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Abstract—As a leading partitional clustering technique, k-modes is one of the most computationally efficient clustering methods for
categorical data. In the k-modes, a cluster is represented by “mode”, which is composed of the attribute value that occurs most frequently
in each attribute domain of the cluster. Whereas, in real applications, using only one attribute value in each attribute to represent a cluster
may not be adequate, which could in turn affect the accuracy of data analysis. To get rid of this deficiency, several modified clustering
algorithms were developed by assigning appropriate weights to several attribute values in each attribute. Although these modified
algorithms are quite effective, their convergence proofs are lack. In this paper, we analyze their convergence property and prove that
they cannot guarantee to converge under their optimization frameworks, unless they degrade to the original k-modes type algorithms.
Furthermore, we propose two different modified algorithms with weighted cluster prototypes to overcome the shortcomings of these
existing algorithms. We rigorously derive updating formulas for the proposed algorithms and prove the convergence of the proposed
algorithms. The experimental studies show that the proposed algorithms are effective and efficient for large categorical data sets.

Index Terms—Clustering, K-modes type clustering algorithms, Categorical data, Weighted cluster prototype, Convergence.
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1 Introduction

C lustering is an unsupervised classification technique
that aims at grouping a set of unlabeled objects into

meaningful clusters so that the objects in the same cluster
have high similarity but are very dissimilar with objects
in other clusters. Many types of clustering techniques
have been studied in the literature (e.g., [1] and refer-
ences therein), which has extensive applications in various
domains. Recently, increasing attention has been paid to
clustering categorical data, where records are made up of
nonnumerical data, since this task is of great practical rele-
vance in several fields ranging from statistics to psychology
[2], [3], [4], [5], [6].

Several algorithms for categorical data have been re-
ported [7], [8], [9], [10], [10], [11], [12], [13], [14],
[15], [16], [17]. Among them, the k-modes type (nonfuzzy
or fuzzy) clustering algorithms [16], [17], [19] are very
popular techniques in solving categorical data clustering
problems in different application domains, which have
removed the numeric-only limitation of the k-means type
algorithms [18] and enable the k-means clustering process
to effectively cluster large categorical data sets from real
world databases.

In the k-modes, the prototype of a cluster is composed
of the attribute value that occurs most frequently in each
attribute domain of the cluster. Although this cluster rep-
resentative is simple, it is questionable to use only one
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attribute value in each attribute domain to represent a
cluster, which often ignores the representability of other
attribute values whose frequencies in the cluster may be
close to the largest one. To get rid of this deficiency, several
modified algorithms were developed in [20], [21], [22],
[23], [24], [25], [26], where a prototype in a cluster is a
list of several categorical values in the attribute with their
frequencies in the cluster as the weights. The higher the
weight of a categorical value in the cluster is, the more
representability the categorical value has in the cluster.
Although these modified algorithms are quite effective in
enhancing the performance of the original k-modes type
algorithms, the convergence proofs of these algorithms are
lack. However, in real applications, the main concerns for
an iterative algorithm are whether it “stops” (successive
iterates stabilize at an apparent fixed point of the process
up to some margin of error); and even more importantly,
when it does stop, is the terminal iterate an (at least local)
optimal solution of its objective function? Therefore, we
need address the following two problems:

(1) Whether these modified algorithms can converge to
the local optimal solutions of their objective functions in a
finite number of iterations.

(2) When the convergence of these modified algorithms
can not be guaranteed, how to design the k-modes type
algorithms with frequency-based prototypes which can
guarantee the convergence.

On the basis of the above motivations, the major con-
tributions in this paper are as follows: We first analyze
the convergence of the existing modified k-modes type
algorithms [20], [21], [22], [23], [24], [25] and prove that
the iterative sequences generated by these algorithms can
converge to the local minimal solutions under their opti-
mization frameworks, only if they degrade to the original
k-modes type algorithms. Furthermore, we propose two new
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k-modes type algorithms with frequency-based cluster pro-
totypes, called MKM NOF and MKM NDM respectively,
which overcome in different ways the shortcomings of the
existing modified algorithms as follows:

(1) In the MKM NOF algorithm, while keeping the
formats of the dissimilarity measures in these algorithms,
we modify their objective functions by adding the weight
entropy term.

(2) In the MKM NDM algorithm, while keeping the
formats of the objective functions in these algorithms, we
modify the dissimilarity measures by adding an uncertainty
measure.

These approaches can simultaneously minimize the
within cluster dispersions and use the frequency of each
categorical value in a cluster to reflect the representability
of the categorical value in the cluster. We rigorously derive
updating formulas of the MKM NOF and MKM NDM
algorithms, respectively. It is proved that the clustering
process with these updating formulas converges under the
optimization framework. Finally, the experimental studies
on several real data sets from UCI show that the proposed
algorithms are effective and suitable for large categorical
data sets thanks to its linear time complexity with respect
to the number of data objects, attributes or clusters.

The outline of this paper is as follows: In Section 2,
we review the k-modes type algorithms. In Section 3,
we introduce several modified k-modes type algorithms
with frequency-based prototypes and analyze the reasons
of the non convergence of these algorithms. In Section 4,
we present a new objective function and the MKM NOF
algorithm. In Section 5, we propose a new dissimilarity
measure and the MKM NDM algorithm. In Section 6, we
analyze the convergence of the two proposed algorithms. In
Section 7, the experimental analysis is given to illustrate the
convergence, effectiveness and efficiency of the proposed
algorithms. Finally, a concluding remark is given in Section
8.

2 The K-Modes Type Algorithms

Let U = {x1, x2, . . . , xn} be a set of n objects, A =

{a1, a2, . . . , am} be a set of m attributes and Da j be the
domain of attribute a j for 1 ≤ j ≤ m. Here, we only con-
sider two general data types, numeric and categorical, and
assume other types used in database systems can be mapped
to one of these two types. A numeric domain consists of
real numbers. A domain Da j is defined as categorical if it is
finite and unordered, i.e., Da j = {a

(1)
j , a

(2)
j , · · · , a

(n j)
j } where

n j is the number of categories of attribute a j for 1 ≤ j ≤ m.
For any 1 ≤ p ≤ q ≤ n j, either a(p)

j = a(q)
j or a(p)

j , a(q)
j . For

1 ≤ i ≤ n, object xi ∈ U is represented as [xi1, xi2, . . . , xim],
where xi j ∈ Da j , for 1 ≤ j ≤ m. If each attribute in A is
categorical, U is called a categorical data set.

The k-modes type algorithms use the k-means type
paradigm to cluster categorical data sets. The objective of
clustering a set of n categorical objects into k clusters is to

find W and Z that minimize [17]

F(W,Z) =
k∑

l=1

n∑
i=1

wα
lid(zl, xi) (1)

subject to 
wli ∈ [0, 1], 1 ≤ l ≤ k, 1 ≤ i ≤ n,
k∑

l=1
wli = 1, 1 ≤ i ≤ n,

0 <
n∑

i=1
wli < n, 1 ≤ l ≤ k,

(2)

where
• n is the number of objects in U, k(≤ n) is a known

number of clusters;
• α ∈ [1,+∞) is the fuzzy index. α = 1 gives the k-modes

algorithm;
• W = [wli] is a k-by-n real matrix, wli indicates whether

xi belongs to the lth cluster for the k-modes algorithm,
wli = 1 if xi belongs to the lth cluster and 0 otherwise, and
for the fuzzy k-modes algorithm, wli is the membership
degree of xi to the lth cluster;
• Z = {z1, z2, . . . , zk} ⊆ R, where R = Da1×Da2×· · ·×Dam

and zl = [zl1, zl2, . . . , zlm] is the lth cluster prototype with
categorical attributes a1, a2, . . . , am;
• d(zl, xi) is the simple matching dissimilarity measure

between object xi and the prototype zl of the lth cluster
which is defined as

d(zl, xi) =
m∑

j=1

δ(zl j, xi j), (3)

where
δ(zl j, xi j) =

{
1, zl j , xi j,
0, zl j = xi j.

