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Abstract: Ensemble clustering has recently emerged a powerful clustering 
analysis technology for multi-view data. From the existing work, these 
techniques held great promise, but most of them are inefficient for large data. 
Some researchers have also proposed efficient ensemble clustering algorithms, 
but these algorithms devote to data objects with the same feature spaces, which 
are not satisfied for multi-view data. To overcome these deficiencies, an 
efficient ensemble clustering algorithm for multi-view mixed data is developed 
from the cluster-level perspective. Firstly, a set of clustering solutions are 
produced with the K-prototypes clustering algorithm on each view multiple 
times, respectively. Then, a cluster-cluster similarity matrix is constructed by 
considering all the clustering solutions. Next, the METIS algorithm is conduct 
meta-clustering based on the similarity matrix. After that, the final clustering 
results are obtained by applying majority voting to assign the objects to their  
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corresponding clusters based on the meta-clustering. The corresponding time 
complexity of the proposed algorithm is analysed as well. Experimental results 
on several multi-view datasets demonstrated the superiority of our proposed 
algorithm. 

Keywords: multi-view data; mixed data; k-prototypes clustering algorithm; 
ensemble clustering. 
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1 Introduction 

For a given dataset, clustering analysis is a process of automatically assigning similar 
objects to the same group based on the similarity measure between objects, so that 
objects of the same group are as similar as possible whereas objects belonging to 
different groups are as dissimilar as possible (Jain, 2010; Xu and Wunsch, 2005; Huang 
et al., 2012; Rana et al., 2013). Currently, clustering analysis techniques have been 
widely used in the field of bioinformatics, social networks, image processing, etc. (Han  
et al., 2011). 

Multi-view data are instances that have multiple views, that is to say, objects are 
consistent, but there are certain differences between the feature spaces of the objects. For 
example, in order to evaluate economic growth of countries, there are multiple views 
including purchasing power, unemployment rate, gross domestic product (GDP), etc. As 
the second example, we can refer to a banking customer dataset, variables include a 
demographic view representing demographic information of customers, an account view 
showing the information about customer accounts, and a consumption view describing 
customer spending behaviours. Developing clustering algorithms for multi-view data is a 
very important task. 

Ensemble clustering algorithms recently hold great promise for dealing with  
multi-view data due to their advantages of enhancing the clustering accuracy, robustness, 
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parallelism and so on (Fred and Jain, 2005; Iam-On and Boongoen, 2015; Ghosh and 
Acharya, 2011; Zhao et al., 2017). For a particular dataset, different clustering 
algorithms, or even the same algorithm with different parameters, may produce distinct 
solutions. It is impossible to select the most appropriate clustering algorithm with the 
correct parameter values for a given dataset without any further information in most 
cases. It is because the characteristic of the dataset is unknown but most of clustering 
algorithm focuses on their individual criteria about the underlying dataset. Ensemble 
clustering algorithms have recently emerged to overcome these limitations, and have 
been shown to be more effective and robust. The main objective of ensemble clustering is 
to combine multiple clusterings of a dataset into a unified and comprehensive final 
clustering result. This combined clustering result takes advantage of different criteria at 
the same time to achieve accuracy superior to that of any individual clustering. For  
multi-view data, ensemble clustering algorithms combine the clustering results from each 
view (Li et al., 2012; Bickel and Scheffere, 2004; Tzortzis and Likas, 2010; Cleuziou  
et al., 2009). For example, there are many departments to record information of students 
in the university. Students’ affairs division records student achievements, but the centre 
of apartment holds student accommodations. If we want to cluster the students for 
analysis, all the data are not need to be send to a single site. Each department can perform 
clustering based on the local data views and send only the clustering results for 
combining. In this way, only a small amount of data are transferred and only clustering 
results of each view could be shared instead of original data. This provides benefits of 
saving bandwidth and preserving privacy at the same time. However, traditional 
ensemble clustering algorithms work on object level in the ensemble stage, which is 
faced with the problem of larger amount of computation, higher time complexity, 
especially when datasets have huge number of objects. 

