banana Complex Chainlink Atom 

ARI(std) 0.0000 0.0000 0.0121 0.0000 0.0000 

NMI(std) 0.0000 0.0000 0.0127 0.0000 0.0000 
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Table 9 

Standard deviation of the KMCE algorithm for the ARI and NMI measures 

on real data sets. 

Indices Real data sets 

Iris Wine Breast Digits Statog KDD99 

ARI(std) 0.0993 0.0897 0.0670 0.0531 0.013 0.0170 

NMI(std) 0.8071 0.0689 0.0646 0.0269 0.008 0.0289 

Fig. 8. Time comparison on the KDD99 data set. 

t  

s  

v  

I  

t  

l  

n  

p  

a  

t  

o  

c

.5.2. Parameter analysis 

In this part, we analyze the effect of the parameter 𝜀 on the per-

ormance of the KMCE algorithm by the experiments. We know that the

umber T of base clusterings depends on the selection of the parameters

 and 𝑇 max . Thus, we set 𝑇 max = 1000 , which reduces the effect of 𝑇 max 
n T and makes the MKM algorithm produce as many base clusterings

s possible. We take the iris and wine data for example. According to

igs. 9 (a) and 10 (a), we see that the number of the base clusterings pro-

uced by the MKM algorithm decreases as the 𝜀 value increases. How-

ver, Figs. 9 (b) and 10 (b) illustrate that the clustering accuracy does not

ncrease, after the 𝜀 value is growing to a certain extent. This experimen-
45 
al result tells us that the number of the base clusterings is too large or

mall to obtain a good ensemble result. Thus, we should select a suitable

alue of 𝜀 to control the number of base clusterings on each data set.

t is an important issue for many nonlinear algorithms including KMCE

o select the parameter value. However, there are few theoretical guide-

ines for setting the parameter. We wish to further study the problem in

ext research work. In this paper, we provide a rule of thumb that the

arameter value is selected from the interval [ ̄𝑑 ∕10 , 𝑑 ] where 𝑑 is the

verage distance between each object and the center of a data set. We

ested the DBSCAN, CFSFDP, and KMCE with different parameter values

n the given data sets. We found that these algorithms can obtain better

lustering results if the parameter is selected from the interval. 
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Fig. 9. Effect of the parameter 𝜀 on the iris data. (a) The numbers T of produced base clusterings with respect to different values of 𝜀 . (b) The ARI and NMI values 

of ensemble results with respect to different values of 𝜀 . 

Fig. 10. Effect of the parameter 𝜀 on the wine data. (a) The numbers T of produced base clusterings with respect to different values of 𝜀 . (b) The ARI and NMI values 

of ensemble results with respect to different values of 𝜀 . 
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. Conclusions 

K -means is a widely-used clustering algorithm for its low compu-

ational cost. However, it is a linear clusterer and its performance

ends to be affected by data distributions. In this paper, we have pro-

osed a new cluster ensemble algorithm by using multiple k -means,

hich is called KMCE. The new algorithm includes four main steps:

roducing multiple k-means clusterings, evaluating the local credibil-

ty of each label, building the relation between clusters, and gener-

ting the final clustering. It improves the robustness and quality of

 -means and can rapidly recognize nonlinearly separable clusters. In

he experimental analysis, we have compared the KMCE algorithm

ith eleven existing cluster ensemble algorithms and three nonlinear

lustering algorithms on synthetic and real data sets. The compari-

on results have illustrated that the performance of the proposed al-

orithm is very effective. Furthermore, we have analyzed the efficiency

f the KMCE algorithm which is suitable to deal with large-scale data

ets. 

This paper mainly focused on cluster ensemble of k -means. For

uture research, we would like to investigate the label credibility

f different clustering algorithms. Furthermore, we plan to propose

 general cluster ensemble framework for fast nonlinearly separable

lustering. 

i
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