(4)

Minimization of F in (1) with the constraints in (2) forms
a class of constrained nonlinear optimization problems
whose solutions are unknown. The usual method towards
optimization of F in (1) is to use partial optimization for
Z and W. In this method, we first fix Z and find necessary
conditions on W to minimize F. Then, we fix W and
minimize F with respect to Z. The above optimization
problem can be solved by iteratively solving the following
two minimization problems:

Problem P1: Fix Z = Ẑ, solve the reduced problem
F(W, Ẑ);

Problem P2: Fix W = Ŵ, solve the reduced problem
F(Ŵ,Z).

For the k-modes algorithm(α = 1), Problem P1 is solved
by

ŵli =

{
1, if d(ẑl, xi) ≤ d(ẑh, xi), 1 ≤ h ≤ k,
0, otherwise, (5)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k. For the fuzzy k-modes
algorithm(α > 1), Problem P1 is solved by

wli =


1, i f d(ẑl, xi) = 0,
0, i f d(ẑh, xi) = 0, h , l,

1
/ k∑

h=1

[
d(ẑl, xi)
d(ẑh, xi)

]1/(α−1)

, i f d(ẑh, xi) , 0, 1 ≤ h ≤ k.

(6)
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for 1 ≤ i ≤ n, 1 ≤ l ≤ k.
Problem P2 is solved by

zl j = a(r)
j ∈ Da j (7)

where ∑
xi j=a(r)

j ,xi∈U

wα
li =

n j
max
q=1

∑
xi j=a(q)

j ,xi∈U

wα
li , (8)

for 1 ≤ j ≤ m. Here, Da j = {a
(1)
j , a

(2)
j , . . . , a

(n j)
j }, n j is the

number of categories of attribute a j for 1 ≤ j ≤ m.
This process is formalized in the k-modes type algo-

rithms as follows [17]:
Step 1. Choose an initial point set Z(1) ⊆ R. Determine

W (1) such that F(W,Z(1)) is minimized. Set t = 1.
Step 2. Determine Z(t+1) such that F(W (t),Z(t+1)) is mini-

mized. If F(W (t),Z(t+1)) = F(W (t),Z(t)), then stop; otherwise
goto Step 3.

Step 3. Determine W (t+1) such that F(W (t+1),Z(t+1)) is
minimized. If F(W (t+1),Z(t+1)) = F(W (t), Z(t+1)), then stop;
otherwise set t = t + 1 and goto Step 2.

We remark that Z is determined based on the frequencies
of attribute values in the cluster. The most frequent attribute
value in each attribute domain in a cluster is selected to
represent the cluster, which minimize the within-cluster
dissimilarity. However, this approach often ignores the
representability of other attribute values whose frequencies
in the cluster may be close to the largest one.

Let us consider the following example to demonstrate the
problem. We suppose that there is a categorical attribute a j

which has four categorical values: ‘A’, ‘B’, ‘C’ and ‘D’,
and a cluster cl which contains 40 ‘A’, 35 ‘B’, 20 ‘C’ and
5 ‘D’ in attribute a j. Figure 1 shows the categorical attribute
distribution in cluster cl. Although ‘A’ is the most frequent
categorical value in cluster cl, the frequency of ‘B’ is close
to ‘A’ in cluster cl. When we select ‘A’ from the attribute
domain to represent cluster cl, other 60 percent categorical
values will be ignored.
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Fig. 1. An example of an attribute distribution in the
cluster, where each bar corresponds to each categorical
value.

3 The Convergence Property of Several Modi-
fied K-Modes Type Algorithms
To get rid of this deficiency, several modified algorithms
were developed in [20], [21], [22], [23], [24], [25] by

assigning appropriate weights to several attribute values
in each attribute. San et al. [20] introduced frequency-
based cluster prototypes to represent clusters, which are
applied to the k-modes clustering algorithm. A prototype in
a cluster is a list of all the categorical values in the attribute
with their frequencies in the cluster as the weights. The
higher the frequency of a categorical value in the cluster
is, the more representability the categorical value has in the
cluster. Kim et al. [21] presented a fuzzy k-modes algorithm
with frequency-based prototypes. He el at. [22] and Ng
el at. [23], [24] used the relative attribute frequencies
in a cluster as weights to reflect the representability of
cluster mode in the cluster and apply them to measure
the similarity between objects and cluster prototypes. This
modification can help the k-modes clustering process to
recognize a cluster with weak intra-similarity. Lee and
Pedrycz in [25] introduced a generalization of the k-modes
type clustering algorithms with fuzzy p-mode prototypes.
The above modified algorithms can be seen as the special
cases of the generalized k-modes type algorithm.

In the generalized algorithm, a generalization, called
fuzzy p-mode prototype, of frequency-based prototypes
is defined. A cluster prototype at a categorical attribute
is expressed as a list of p categories that have larger
frequencies than others in the cluster.

The definition of the lth cluster prototype z′l =

[z
′

l1, z
′

l2, · · · , z
′

lm] is formalized as

z
′

l j = {(a
(q)
j , fl jq)|a(q)

j ∈ D(pl j)
a j , 1 ≤ q ≤ n j} (9)

where D(pl j)
a j ⊆ Da j is a set of pl j(1 ≤ pl j ≤ n j) categorical

values of a j that have larger frequencies than others in the
lth cluster, for 1 ≤ j ≤ m.

When given the cluster prototypes Z
′
= {z′1, z

′

2, · · · , z
′

k},
the dissimilarity measure d

′
(z′l , xi) is defined as follows:

d
′
(z
′

l , xi) =
m∑

j=1

δ
′
(z
′

l j, xi j), (10)

where

δ
′
(z
′

l j, xi j) =
{

1 − fl jq, i f xi j ∈ D(pl j)
a j ,

1, otherwise.
(11)

Here fl jq is the relative frequency of the categorical value
a(q)

j in the lth cluster, i.e.,

fl jq =
|cl jq|
|cl|

(12)

where |cl jq| =
n∑

i=1,xi j=a(q)
j

wα
li and |cl| =

n∑
i=1

wα
li.

Based on the p-mode prototypes instead of the modes
and the dissimilarity measure d

′
instead of the simple

matching dissimilarity measure d, Lee and Pedrycz pre-
sented a generalization of the k-modes type algorithms.
More precisely, they use the iterative method to minimize

F
′
(W, Z

′
) =

k∑
l=1

n∑
i=1

wα
lid
′
(z
′

l , xi) (13)
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subject to the same conditions as those in (2).
When pl j = 1 for each attribute a j, 1 ≤ j ≤ m, Z

′
is

equal to Z of the original k-modes type algorithms and δ
′

becomes

δ
′
(z
′

l j, xi j) =
{

1 − fl jq, i f xi j = zl j,
1, otherwise. (14)

Then, the generalized k-modes type algorithm becomes He
et al. and Ng et al. ’s algorithms [22], [23], [24].