As a consequence, some researchers have also made some exploration with respect to 
this issue (Yu et al., 2012, 2014; Wu et al., 2012; Chung and Dai, 2013). For example, 
structure ensemble, which is firstly proposed by Yu et al. (2012, 2014), can solve the 
problem of cluster fusion in the ensemble learning well. Unlike traditional cluster 
ensemble approaches the main objective of which is to align individual labels obtained 
from different clustering solutions, the structure ensemble approach focuses on how to 
integrate multiple cluster structures extracted from different datasets into a unified 
structure. In the literature (Wu et al., 2012; Chung and Dai, 2013), a new concept called 
clustering fragment is incorporated for increased speed. A data fragment is any subset of 
the data that is not split by any of the clustering results. As the number of data fragments 
is usually far smaller than the number of data points, ensemble clustering based on data 
fragments is very likely to have a much lower time complexity than directly on data 
points without sacrificing effectiveness. The above mentioned algorithms are suitable for 
data clustering ensemble which are described by the same feature spaces. However, data 
objects from multiple views usually have different feature spaces. That is to say, there is 
diverse dimensionality in the multi-view data analysis. To tackle the above problems, it is 
particularly necessary to provide an efficient ensemble clustering algorithm for multi-
view data. 

In this paper, a novel ensemble clustering algorithm for multi-view data with mixed 
numerical and categorical attributes is developed. First, a set of clustering solutions are 
produced by executing the k-prototypes clustering algorithm (Huang, 1998) on each view 
multiple times, respectively. Then, considering all the clustering solutions, the algorithm 
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computes the relations between input clusters and displays this information in a similarity 
matrix (SM). Because our proposed ensemble clustering algorithm works on cluster level, 
it is very scalable and runs efficiently. Even datasets having large number of objects can 
be processed in practical run times. Next, the METIS algorithm (Karypis and Kumar, 
1998) is used to conduct metaclustering based on the cluster-cluster SM. After that, each 
metacluster contains a set of clusters. And an object can occur multiple times in a 
metacluster. Finally, majority voting (Mimaroglu and Aksehirli, 2011) is performed on 
the metaclustering to produce a non-overlapping final clustering. As a result, each object 
is assigned to only one cluster where it exists most frequently. The effectiveness and 
efficiency of the proposed algorithm are empirically demonstrated over some multi-view 
datasets in terms of three benchmark evaluation measures. The experimental results show 
that the proposed algorithm achieves good performance in comparison with several 
traditional ensemble clustering algorithms for multi-view data. 

The remainder of this paper is organised as follows. In Section 2, some related works 
are discussed. Section 3 proposes an ensemble clustering algorithm for multi-view data. 
Experimental results are shown in Section 4. Finally, Section 5 provides conclusions. 

2 Related work 

2.1 K-prototypes clustering algorithm 

In 1998, Huang (1998) proposed the k-prototypes algorithm, which is a simple 
integration of the k-means (Macqueen, 1967) and k-modes (Huang, 1998) algorithms. 
The k-prototypes algorithm is widely used because frequently encountered objects in real 
world database are mixed-type objects, and it is efficient in processing large datasets. In 
the k-prototypes algorithm, the dissimilarity measure takes into account both numerical 
attributes and categorical attributes. The dissimilarity measure on numerical attributes is 
defined by the squared Euclidean distance. For the categorical part, the computation of 
dissimilarity is performed by simple matching, which is the same as that of the k-modes 
algorithm. 

Let x, y be two objects described by A attributes, ,r c rA A A A∪  denotes numerical 
attributes, Ac denotes categorical attributes. Hence, x can be denoted as (xr, xc)T with 

1 2 | |( , , , )r
r r r r

Ax x x x  and 1 2 | |( , , , ).c
c c c c

Ax x x x  Similarly, y can be denoted as (yr, yc)T 

with 1 2 | |( , , , )r
r r r r

Ay y y y  and 1 2 | |( , , , ).c
c c c c

Ay y y y The dissimilarity of the 

numerical parts between two mixed-type objects x and y is calculated according to 

2

1

( , )
r

r

A
r r
q qA

q

D x y x y  (1) 

The dissimilarity of the categorical parts between two mixed-type objects x and y is 
calculated according to 

1

( , ) ,
c

c

A
c c
q qA

q

D x y δ x y  (2) 
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q q c c
q q
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δ x y

x y
 

As a matter of fact, the dissimilarity used in the k-prototypes algorithm is calculated 
between an object and a prototype. Suppose that the clustering results of a given mixed 
dataset D = {x1, x2, , xn} consisting of n objects, are Ck = {C1, C2, , Ck},whose 
cluster prototypes are Zk = {z1, z2, , zk}, where k is the number of clusters. The 
dissimilarity between xi(1 ≤ i ≤ n) and the prototype zj(1 ≤ j ≤ k), can be measured by 

1 1

, ,
,

, ,

r c

r c

r ci j i jA A
i j k k

i p i pA A
p p

D x z D x zA AD x z
A A

D x z D x z
 (3) 

where ( , )r i pAD x z  and ( , )c i pAD x z are calculated according to equations (1) and (2), 
respectively. 