When pl j = n j for each attribute a j, 1 ≤ j ≤ m, a
prototype in a cluster is a list of all the categories in the
attribute, with their frequencies in the cluster as the weights,
i.e.,

z
′

l j = {(a
(q)
j , fl jq)|a(q)

j ∈ Da j , 1 ≤ q ≤ n j} (15)

and

δ
′
(z
′

l j, xi j) =
n j∑

q=1

fl jqδ(a
(q)
j , xi j)

=

n j∑
q=1,xi j,a(q)

j

fl jq = 1 − fl jr,

(16)

where xi j = a(r)
j and 1 ≤ r , q ≤ n j, for 1 ≤ j ≤ m,1 ≤

l ≤ k, 1 ≤ i ≤ n. In this case, the generalized k-modes type
algorithm becomes San et al. and Kim et al. ’s algorithms
[20], [21].

To analyze the convergence of these modified algorithms,
we rewrite the objective function (13) as

F f (W,V) =
k∑

l=1

n∑
i=1

wα
lid f (vl, xi) (17)

subject to (2) and

vl jq ∈ [0, 1], 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j,

0 <
n j∑

q=1
vl jq ≤ 1, 1 ≤ q ≤ n j,

vl jq = 0, i f a(q)
j ∈ Da j − D(pl j)

a j , 1 ≤ q ≤ n j,

fl jq ≥ max
a(s)

j ∈Da j−D
(pl j )
a j

fl js, i f a(q)
j ∈ D(pl j)

a j , 1 ≤ q, s ≤ n j.

(18)
where
• pl j is the number of elements in D(pl j)

a j and 1 ≤ pl j ≤ n j

for 1 ≤ j ≤ m.
• V = [v1, v2, . . . , vk]

′
and vl =

[vl11, vl12, . . . , vl1n1 , vl21, vl22, . . . , vl2n2 , . . . , vlm1, vlm2, . . . , vlmnm ]
′

is a list of weights of all categorical values, which is used
to summarize and characterize the lth cluster. The larger
vl jq is, the more representability the categorical value a(q)

j
has in the lth cluster. Here, vl is seen as the lth cluster
prototype.
• d f (vl, xi) is a dissimilarity measure between object xi

and the prototype vl of the lth cluster which is defined as

d f (vl, xi) =
m∑

j=1

ψa j (vl, xi), (19)

where

ψa j (vl, xi) = 1 − vl jr, i f xi j = a(r)
j , 1 ≤ r ≤ n j. (20)

Similar to solving (1), the optimization problem needs
to be solved by iteratively solving the following two mini-
mization problems:

Problem P1: Fix V = V̂ , solve the reduced problem
F f (W, V̂);

Problem P2: Fix W = Ŵ, solve the reduced problem
F f (Ŵ,V).

When α = 1, Problem P1 is solved in [20] by

ŵli =

{
1, if d f (v̂l, xi) ≤ d f (v̂h, xi), 1 ≤ h ≤ k,
0, otherwise, (21)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k. When α > 1, Problem P1 is solved
in [21] by

wli =
1∑k

h=1

[
d f (v̂l,xi)
d f (v̂h,xi)

]1/(α−1) (22)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k.
Problem P2 is solved in [20], [21] by

vl jq =

 fl jq, i f a(q)
j ∈ D(pl j)

a j ,

0, otherwise,
(23)

for 1 ≤ 1 ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j.
Theorem 1: Let W = Ŵ be fixed. F f (Ŵ,V) is minimized

iff

vl jr =

 1, fl jr =
n j

max
q=1

fl jq,

0, otherwise,
(24)

for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j.
Proof: Let

ϑl, j =

n∑
i=1

wα
liψa j (vl, xi)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Then
k∑

l=1

n∑
i=1

wα
lid f (vl, xi) =

k∑
l=1

n∑
i=1

m∑
j=1

wα
liψa j (vl, xi)

=

k∑
l=1

m∑
j=1

n∑
i=1

wα
liψa j (vl, xi) =

k∑
l=1

m∑
j=1

ϑl, j.

For 1 ≤ l ≤ k and 1 ≤ j ≤ m, each ϑl, j is nonnegative
and independent. Thus, minimizing the objective function
is equivalent to minimizing each ϑl, j. Note that

ϑl, j =

n∑
i=1

wα
liψa j (vl, xi)

=

n j∑
q=1

n∑
i=1,xi j=a(q)

j

wα
liψa j (vl, xi)

=

n j∑
q=1

n∑
i=1,xi j=a(q)

j

wα
li(1 − vl jq)

= |cl| −
n j∑

q=1

n∑
i=1,xi j=a(q)

j

wα
livl jq

= |cl| − |cl|
n j∑

q=1

vl jq fl jq.
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When W is given, |cl| is fixed. It is clear that ϑl, j is
minimized iff

∑n j

q=1 vl jq fl jq is maximal for 1 ≤ t ≤ n j.
Because of

0 <
n j∑

q=1

vl jq ≤ 1, and vl jq = 0, i f a(q)
j ∈ Da j\D

(pl j)
a j , 1 ≤ q ≤ n j,

we know that
n j∑

q=1

vl jq fl jq =
∑

a(s)
j ∈D

(pl j )
a j

vl js fl js ≤
n j

max
q=1

fl jq.

Therefore,

vl jr =

 1, fl jr =
n j

max
q=1

fl jq,

0, otherwise,

maximize
∑n j

q=1 vl jq fl jq for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j.
The result follows.

According to Theorem 1, we can see that while solving
Problem 2, for each attribute, only one categorical value
with the relatively maximum frequency has the repre-
sentability in the cluster. This means that Theorem 1 is
equivalent to the updating formula for cluster prototypes in
the original k-modes type algorithms. While Theorem 1 is
used to compute V , the distance function d f also becomes
the simple matching dissimilarity measure, i.e.,

ψa j (vl, xi) =

 1, xi j = a(q)
j and vl jq = 0,

0, xi j = a(q)
j and vl jq = 1.

(25)

The analysis tells us that the cluster process can converge to
a local minimal solution under the optimization framework,
only if the modified algorithms are degenerate to the
original k-modes type algorithms.

To overcome the deficiencies of these existing modified
algorithms, in the next sections, we will propose two
new modified k-modes type clustering algorithms, called
MKM NOF and MKM NDM respectively. They will
apply different techniques to simultaneously guarantee the
convergence of the clustering process and implement the
representation of a cluster by using several categorical
values in each attribute with appropriate weights.

4 The MKM NOF Algorithm
To avoid the problem of identifying clusters by a single
categorical value from each attribute, a weight entropy term
is added to the objective function (17). This term is inspired
by the principle of maximum entropy which provides an
unbiased probability assignment for ill-defined problems on
the basis of the given information. The principle was first
expounded by Jaynes [27] in 1957 and currently have been
applied to fuzzy clustering and subspace clustering et al
[28], [29]. Here, we will use the weight entropy term to help
us simultaneously minimize the within-cluster dispersion
and stimulate more categorical values from each attribute
to contribute to the identification of clusters.

The new objective function and optimization problem can
be written as follows:

Fe(W,V) =
k∑

l=1

n∑
i=1

[wα
lid f (vl, xi) + γ

m∑
j=1

n j∑
q=1

vl jq log vl jq]

(26)
subject to the same conditions as in those in (2) and

vl jq ∈ [0, 1], 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j,
n j∑

q=1
vl jq = 1, 1 ≤ q ≤ n j.

(27)

In the objective function, the first term is the sum of the
within-cluster dispersions that we want to minimize and
the second term is the negative weight entropy that we
want to maximize. Due to the second term, a cluster will
be represented by several categorical values with nonzero
weights in an attribute instead of one, which makes a
significant difference between the proposed approach and
the existing ones. For any attribute a j (1 ≤ j ≤ m), when
vl jq∗ is close to one for some q∗ and vl jq is close to zero for
all q , q∗, the value of negative entropy −∑n j

q=1 vl jq log vl jq

is close to zero. In this case, the lth cluster will certainly
be represented by the single qth categorical value of a j,
and the corresponding entropy value is small. However,
when some of vl jq are about the same and greater than
zero and the others are close to zero, the negative en-
tropy will become more positive, i.e., much larger than
zero. In this situation, the lth cluster will be represented
by several categorical values of a j. Therefore, with the
weight entropy term, the clustering process attempts to
simultaneously minimize the within-cluster dispersions and
maximize the negative weight entropy, which can stimulate
more categorical values to contribute to the description of
clusters. In the minimization process of (26), the value
of parameter γ determines which term will play a more
important role. The larger the value of γ is, the more the
second term contributes in the optimization process and
the“smoother” or fuzzier the resulting V are. However, the
value of γ should not be too large. The reason is that when
γ is very large, for each cluster, vl jq is close to 1/n j, which
makes the descriptions of all the clusters become identical.

Similar to solving (17), we minimize (26) by iteratively
solving Problems 1 and 2. When V is fixed, W is updated
by (21) and (22). Now, the key issue is to rigorously derive
the updating formula of V for solving Problem 2 when W
is fixed. Theorem 2 below presents the updating formula
of V .

Theorem 2: Let W = Ŵ be fixed. Fe(Ŵ,V) is minimized
iff

vl jr =
exp( |cl jr |

γ
)

n j∑
q=1

exp( |cl jq |
γ

)
(28)

for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j.
Proof: Let

κl, j =

n∑
i=1

wα
liψa j (vl, xi) + γ

n j∑
q=1

vl jq log vl jq
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for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Then,

k∑
l=1

n∑
i=1

[wα
lid f (vl, xi) + γ

m∑
j=1

n j∑
q=1

vl jq log vl jq]

=

k∑
l=1

n∑
i=1

m∑
j=1

[wα
liψa j (vl, xi) + γ

n j∑
q=1

vl jq log vl jq]

=

k∑
l=1

m∑
j=1

n∑
i=1

[wα
liψa j (vl, xi) + γ

n j∑
q=1

vl jq log vl jq]

=

k∑
l=1

m∑
j=1

κl, j.

For 1 ≤ l ≤ k and 1 ≤ j ≤ m, each κl, j is nonnegative
and independent. Thus, minimizing the objective function
is equivalent to minimizing each κl, j. Note that

κl, j =

n∑
i=1

wα
liψa j (vl, xi) + γ

n j∑
q=1

vl jq log vl jq

=

n j∑
q=1

n∑
i=1,xi j=a(q)

j

wα
liψa j (vl, xi) + γ

n j∑
q=1

vl jq log vl jq

=

n j∑
q=1

n∑
i=1,xi j=a(q)

j

wα
li(1 − vl jq) + γ

n j∑
q=1

vl jq log vl jq

= |cl| −
n j∑

q=1

n∑
i=1,xi j=a(q)

j

wα
livl jq + γ

n j∑
q=1

vl jq log vl jq

= |cl| −
n j∑

q=1

|cl jq|vl jq + γ

n j∑
q=1

vl jq log vl jq,

where |cl| and |cl jq| (1 ≤ q ≤ n j) are constants for fixed W.
This means that minimizing κl, j is equivalent to minimizing

−
n j∑

q=1

|cl jq|vl jq + γ

n j∑
q=1

vl jq log vl jq. (29)

Since κl, j is a strictly convex function, the well-known
K-K-T necessary optimization condition is also sufficient.
Therefore, v̂l j is an optimal solution if and only if there
exists λ̂ together with v̂l j satisfying the following system
of equations:

∇vl j κ̃l, j(vl j, λ) = 0,
n j∑

q=1
vl jq = 1, (30)

where vl j = {vl j1, vl j2, · · · , vl jn j } and

κ̃l, j(vl j, λ) = −
n j∑

q=1

|cl jq|vl jq+γ

n j∑
q=1

vl jq log vl jq+λ(
n j∑

q=1

vl jq−1).

(31)
We have

∂κ̃l, j(vl j, λ)
∂vl jr

= −|cl jr | + γ(1 + log vl jr) + λ, 1 ≤ q ≤ n j. (32)

From (30) and (32), we obtain the optimal solution

v̂l jr =
exp( |cl jr |

γ
)

n j∑
q=1

exp( |cl jq |
γ

)
.

This completes the proof.
Due to |cl jr | = fl jr |cl|, vl jr is proportional to fl jr. There-

fore, the larger fl jr, the larger vl jr, the more representability
the categorical value a(q)

j has in the lth cluster.
Let us consider the example in Section 2 again. Without

loss of generality, assume γ = 10. According to (28), we
can compute the representability of the categorical values
‘A’, ‘B’, ‘C’ and ‘D’ in the cluster cl as follows: vl j1 =

0.5643,vl j2 = 0.3423, vl j3 = 0.0764 and vl j4 = 0.0170. We
see that the proposed representation method can sufficiently
reflect the representability of all the categorical values in the
cluster, compared to the original k-modes type algorithms.
And the larger the frequency of a categorical value in cl is,
the higher its representability of in cl is.

Based on Theorem 2, an algorithm is proposed to mini-
mize (26), which is as follows:

Algorithm-MKM NOF
Input: The number of clusters k and the parameters

α and γ. Randomly choose a set of k objects X =

{x1, x2, · · · , xk} ⊂ U to initialize V (1), i.e., set vl jq = 1 if
xl j = a(q)

j , otherwise, vl jq = 0, for 1 ≤ l ≤ k, 1 ≤ j ≤ m and
1 ≤ q ≤ n j.

REPEAT
Update the partition matrix W by (21) or (22);
Update the weights of cluster prototypes V by Theorem

2;
UNTIL the value of the objective function Fe does not

change.
If the clustering process needs t iterations to converge,

the total computational complexity of the MKM NOF
algorithm is O(mnkt) which is as much as the original
k-modes type algorithms (O(mnkt)). This shows that the
computational complexity increases linearly as either the
number of objects, attributes or clusters increases. As
for the storage, we need O(mn + nk + 2

∑m
j=1 n jk) space

to hold the set of n objects, the partition matrix W,
the cluster prototypes V and the frequencies of all the
categorical values in each cluster. The storage space is
very close to that of the original k-modes type algorithms
(O(mn + nk + mk +

∑m
j=1 n jk)).

5 The MKM NDM Algorithm
In this section, we introduce a new dissimilarity measure
into the objective function (17). More precisely, we will
minimize

Fn(W,V) =
k∑

l=1

n∑
i=1

wα
lidn(vl, xi) (33)

subject to the same conditions as those in (2) and (27),
where the dissimilarity measure dn(vl, xi) is defined as
follows:

dn(vl, xi) =
m∑

j=1

ϕa j (vl, xi) (34)
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with

ϕa j (vl, xi) = (1− vl jr)2 +

n j∑
q=1,q,r

v2
l jq, i f xl j = a(r)

j , 1 ≤ r ≤ n j.