Based on the abovementioned dissimilarity (Liang et al., 2012b), K-prototypes 
clustering algorithm is described in Table 1. 
Table 1 K-prototypes clustering algorithm 

 Input: a mixed dataset D, the number of clusters k in the final clustering. 
 Output: final clustering. 

1 Select k initial prototypes from the mixed dataset D randomly, one for each cluster. 
2 Allocate an object to the cluster whose prototype is the nearest to it according to  

equation (3). 
3 Repeat 
4  Update the prototype of the cluster after each allocation. 
5  Retest the dissimilarity of objects against the current prototypes according to  

equation (3). If an object is found such that its nearest prototype belongs to another 
cluster rather than its current one, reallocate the object to that cluster. 

6 Until no object has changed clusters after a full cycle test of the whole dataset or a given 
stopping criterion is fulfilled. 

7 Return the final clustering. 

2.2 Ensemble clustering 

Ensemble clustering combines different clustering results of a dataset to obtain a single 
consolidated clustering, and it has exhibited great potential in improving the robustness 
as well as the quality of clustering results. Therefore, ensemble clustering has become 
one of the important research directions in the ensemble learning branch in recent years 
(Zhang and Suganthan, 2015; Pan et al., 2015). In general, the whole process of ensemble 
clustering involves two critical steps: generation of base clusterings, and aggregation of 
clustering solutions (Zhao et al., 2017). 
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The objective of the first step is to generate a set of different clustering results which 
are as diverse as possible. The existing approaches that are applied to generate multiple 
clusterings on a dataset can be categorised into five types: 

 applying different clustering algorithms as the basic clustering algorithms to obtain 
different solutions (Strehl and Ghosh, 2002) 

 applying the same clustering algorithm but changing the input parameter values, e.g., 
different the number of clusters k, to generate different clustering solutions (Iam-on 
and Boongoen, 2010) 

 running a random initialisation clustering algorithm multiple times, e.g., adopting 
different initial centres for k-prototypes (Fred and Jain, 2005) 

 using selected subsets of features, i.e., projection (Topchy et al., 2003) 

 sub-sampling, re-sampling or adding noise to the original data (Valentini, 2007). 

The objective of the second step is to obtain a unified and comprehensive final clustering 
result which is as accurate as possible. The examples of existing well-known ensemble 
methods are: 

 The feature-based method that simply transforms the problem of cluster ensembles to 
categorical data clustering, i.e., cluster label of each clustering solution is treated as a 
new feature describing each object, the quality of final clustering result depends on 
the clustering algorithms for categorical data (Nguyen and Caruana, 2007; Topchy  
et al., 2005). 

 The voting-based method that learns from classifier ensemble (Terrades et al., 2009), 
but there is no supervised information in ensemble clustering which is different from 
classifier ensemble. The final partition is found through relabeling the base 
clustering results (Boulis and Ostendorf, 2004). 

 The co-association-based method that makes use of co-occurrences in the same 
clusters to create a co-association matrix, in which entries are viewed as pairwise 
similarity among objects, so any similarity-based clustering algorithm, e.g., 
hierarchical clustering, can be applied to this matrix to find consensus clustering 
(Fred and Jain, 2005). 

 The graph-based algorithms that employ a graph partitioning methodology, Strehl 
and Ghosh (2002) present the three graph-based ensemble clustering algorithms: the 
cluster-based similarity partitioning algorithm (CSPA), the hyper-graph partitioning 
algorithm (HGPA), and the metaclustering algorithm (MCLA), which will be 
introduced in the Section 4.3. Each algorithm constructs a graph based on a pairwise 
matrix from the initial set of base clusterings, and then applies graph-clustering 
techniques to get the final clustering result. Fern and Brodley (2003, 2004) use the 
binary cluster-association matrix to generate a bipartite graph which models both 
objects and clusters as vertices, and considers both the similarities between objects 
and the similarities between clusters, then this graph is partitioned to achieve the 
final clustering result, using either METIS or spectral graph partitioning (SPEC)  
(Ng et al., 2001). 
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From the above, the time complexity of classical ensemble clustering algorithms is highly 
sensitive to the data size. When the number of objects is large, these algorithms will be 
unsuitable for practical application. 

3 An ensemble clustering algorithm for multi-view data 

Ensemble clustering algorithm for multi-view data includes four major steps of: 

1 generating base clusterings: respectively executing the k-prototypes clustering 
algorithm on each view multiple times to form a set of base clusterings ( ) 

2 obtaining ensemble relationship: combining all base clusterings to generate a  
cluster-cluster SM 

3 using the METIS algorithm to conduct metaclustering based on the SM 

4 applying majority voting to assign the objects to their corresponding clusters based 
on the metaclustering, step 3 and step 4 are collectively known as determining final 
clustering result. 

The framework of the proposed algorithm is illustrated in Figure 1. 

Figure 1 The framework of the proposed algorithm 

 



   

 

   

   
 

   

   

 

   

   104 J. Liang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.1 Generating base clusterings 

Consider the dataset D consisting of n objects coming from T views. The multi-view data 
D = (D1, D2, , DT) can be represented as 1 1 1 1

1 2 1 2( , , , ), , ( , ,T T T
nD d d d D d d  

, )T
nd  where Dt(1 ≤ t ≤ T ) denotes the set of objects from the tth view, and t

id is the ith 
object in Dt. Let the cluster number of all base clusterings be k. Respectively execute  
k-prototypes clustering algorithm Mt times on each view Dt based on random initial 
cluster centres to get different base clusterings 1 2{ , , , }t t t t

j j j jkπ C C C  with 1 ≤ t ≤ T and 

1 ≤ j ≤ Mt, (1 )t
jqC q k is the qth cluster in the jth base clustering t

jπ  of the tth view. 
Therefore, the set of base clusterings can be denoted as 

1
1 1 1
1 2 1( ) { , , , , , , , }.

T
T T

M MD π π π π π  The goal of multi-view clustering is to find a 

new and better clustering * * *
1 2*( ) { , , , }kπ D C C C  by using the information provided in 

(D). 

3.2 Obtaining ensemble relationship 

In this step, the similarities of different clusters need to be computed. In the literature, 
many similarity or dissimilarity measure between clusters have been proposed. For 
example, in the agglomerative clustering algorithms, the difference between clusters is 
measured by using the distances between the closest or farthest data objects of two 
clusters, i.e., single link and complete link. They are sensitive to noise due to the 
dependence on a few objects. The distance between centres of clusters is often used to 
measure the dissimilarity between two clusters in the centres-based clustering algorithms. 
This measure is robust to noise and computationally efficient, but it cannot reflect the 
distinction of the boundary between two clusters and cannot assess distance between 
centres which have different feature spaces. Jaccard measure uses the number of the 
common objects included by the two clusters to reflect their similarity. The measure does 
not consider the objects whose cluster labels may be incorrect in a cluster. The number of 
these objects affects the effectiveness of the measure. Besides, the measure treats the 
similarity between clusters to be roughly 0 if they belong to the same base clustering, 
such measure is rather rough but we can capture the relationships between clusters 
according to other base clusterings. Thus, a new measure method is proposed to compute 
similarity of clusters in this paper by depending on the relationship between base 
clusterings. 

Each cluster of base clusterings is viewed as a new data sample, and creates a new 
dataset C = {c1, c2, , cm} with m = k × (M1 + M2 +  + MT). The SM  
SMm × m is constructed to store the relationship between any pair of clusters. Each element 
SM(cp, cq) in the matrix denotes the similarity of clusters cp and cq(1 ≤ p, q ≤ m) (Wang  
et al., 2013). Let cp be a cluster of the base clustering πi(πi  (D)), i.e., cp  πi and cq be 
a cluster of the base clustering πj(πj  (D)), i.e., cq  πj. 

If i = j, i.e., cp and cq belong to the same base clustering, the similarity of clusters cp 
and cq is computed based on other base clustering πs(s ≠ i, πs  (D)). Let cr be a cluster 
of the base clustering πs and 0, 0,r p r qc c c c∩ ∩  the similarity of clusters cp and cq 
based on cr is 
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, min ,p q r r p r qSM c c c P c c P c c  (4) 

where 

,r p r q
r p r q

p q

c c c c
P c c P c c

c c
∩ ∩

 (5) 

Combining the similarity based on every cluster in πs, so the similarity of clusters cp and 
cq based on the base clustering πs is 

0, 0,

, ,
r p r q r s

p q s p q r
c c c c c π

SM c c π SM c c c
∩ ∩

 (6) 

Combining the similarity based on every base clustering, and in order to improve 
accuracy, we assign a weight to every base clustering. So the similarity of clusters cp and 
cq is 