(35)
According to (35), ϕa j (vl, xi) depends on two factors, i.e.,

vl jr and
∑n j

q=1,q,r v2
l jq. The first factor vl jr is the representabil-

ity of a(r)
j in the lth cluster. The larger vl jr is, the more

representability a(r)
j has in the lth cluster, the smaller the

dissimilarity between vl and xi in the attribute a j. When
the representability of a(r)

j is one, ϕa j (vl, xi) = 0 and thus
the corresponding function value is the same as that in
the simple matching dissimilarity measure d in the original
k-modes type algorithms. The second factor

∑n j

q=1,q,r v2
l jq

is an uncertainty measure on the representability of other
categories of a j in the lth cluster. Since

∑n j

q=1,q,r v2
l jq is a

strictly convex function, the K-K-T necessary optimality
condition is also sufficient. Thus, v′l j = {vl jq|1 ≤ q ≤ n j, q ,
r} is an optimal solution of min

∑n j

q=1,q,r v2
l jq subject to∑n j

q=1 vl jq−1+vl jr = 0 if and only if there is some λ̂ together
with v̂

′

l j satisfying the following system of equations:

∇v′l j
φ̃(v′l j, λ) = 0,

1 −
n j∑

q=1
vl jq = vl jr,

(36)

where

φ̃(v
′

l j, λ) =
n j∑

q=1,q,r

v2
l jq + λ(

n j∑
q=1

vl jq − 1 + vl jr). (37)

Note that

∂φ̃(v′l j, λ)

∂vl jq
= 2vl jq + λ, 1 ≤ q ≤ n j, q , r. (38)

From (36) and (38), we obtain that

v̂l jq =
1 − vl jr

n j − 1
, 1 ≤ q ≤ n j, q , r. (39)

The above analysis shows that, when vl jq, 1 ≤ q ≤ n j, q , r,
are equal,

∑n j

q=1,q,r v2
l jq achieves its minimum value given by

(1 − vl jr)2

n j − 1
.

We also know that
n j∑

q=1,q,r

v2
l jq ≤ (

n j∑
q=1,q,r

vl jq)2 = (1 − vl jr)2.

Hence, if only one of vl jq, 1 ≤ q ≤ n j, is nonzero,∑n j

q=1,q,r v2
l jq achieves its maximum value given by

(1 − vl jr)2.

The value of
∑n j

q=1,q,r v2
l jq reflects an uncertainty degree

on the representability of categorical values a(q)
j (1 ≤ q ≤

n j, q ≤ r) in the lth cluster. The larger
∑n j

q=1,q,r v2
l jq is, the

smaller the uncertainty degree is, the larger the dissimilarity
between vl and xi in the attribute a j is.

Property 1: (Maximum). The maximum value of
ϕa j (vl, xi) is 2. This value is achieved only if there exists
some q ≤ n j such that vl jq = 1 and xi j , a(q)

j .
Property 2: (Minimum). The minimum value of

ϕa j (vl, xi) is 0. This value is achieved only if xi j = a(q)
j for

some q and vl jq = 1.
Property 3: ϕa j (vl, xi) = 2ψa j (vl, xi)+

∑n j

q=1 v2
l jq−1, where

ψa j (vl, xi) can be found in Section 3.
Similar to the way for solving (17), we will minimize

(33) by iteratively solving Problems 1 and 2.
When α = 1, Problem P1 is solved by

ŵli =

{
1, if dn(v̂l, xi) ≤ dn(v̂h, xi), 1 ≤ h ≤ k,
0, otherwise, (40)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k. When α > 1, Problem P1 is solved
by

wli =
1∑k

h=1

[
dn(v̂l,xi)
dn(v̂h,xi)

]1/(α−1) (41)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k.
Theorem 3 below rigorously shows the updating formula

of V to solve Problem 2 when W is fixed.
Theorem 3: Let W = Ŵ be fixed. Fn(Ŵ,V) is minimized

iff
vl jr = fl jr (42)

for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j.
Proof: Let

θl, j =

n∑
i=1

wα
liϕa j (vl, xi)

for 1 ≤ l ≤ k and 1 ≤ j ≤ m. Then
k∑

l=1

n∑
i=1

wα
lidn(vl, xi) =

k∑
l=1

n∑
i=1

m∑
j=1

wα
liϕa j (vl, xi)

=

k∑
l=1

m∑
j=1

n∑
i=1

wα
liϕa j (vl, xi) =

k∑
l=1

m∑
j=1

θl, j.

For 1 ≤ l ≤ k and 1 ≤ j ≤ m, each θl, j is nonnegative
and independent. Thus, minimizing the objective function
is equivalent to minimizing each θl, j. Note that

θl, j =

n∑
i=1

wα
liϕa j (vl, xi)

=

n j∑
q=1

n∑
i=1,xi j=a(q)

j

wα
liθa j (vl, xi)

=

n j∑
q=1

[
|cl jq|(1 − vl jq)2 + (|cl| − |cl jq|)v2

l jq

]
=

n j∑
q=1

(|cl|v2
l jq − 2|cl jq|vl jq) + |cl|.

where |cl| and |cl jq|(1 ≤ q ≤ n j) are constants for fixed W.
This means that minimizing θl, j is equivalent to minimizing

n j∑
q=1

(|cl|v2
l jq − 2|cl jq|vl jq). (43)
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Since θl, j is a strictly convex function, the well-known
K-K-T necessary optimization condition is also sufficient.
Therefore, v̂l j is an optimal solution if and only if there
exists λ̂ together with v̂l j satisfying the following system
of equations:

∇vl j θ̃l, j(vl j, λ) = 0,
n j∑

q=1
vl jq = 1, (44)

where vl j = {vl j1, vl j2, · · · , vl jn j } and

θ̃l, j(vl j, λ) =
n j∑

q=1

(|cl|v2
l jq − 2|cl jq|vl jq) + λ(

n j∑
q=1

vl jq − 1). (45)

We have

∂θ̃l, j(vl j, λ)
∂vl jr

= 2|cl| − 2|cl jr |vl jr + λ, 1 ≤ q ≤ n j. (46)

From (44) and (46), we obtain the optimal solution

v̂l jr =
|cl jr |
|cl|

.

This completes the proof.
Here, the relative frequency of each categorical value in

a cluster is used to reflect its representability in the cluster.
It is obvious that the larger the frequency of a categorical
value in a cluster is, the larger its representability of in the
cluster is. Let us consider the example in Section 2 again.
According to (42), we can compute the representability of
the categorical values ‘A’, ‘B’, ‘C’ and ‘D’ in the cluster cl

as follows: vl j1 = 0.4, vl j2 = 0.35, vl j3 = 0.2 and vl j4 = 0.05.
Based on Theorem 3, an algorithm is proposed to mini-

mize (33), which is as follows:
Algorithm-MKM NDM
Input: The number of clusters k and the parameter α;

Randomly choose a set of k objects X = {x1, x2, · · · , xk} ⊂
U to initialize V (1), i.e., set vl jq = 1 if xl j = a(q)

j , otherwise,
vl jq = 0, for 1 ≤ l ≤ k, 1 ≤ j ≤ m and 1 ≤ q ≤ n j.