,
,

s p q s
s i

p q
s

s i

ω SM c c π
SM c c

ω
 (7) 

where ωs is the weight for base clustering πs. 
If i ≠ j, i.e., cp and cq belong to different base clusterings, the similarity of clusters cp 

and cq is computed based on other base clustering πs(s ≠ i, j, πs  (D)). Similar to the 
above process, every cluster in the base clustering πs is compared to cp and cq, 
respectively. The similarity of clusters cp and cq based on the base clustering πs is 
computed according to equation (6), then combining the similarity based on every base 
clustering. Due to different base clusterings that cp and cq belong to, the similarity of 
clusters cp and cq is computed based on base clusterings except for πi and πj, which is 
defined as follows 

,

,

,

,
s p q s

s i j
p q

s
s i j

ω SM c c π

SM c c
ω

 (8) 

where ωs is the weight for base clustering πs. 
Equation (6) considers the similarity of two cluster cp and cq on each possible cluster 

in base clustering πs to capture the co-occurrence comparison between them (Cost and 
Salzberg, 1993; Wang et al., 2011). Further, the similarity between the cluster pair (cp, cq) 
can be calculated on top of SM(cp, cq|πs) by aggregating all the relative similarity on base 
clusterings other than πi and πj. For the parameter ωs, in this paper, we simply collect 
information from the crowd of base clusterings to estimate the quality of a base clustering 
as the weight. Each base clustering is compared with the other ones in the ensemble and 
the average opinion is obtained for quality estimation (Huang et al., 2013). 

The weight ωi for base clustering πi is defined as follows 
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( ),

1 ,
1

j

i i j
π D i j

ω Sim π π
M

 (9) 

where M = M1 + M2 +  + MT, Sim(πi, πj) represents the similarity between the two base 
clusterings πi and πj. In this paper, the normalised mutual information (NMI) (Strehl  
and Ghosh, 2002) which will be introduced in the next section is used as the similarity 
measure Sim(πi, πj). The greater agreement of a base clustering from the crowd is, the 
higher its weight is supposed to be. 

3.3 Determining final clustering result 

Having obtained a cluster-cluster SM, a graph-based partitioning method is exploited to 
obtain the metaclustering. This consensus function requires the underlying matrix to be 
initially transformed into a weighted metalevel graph G = (V, W), where V is a set of 
vertices representing clusters C in the ensemble, and W denotes a set of weighted edges 
that can be defined from the SM. Afterward, a graph partitioning algorithm called METIS 
is used to partition the metalevel graph into k metaclusters, each metacluster contains a 
set of clusters. By this time, we obtain a clustering result of the dataset C which consists 
of all clusters in base clusterings. 

Each object has a specific association degree to each metacluster. This can be 
estimated from the number of original clusters to which the object belongs, in the 
underlying metacluster, because an object can occur multiple times in a metacluster and 
can also occur in different metaclusters. In order to produce a non-overlapping final 
clustering, majority voting is performed on the metaclustering. The final clustering is 
produced by assigning each object to only one metacluster with which it is most 
frequently associated, i.e., it exists most frequently. 

3.4 Algorithm description 

Based on the above introduced major steps, an ensemble clustering algorithm for  
multi-view data (abbreviated as ENCA) is described in Table 2. 
Table 2 An ensemble clustering algorithm for multi-view data 

 Input: a multi-view dataset D = {D1, D2, , DT}, the number of clusters k in the final 
clustering. 

 Output: final clustering. 

1 Respectively execute the K-prototypes clustering algorithm Mt(1 ≤ t ≤ T) times on each 
view Dt to get a set of base clusterings ∏(D). 

2 Calculate the cluster-cluster SM SMm × m according to equation (8). 
3 Utilise METIS to conduct metaclustering based on the SM SMm × m. 
4 Perform majority voting on the metaclustering to produce a final clustering π* (D). 

The following is the time complexities in the ensemble stage of the ENCA algorithm. 
The time complexity of constructing cluster-cluster SM is O(m3), where m is the number 
of all clusters. We use METIS for partition with time complexity being O(m2) and the 
computational cost of assigning the objects to the corresponding clusters based on 
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majority voting is O(kn). Since k << n, the overall time complexity of the proposed 
algorithm is O(m3) + O(n). 

4 Experimental evaluations 

In this section, we conduct effectiveness and efficiency tests to analyse the performance 
of the proposed algorithm (ENCA) on some multi-view datasets in terms of three 
benchmark evaluation measures. 

4.1 Investigated datasets 

ENCA is tested on seven real multi-view datasets, including two real multi-view UCI 
datasets (UCI Machine Learning Repository, http://archive.ics.uci.edu/ml), i.e., multiple 
features (MF) dataset and image segmentation (IS) dataset, and Reuters RCV1/RCV2 
Multilingual (Reuters) dataset (Amini et al., 2009). The details of these datasets are 
summarised in Table 3. 
Table 3 Detail description of datasets 

Datasets Sizes Views Dimensions Clusters 

MF 2,000 Mfeat-fou view 76 10 
Mfeat-fac view 216 
Mfeat-kar view  64 
Mfeat-pix view  240 
Mfeat-zer view 47 
Mfeat-mor view 6 

IS 2,310 Shape view 9 7 
RGB view 10 

Rt.SP-EN 12,342 SP view 11,547 6 

EN view 21,530 
Rt.EN-FR 18,758 EN view 21,531 6 

FR view 24,892 
Rt.IT-SP 24,039 IT view 15,506 6 

SP view 11,547 
Rt.FR-GR 26,648 FR view 24,893 6 

GR view 34,278 
Rt.GR-IT 29,953 GR view 34,279 6 

IT view 15,505 

4.2 Evaluation criteria 

In order to evaluate the effectiveness of the clustering algorithms, we have adopted the 
following three popular external criteria: clustering accuracy (CA) (Liang et al., 2012a), 
adjusted rand index (ARI) (Liang et al., 2012a), and NMI (Strehl and Ghosh, 2002), 
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which measure the agreement of the clustering results produced by an algorithm and the 
ground truth. 

Suppose that C = {C1, C2, , CI} and P = {P1, P2, , PJ} represent the clustering 
results and pre-defined classes of the dataset with n objects, respectively. I and J are the 
number of clusters C and classes P; nij is the number of common objects of cluster Ci and 
pre-defined class Pj; ni is the number of objects in cluster Ci; and nj is the number of 
objects in class Pj. Then the three popular external criteria are as follows. 

 Clustering accuracy (CA). CA measures the percentage of correctly classified 
objects in the clustering solution compared to pre-defined class labels. The CA is 
defined as 

1
1

max
I J

ij
j

i

n
CA

n
 (10) 

 ARI. ARI takes into account the number of objects that exist in the same cluster and 
different clusters (Hubert and Arabie, 1985). The ARI is defined as 

1 1 2
1 ( )
2

I J
ij

i j

n
η

ARI
ρ v η

 (11) 

1 1

2, ,
2 2 ( 1)

I J
i i

i j

n n ρvρ v η
n n

 (12) 

 NMI. This is one of the common external clustering validation metrics, which 
estimates the extent of the clustering structure with the external classification 
information of the data. Thus, NMI is defined as 

1 1

1 1

log

log log

I J
ij

ij
i ji j

I J
ji

i j
i j

nn
n

n n
NMI

nnn n
n n

 (13) 

The maximum value of the three external criteria is one. If the clustering structure is 
close to the true class structure, then the values of them are high. The higher the values of 
the three measures for a clustering result, the better the clustering performance is. 

4.3 Experiment design 

To fully evaluate the performance of the proposed method, it is compared to six ensemble 
clustering methods, i.e., CO + SL, CO + CL, CO + AL, CSPA, HGPA, and MCLA. The 
first three algorithms are based principally on the pairwise similarity among objects (Fred  
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and Jain, 2005). Given a cluster ensemble of multiview dataset (D), a n × n SM (CO) is 

constructed by CO(di, dj) = 
1 1

1 ( , )(1 , ),
tMT

t t t
m i j

t m

S d d i j n
M

 where CO(di, dj)  {0, 1} 

represents the similarity measure between objects di, dj. In addition, ( , ) 1t t t
m i jS d d  if 

( ) ( ),t t t t
m mi jv d v d  and ( , ) 0t t t

m i jS d d  otherwise. Note that ( )t t
m iv d  denotes the cluster 

label to which t
id  belongs in the base clustering .t

mπ  The single-linkage (SL),  
complete-linkage (CL) and average linkage (AL) agglomerative hierarchical clusterings 
are applied to this matrix to yield the final partition π*(D). 

The last three algorithms are graph-based ensemble clustering algorithms (Strehl and 
Ghosh, 2002). CSPA constructs an undirected weighted graph based on the CO matrix, 
and then METIS is used to partition the graph into k clusters. HGPA constructs a 
hypergraph, where each object is a vertex, and each cluster is a hyperedge. HMETIS 
(Karypis et al., 1999) is applied to partition the hypergraph into k unconnected 
components. MCLA is similar to our proposed algorithm, and the only difference is that 
similarity between any two clusters is computed using the binary Jaccard measure. 