REPEAT
Update the partition matrix W by (40) or (41);
Update the weights of cluster prototypes V by Theorem

3;
UNTIL the value of the objective function Fn does not

change.
The total time and space complexities of the

MKM NDM algorithm are as much as the MKM NOF
algorithm.

6 Convergence Analysis
When α = 1, the convergence of the MKM NOF and
MKM NDM algorithms can be obtained as in Theorems
4 and 5 below.

Theorem 4: When α = 1, the MKM NOF algorithm
converges to a local minimal solution in a finite number of
iterations.

Proof: We first note that there are only a finite number
of possible partitions W. We then show that each possible
partition W appears at most once by the algorithm. Assume
that W (t1) = W (t2), where t1 , t2. We note that, given W (t),

we can compute the minimizer V (t) according to Theorem 2.
For W (t1) and W (t2), we have the minimizers V (t1) and V (t2),
respectively. It is clear that V (t1) = V (t2) since W (t1) = W (t2).
Therefore, we obtain

Fe(W (t1),V (t1)) = Fe(W (t2),V (t1)) = Fe(W (t2),V (t2)).

However, the sequence Fe(·, ·) generated by the
MKM NOF algorithm is strictly decreasing. Hence,
the result follows.

Theorem 5: When α = 1, the MKM NDM algorithm
converges to a local minimal solution in a finite number of
iterations.

Proof: Similar to Theorem 4.
Next, we will analyze the convergence of the

MKM NOF and MKM NDM algorithms when α > 1.
For convenience, we define:
• Mhw = {W ∈ Rkn : wli ∈ {0, 1} and

∑k
l=1 wli = 1,∀l, i}.

• M f w = {W ∈ Rkn : wli satis f ies (2),∀l, i}.
• Hhv = {V ∈ Rks : vl jq ∈ {0, 1} and

∑n j

q=1 vl jq =

1,∀l, j, q}, where s =
∑m

j=1 n j.
• H f v = {V ∈ Rks : vl jq satis f ies (27),∀l, j, q}.
• Ge1 : H f v → M f w, Ge1(V) = W = [wli], where the

entries of W are calculated via (22).
• Ge2 : M f w → H f v, Ge2(W) = V = [vl jq], where the

entries of V are calculated via Theorem 2.
• Je : (M f w × H f v)→ (M f w × H f v), Je = Ge2 ◦Ge1.
• Gn1 : H f v → M f w, Gn1(V) = W = [wli], where the

entries of W are calculated via (41).
• Gn2 : M f w → H f v, Gn2(W) = V = [vl jq], where the

entries of V are calculated via Theorem 3.
• Jn : (M f w × H f v)→ (M f w × H f v), Jn = Gn2 ◦Gn1.
Similar to the approach by which Bezdek analyzed the

convergence of the fuzzy k-means algorithm [30], [31], our
strategy will be to apply Zangwill’s theorem [32] to discuss
the convergence of the MKM NOF and MKM NDM
algorithms (α > 1).

Theorem 6: [32] Let f : D f ⊂ Rm → R: S =

{x∗ ∈ D f : f (x∗) < f (y)∀y ∈ B0(x∗, r)} , where
B0(x∗, r) = {y ∈ Rm : ||x∗ − y|| < r, || · || any norm on Rm},
A : D f → D f be an iterative algorithm, xk+1 = A(xk), and
g be attached to sequences of iterates generated by A to
monitor the progress of A in seeking a solution x∗ ∈ S . If
the following conditions hold, g is a descent function for
{A, S }, A is continuous on D f \S and the iterate sequences
{A(xk) : k = 1, 2, · · · ; x1 ∈ D f } ⊂ K are contained in
a compact set K ⊆ D f for arbitrary x1 ∈ D f , then for
each iterative sequence {xk} generated by A, we have either
{xk} terminates at a solution x∗ ∈ S or ∃ a subsequence
{xk j } ⊆ {xk} so that {xk j } → x∗ ∈ S .

Theorem 6 and its generalizations can be used to obtain
convergence proofs for almost all of the classical iterative
optimization algorithms, e.g., steepest descent, Newton’s
method, etc., by using this approach as an alternative to
more conventional arguments.

According to Theorems 2 and 3, we know the sequences
Fe(·, ·) and Fn(·, ·) generated by the MKM NOF and
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MKM NDM algorithms respectively are strictly decreas-
ing. This indicates the MKM NOF and MKM NDM
algorithms satisfy the first requirement of Theorem 6.

The second requirement of Theorem 6 is that algorithms
Je and Jn be continuous on the domains of Fe \ S and
Fn \ S , respectively. Je and Jn are in fact continuous on all
of M f w × H f v, as we show in the following.

Theorem 7: Je is continuous on (M f w × H f v).
Proof: Since Je = Ge2 ◦ Ge1, and the composition of

the continuous functions is again continuous, it suffices to
show that Ge1 and Ge2 are each continuous. To see that Ge1
is continuous in the (kn) variables {wli}, note that Ge1 is a
vector field, with the resolution by (ks) scalar field where
s =
∑m

j=1 n j, say

Ge1 = [G(111)
e1 ,G(112)

e1 , · · · ,G(l jr)
e1 , · · · ,G(kmnm)

e1 ] : Rkn → Rks

where G(l jr)
e1 : Rkn → R is defined via Theorem 2 as

G(l jr)
e1 (W) =

exp( |cl jr |
γ

)
n j∑

q=1
exp( |cl jq |

γ
)
= vl jr,∀l, j, r.

Now {wli → wα
li} is continuous, {|cl jr | → exp(|cl jr |/γ)}

is continuous, and the sum of continuous functions is
continuous; thus, G(l jr)

1 (W) is the quotient of two continuous
scalar fields for all 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j. In
view of constraint (6), the denominator of G(l jr)

e1 (W) never
vanishes, so G(l jr)

e1 (W) is also continuous ∀l, j, r. Therefore,
Ge1 is continuous on their entire domains. Next, we show
that Ge2 is a continuous function of the (ks) variables {vl jq}.
Ge2 is a vector field with the resolution by (kn) scalar fields,

Ge2 = [G(11)
e2 ,G(12)

e2 , · · · ,G(li)
e2 , · · · ,G

(kn)
e2 ] : Rks → Rkn

where G(li)
e2 : Rks → R is defined via (18) as

G(li)
e2 (V) = 1

/ k∑
h=1

[
d f (vl, xi)
d f (vh, xi)

]1/(α−1)

According to (19), we know that {vl → d f (vl, xi)} is contin-
uous. Since the sum of continuous functions is continuous,
G(li)

e2 (V) is the quotient of two continuous scalar fields for
all 1 ≤ l ≤ k, 1 ≤ i ≤ n. In view of our general hypothesis
that d f (vl, xi) > 0 ∀l, i, G(li)

e2 is continuous for all l, i.
Therefore, Ge2 is continuous on their entire domains. Thus,
J = Ge2 ◦Ge1 is continuous on (M f w × H f v).

Theorem 8: Jn is continuous on (M f w × H f v).
Proof: Similar to Theorem 7.

The final condition needed for Theorem 6 is compactness
of (M f w × H f v) which contains all of the possible iterate
sequences generated by Je and Jn.