All the experiments are conducted in MATLAB R2014b 64bit edition on a 
workstation (Windows 64 bit, Intel(R) Xeon(R) 2.60 GHz E5-2650 CPU, 128 GB of 
RAM, Windows Server 2008 operating system). The proposed algorithm and the 
comparative algorithm are coded in MATLAB 8.4 programming language. The 
performance of each ensemble clustering algorithms is measured by the average CA, 
ARI, and NMI after performing the same approach ten times. 

4.4 Experimental results 

4.4.1 Effectiveness analysis 

Based on three benchmark evaluation measures, the performance of different ensemble 
clustering algorithms over examined datasets are shown in Tables 4–6 when each 
ensemble clustering algorithm corresponds to 30 clustering solutions on each view. For 
each dataset, the highest two index values are highlighted in italics. The results shown in 
these tables indicate the superior effectiveness of ENCA, as compared to other ensemble 
clustering algorithms included in this experiment. No matter what kind of index is chosen 
as evaluation measure, ENCA is the leader on multi-view datasets, by producing five best 
quality output clusterings on seven datasets. CSPA does well and is the most effective 
among compared algorithms, by producing two best quality final clusterings. Another 
important discovery is that ENCA achieves comparable or better performance than the 
other algorithms on all the datasets. Although it is not leading on several datasets, it never 
produces very bad clusterings and its index values are even close to the best in most 
cases. In addition, the average index values of ENCA on all the datasets are also 
remarkable as shown in the same tables. Also in all cases the variance is almost equal to 
zero(to the fourth decimal digit)that shows the stability of the proposed algorithm. 
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Table 4 Clustering results of different algorithms with respect to CA 

 

D
at

as
et

s 
EN

C
A 

C
O

 +
 S

L 
C

O
 +

 C
L 

C
O

 +
 A

L 
C

SP
A 

H
G

PA
 

M
C

LA
 

M
F 

0.
92

55
 ±

 0
.0

00
1 

0.
10

45
 ±

 0
.0

00
0 

0.
63

30
 ±

 0
.0

02
4 

0.
74

80
 ±

 0
.0

01
5 

0.
92

25
 ±

 0
.0

01
0 

0.
10

40
 ±

 0
.0

47
2 

0.
90

95
 ±

 0
.0

00
2 

IS
 

0.
64

16
 ±

 0
.0

00
5 

0.
42

86
 ±

 0
.0

00
0 

0.
47

53
 ±

 0
.0

04
7 

0.
62

42
 ±

 0
.0

00
5 

0.
61

26
 ±

 0
.0

00
6 

0.
39

78
 ±

 0
.0

03
3 

0.
55

63
 ±

 0
.0

00
6 

R
t.S

P-
EN

 
0.

52
25

 ±
 0

.0
00

6 
0.

40
52

 ±
 0

.0
00

0 
0.

50
05

 ±
 0

.0
00

7 
0.

48
27

 ±
 0

.0
00

9 
0.

54
55

 ±
 0

.0
13

7 
0.

45
89

 ±
 0

.0
01

1 
0.

44
42

 ±
 0

.0
02

0 
R

t.E
N

-F
R

 
0.

53
73

 ±
 0

.0
00

0 
0.

39
62

 ±
 0

.0
00

5 
0.

50
17

 ±
 0

.0
03

1 
0.

52
76

 ±
 0

.0
03

3 
0.

48
96

 ±
 0

.0
00

0 
0.

30
24

 ±
 0

.0
02

2 
0.

38
91

 ±
 0

.0
03

9 
R

t.I
T-

SP
 

0.
50

32
 ±

 0
.0

00
2 

0.
20

82
 ±

 0
.0

00
0 

0.
39

33
 ±

 0
.0

01
0 

0.
37

87
 ±

 0
.0

00
3 

0.
50

76
 ±

 0
.0

00
0 

0.
37

23
 ±

 0
.0

00
9 

0.
40

30
 ±

 0
.0

01
1 

R
t.F

R
-G

R
 

0.
52

79
 ±

 0
.0

00
6 

0.
18

79
 ±

 0
.0

00
0 

0.
49

60
 ±

 0
.0

00
7 

0.
47

95
 ±

 0
.0

00
8 

0.
52

29
 ±

 0
.0

00
0 

0.
30

71
 ±

 0
.0

22
6 

0.
45

34
 ±

 0
.0

05
8 

R
t.G

R
-I

T 
0.

55
50

 ±
 0

.0
00

1 
0.