Theorem 9: M f w × H f v is a compact set.
Proof: Since H f v is the k-fold Cartesian product of the

convex hull of Hhv and Hhv is a finite set, H f v is closed and
bound in Rks. Therefore, H f v is compact. Similarly, since
M f w is the k-fold Cartesian product of the convex hull of
Mhw and Mhw is a finite set, M f w is closed and bound in Rkn.
Therefore, M f w is compact. Thus, M f w × H f v is compact.

We now assemble the hypotheses and results of the above
theorems into a formal statement for convergence of the
MKM NOF and MKM NDM algorithms.

Theorem 10: The MKM NOF algorithm (α > 1) either
terminates at a point (W∗,V∗) in the solution set Ω, or a
subsequence exists convergent to a point in Ω where

Ω = {(W∗,V∗) ∈ M f w × H f v|Fe(W∗,V∗) ≤ Fe(W,V∗) and

Fe(W∗,V∗) ≤ Fe(W∗,V) f or all V ∈ H f v}.

Theorem 11: The MKM NDM algorithm (α > 1) either
terminates at a point (W∗,V∗) in the solution set Ω, or a
subsequence exists convergent to a point in Ω where

Ω = {(W∗,V∗) ∈ M f w × H f v|Fn(W∗,V∗) ≤ Fn(W,V∗) and

Fn(W∗,V∗) ≤ Fn(W∗,V) f or all V ∈ H f v}.

7 Experimental Results
The main aim of this section is to illustrate the convergence
results and evaluate the clustering performance and effi-
ciency of the MKM NOF and MKM NDM algorithms.
We used five data sets obtained from the UCI Machine
Learning Repository [33] to test the proposed algorithms.
These data sets are shown in Table 1.

TABLE 1
The five data sets from UCI.

Data set Objects Attributes Clusters
Soybean 47 35 4
Heart disease 303 8 2
Breast cancer 699 9 2
Mushroom 8124 22 2
Connect-4 67557 45 3

7.1 Convergence Results

For the existing modified k-modes [20], [21], [22], [23],
[24], MKM NOF and MKM NDM algorithms, we tested
the convergence of their hard and fuzzy clustering pro-
cesses, i.e., α = 1 and α = 1.5, respectively. In the testing
procedure, we carried out 100 runs of these algorithms on
the breast cancer data set, respectively. In each run, different
initial cluster prototypes were used in these algorithms. The
convergence behaviors are shown in Figures 2 and 3. In
each sub-figure, we show the 100 curves, where each curve
refers to the objective function values with the iterations of
an algorithm in each run.

Figure 2 shows the convergence behaviors of the objec-
tive function F

′
with random initializations and different

parameters. When the parameters pl j = 1 for 1 ≤ l ≤ k,
1 ≤ j ≤ m and α = 1, the objective function F

′
represents

the algorithm proposed by He and Ng et al. [22], [23].
When the parameters pl j = 1 for 1 ≤ l ≤ k, 1 ≤ j ≤ m and
α > 1, the objective function F

′
represents the algorithm

proposed by Ng et al. [24]. When the parameters pl j = n j

for 1 ≤ l ≤ k, 1 ≤ j ≤ m and α = 1, the objective function
F
′

represents the algorithm proposed by San et al. [20].
When the parameters pl j = n j for 1 ≤ l ≤ k, 1 ≤ j ≤ m and
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α > 1, the objective function F
′

represents the algorithm
proposed by Kim et al. [21]. According to Figure 2, we
see that these algorithms can not guarantee to obtain the
local minimum solutions of their objective functions in the
clustering processes.

Figure 3 illustrates the convergence behaviors of the
MKM NOF and MKM NDM algorithms on the breast
cancer data set. It is clear from Figure 3 that the objective
function values are decreasing in each curve. We also see in
these sub-figures that the MKM NOF and MKM NDM
algorithms stop after a finite number of iterations, i.e., the
objective function values do not decrease any more. This
is exactly the results we showed in Section 6. Therefore,
the MKM NOF and MKM NDM algorithms can be used
safely.

7.2 Performance Results

To evaluate the performance of clustering algorithms, we
considered the three widely used evaluation methods:

The category utility function: The category utility (CU)
function [35] is an internal criterion which attempts to
maximize both the probability that two data objects in
the same cluster obtain the same attribute values and the
probability that data points from different clusters have
different attributes. CU is defined as follows:

CU =
k∑

l=1

|cl|
n

m∑
j=1

n j∑
q=1

[
P(a(q)

j |cl)2 − P(a(q)
j )2
]
,

where P(a(q)
j |cl) =

|{xi |xi j=a(q)
j ,xi∈cl}|
|cl | , P(a(q)

j ) =
|{xi |xi j=a(q)

j ,xi∈U}|
n ,

and cl is a set of objects in the lth cluster.
The adjusted rand index: The adjusted rand index is an

external criterion which attempts to measure the similarity
between two partitions of objects in the same data set.
Given a set U of n data objects and two groupings (e.g.
clusterings) of these objects, namely C = {c1, c2, · · · , ck}
and P = {p1, p2, · · · , pk′ }, the overlappings between C and
P can be summarized in a contingency table where ni j

denotes the number of common objects of groups ci and
pl j: ni j = |ci ∩ pl j|. The adjusted rand index is defined as

TABLE 2
Notation for the contingency table for comparing two

partitions.

C\P p1 p2 · · · pk′ S ums
c1 n11 n12 · · · n1k′ b1
c2 n21 n22 · · · n2k′ b2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
ck nk1 nk2 · · · nkk′ bk

S ums d1 d2 · · · dk′

Ad justedIndex = Index−ExpectedIndex
MaxIndex−ExpectedIndex , more specifically,

ARI =

∑
i j

(
ni j
2

)
− [
∑

i

(
bi
2

)∑
j

(
d j
2

)
]/
(

n
2

)
1
2 [
∑

i

(
bi
2

)
+
∑

j

(
d j
2

)
] − [
∑

i

(
bi
2

)∑
j

(
d j
2

)
]/
(

n
2

)
where ni j, bi, d j are values from the contingency table
(Table 2). Since these given data sets contain the clustering

label on each data object, we will evaluate the clustering
results by using ARI to compare them with the original
clustering labels. If the clustering result is close to the true
class distribution, then the value of ARI is high.

The set matching technique: This category of methods
is based on measuring the shared set cardinality between
two clusterings. Similar to the adjusted rand index, the set
matching technique is also an external criterion in which
external information-class labels need be used. It computes
the best matches between clusters (in terms of shared
points) from each of the two clusterings and returns a value
equal to the total number of points shared between pairs of
matched clusters. The simplest form of the set matching
technique is called the set matching accuracy (AC)[37],
which is defined as

AC =
k∑

i=1

k
′

max
j=1

ni j

n
,

where ni j, k, k
′

are values from Table 2. If the clustering
result is close to the true class distribution, then the value
of AC is high.

Based on the above evaluation measures, we compared
the proposed algorithms with the existing k-modes type
algorithms [16], [19], [20], [21], [22], [23], [24], [25]
on four real data sets: the soybean data, the heart dis-
ease data, the breast cancer data and the mushroom data,
respectively. To ensure that the comparisons were in a
uniform environmental condition, we first set the number
of clusters is equal to the “true” number of classes for
each of the given data sets. Next, due to the fact that
the performance of these algorithms depends on initial
cluster centers, we randomly selected 100 initial cluster
prototypes for each of the given data sets. Furthermore,
we selected 10 values of α that were from 1 to 1.9 with
step length of 0.1. For each value of α, we carried out 100
runs of each algorithm on each data set and computed the
average values of its 100 clustering results for ARI, CU
and AC. When α > 1, these algorithms produced a fuzzy
partition matrix W. We obtained the cluster memberships
from W as follows. The object xi was assigned to the lth
cluster if wli = max1≤h≤k whi. If the maximum was not
unique, then xi was assigned to the cluster of first achieving
the maximum. Since the convergence of these existing k-
modes type algorithms cannot be guaranteed, we set the
maximum number of their iterations in each run as 30.
For the MKM NOF algorithm, we set γ = 0.03 ∗ n in
the experimental analysis (we tried several values of γ and
found that the value of γ/n in the interval [0.01, 0.05] can
provide the better clustering results on most real data sets),
where n is the number of objects.

Figures 4–7 show the comparison results of the these
algorithms with different α values. In these figures, “Origi-
nal KM” “MKM 1” and “MKM 1” stand for the original
k-modes type algorithm, the generalized k-modes type
algorithm with pl j = 1 for 1 ≤ l ≤ k and 1 ≤ j ≤ m
(is equivalent to He et al. and Ng et al.’s algorithms) and
the generalized k-modes type algorithm with pl j = n j for
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Fig. 2. (a) The objective function values F
′
against the iterations with different initial guesses when pl j = 1 for 1 ≤ l ≤ k,

1 ≤ j ≤ m and α = 1. (b) The objective function values F
′

against the iterations with different initial guesses when
pl j = 1 for 1 ≤ l ≤ k, 1 ≤ j ≤ m and α = 1.5. (c) The objective function values F

′
against the iterations with different

initial guesses when pl j = n j for 1 ≤ l ≤ k, 1 ≤ j ≤ m and α = 1. (d) The objective function values F
′

against the
iterations with different initial guesses when pl j = n j for 1 ≤ l ≤ k, 1 ≤ j ≤ m and α = 1.5.
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Fig. 3. (a) The objective function values Fe against the iterations with different initial guesses when α = 1. (b) The
objective function values Fe against the iterations with different initial guesses when α = 1.5. (c) The objective function
values Fn against the iterations with different initial guesses when α = 1. (d) The objective function values Fn against
the iterations with different initial guesses when α = 1.5.

1 ≤ l ≤ k and 1 ≤ j ≤ m (is equivalent to San et al. and
Kim et al.’s algorithms), respectively.

According to Figures 4–7, we see that MKM NOF
and MKM NDM algorithms can effectively enhance the
performance of the original k-modes type algorithms and
are superior to the MKM 1 algorithm for ARI, CU and
AC. Moreover, we also see that the performance of the
MKM NDM algorithm is slightly better than the MKM 2
algorithm. Compared to the MKM NDM algorithm, the
clustering results of the MKM NOF algorithm are sen-
sitive to the change of α values. This indicates that the
MKM NDM algorithm has very better robustness than the
MKM NOF algorithm. We found that the performance of
the MKM NOF algorithm with the α value in the interval
[1, 1.5) is close to that of the MKM NDM and MKM 2
algorithms.

Therefore, the above experimental results tell us that
the proposed algorithms can not only guarantee to be
convergent but also obtain the better clustering results.

7.3 Scalability Results

In the scalability analysis, we tested the original k-
modes type algorithm, the MKM NOF algorithm and the
MKM NDM algorithm on the connect-4 data set from
UCI [33]. The computational results were performed by
using a machine with an Intel Q9400 and 2G RAM.

The computational times of algorithms were plotted with
respect to the number of objects, attributes and clusters,
while the other corresponding parameters were fixed. All
of the experiments were repeated five times and the average
computational times were depicted. For each of the three
algorithms, we tested the computational times of the hard
and fuzzy clustering processes, i.e., a = 1 and a = 1.5,
respectively.

Figure 8(a) and Figure 9(a) show the computational
times against the number of objects, while the number of
attributes is 42 and the number of clusters is 3. Figure
8(b) and Figure 9(b) show the computational times against
the number of attributes, while the number of clusters
is 3 and the number of objects is 680000. Figure 8(c)
and Figure 9(c) show the computational times against the
number of clusters, while the number of attributes is 42
and the number of objects is 680000. According to the
figures, we see that all of three algorithms are scalable,
i.e., the computational times increase linearly with respect
to either the number of objects, attributes or clusters. The
MKM NOF and MKM NDM algorithms require more
computational times than the original k-mode type algo-
rithms. It is an expected outcome since the proposed algo-
rithms require some additional arithmetic operations for the
weight calculation of cluster prototypes and iterations for
searching a local minimal solution compared to the original



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMISSION 12

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

M
ea

n 
of

 A
R

I

 

 

Original KM
MKM_1
MKM_2
MKM_NOF
MKM_NDM

(a)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2.5

3

3.5

4

4.5

5

5.5

6

α

M
ea

n 
of

 C
U

 

 

Original KM
MKM_1
MKM_2
MKM_NOF
MKM_NDM

(b)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

M
ea

n 
of

 A
C

 

 

Original KM
MKM_1
MKM_2
MKM_NOF
MKM_NDM

(c)

Fig. 4. (a) Means of ARI with respect to different values of α on the soybean data. (b) Means of CU with respect to
different values of α on the soybean data. (c) Means of AC with respect to different values of α on the soybean data.
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Fig. 5. (a) Means of ARI with respect to different values of α on the heart disease data. (b) Means of CU with respect
to different values of α on the heart disease data. (c) Means of AC with respect to different values of α on the heart
disease data.
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Fig. 6. (a) Means of ARI with respect to different values of α on the breast cancer data. (b) Means of CU with respect
to different values of α on the breast cancer data. (c) Means of AC with respect to different values of α on the breast
cancer data.
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Fig. 7. (a) Means of ARI with respect to different values of α on the mushroom data. (b) Means of CU with respect to
different values of α on the mushroom data. (c) Means of AC with respect to different values of α on the mushroom
data.
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Fig. 8. The run times of three algorithms on the connect-4 data with α = 1. (a) Computational times for different
numbers of objects. (b) Computational times for different numbers of attributes. (c) Computational times for different
numbers of clusters.
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Fig. 9. The run times of three algorithms on the connect-4 data with α = 1.5. (a) Computational times for different
numbers of objects. (b) Computational times for different numbers of attributes. (c) Computational times for different
numbers of clusters.

k-mode type algorithms. However, according to the tests,
the MKM NOF and MKM NDM algorithms are still
scalable, i.e., they can cluster categorical objects efficiently.
In addition, we also see that the computational times of the
MKM NOF algorithm is more than the MKM NDM al-
gorithm. Because the MKM NOF algorithm requires more
iterations than the MKM NDM algorithm in clustering
process.

8 Conclusion

In this paper, we have analyzed the convergence of several
modified k-modes algorithms using the frequency-based
cluster prototypes. It is proved that these modified algo-
rithms can not converge to the local minimum solutions of
their objective functions, unless they degrade to the original
k-modes type algorithms. To remedy the shortcoming,
we have proposed two new modified algorithms, called
MKM NOF and MKM NDM respectively which apply
different techniques to represent a cluster by weighted clus-
ter prototypes. We rigorously derive the updating formulas
of the two algorithms and prove their convergence under
their optimization frameworks. Experimental results have
shown that the MKM NOF and MKM NDM algorithms
are efficient and effective in clustering categorical data sets.
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