17
07

 ±
 0

.0
00

0 
0.

49
55

 ±
 0

.0
03

2 
0.

48
27

 ±
 0

.0
02

3 
0.

54
03

 ±
 0

.0
00

0 
0.

34
76

 ±
 0

.0
26

1 
0.

44
99

 ±
 0

.0
02

5 

A
ve

ra
ge

 v
al

ue
 

0.
60

19
 

0.
27

16
 

0.
49

93
 

0.
53

19
 

0.
59

16
 

0.
32

72
 

0.
51

51
 



   

 

   

   
 

   

   

 

   

    Multi-view data ensemble clustering: a cluster-level perspective 111    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 5 Clustering results of different algorithms with respect to ARI 
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Table 6 Clustering results of different algorithms with respect to NMI 
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Figure 2 The performance of different algorithms with respect to different number of clustering 
solutions on the mf dataset, (a) CA (b) ARI (c) NMI (see online version for colours) 

 
(a) (b) (c) 

Figure 3 The performance of different algorithms with respect to different number of clustering 
solutions on the is dataset, (a) CA (b) ARI (c) NMI (see online version for colours) 

 
(a) (b) (c) 

Figures 2–8 show the performance of different algorithms with respect to different 
number of clustering solutions on each view. We can find: 
1 ENCA is less affected by the change of the number of clustering solutions, and 

generates clustering results of higher quality in terms of the three external criteria in 
most cases, especially on IS dataset and Rt.EN-FR dataset. 

2 CSPA achieves comparable performance to ENCA in many cases. Such as on  
Rt.SP-EN dataset, it sometimes even gets higher index values than ENCA as 
adopting CA and ARI, but its clustering results are sensitive to the number of 
clustering solutions. 

3 Along with the change of the number of clustering solutions, the experiment results 
of ENCA are relatively stable which shows the robustness of the proposed algorithm. 
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Figure 4 The performance of different algorithms with respect to different number of clustering 
solutions on the Rt.SP-EN dataset, (a) CA (b) ARI (c) NMI (see online version  
for colours) 

 
(a) (b) (c) 

Figure 5 The performance of different algorithms with respect to different number of clustering 
solutions on the Rt.EN-FR dataset, (a) CA (b) ARI (c) NMI (see online version  
for colours) 

 

 
(a) (b) (c) 

4.4.2 Efficiency analysis 

Figure 9 shows the average execution time results in the ensemble stage of ensemble 
clustering algorithms with respect to different number of clustering solutions on each 
view. There exist a trade off between the run time and the accuracy. For example, 
although HGPA and MCLA are the most efficient methods, the results obtained by these 
two algorithms are not as satisfactory as ENCA and CSPA, which is illustrated in above 
experiments. That’s because HGPA and MCLA also work on cluster level, HGPA only 
uses clusters to construct hyperedge and MCLA computes similarity between two 
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clusters by simply using the binary Jaccard measure which is not as complex as ENCA. 
HGPA and MCLA out perform other ensemble clustering algorithms in terms of running 
time but sacrificing effectiveness. 

Figure 6 The performance of different algorithms with respect to different number of clustering 
solutions on the Rt.IT-SP dataset, (a) CA (b) ARI (c) NMI (see online version  
for colours) 

 
 

(a) (b) (c) 

Figure 7 The performance of different algorithms with respect to different number of clustering 
solutions on the Rt.FR-GR dataset, (a) CA (b) ARI (c) NMI (see online version  
for colours) 

 
 

(a) (b) (c) 
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Figure 8 The performance of different algorithms with respect to different number of clustering 
solutions on the Rt.GR-IT dataset, (a) CA (b) ARI (c) NMI (see online version  
for colours) 

 
 

(a) (b) (c) 

ENCA requires a longer run time, but it obtains better quality of final clusterings, which 
is more important in many scenarios. CO + SL, CO + CL, and CO + AL are fast on 
datasets when the data size is small. With the increasing of the data size or number of 
clustering solutions, execution time of CO + SL, CO + CL, and CO + AL increases 
sharply while the time consumption of our proposed algorithm is still quite low and the 
scalability of ENCA is good. Comparing the execution time results of two most accurate 
algorithms, i.e., ENCA and CSPA, CSPA falls behind for large datasets. An interesting 
observation to note is that there is only one exception that the execution time of ENCA is 
higher than CO + SL, CO + CL, CO + AL and CSPA on the MF dataset. The 
complexities in Section 3.4 indicate that the complexity of ENCA is strongly influenced 
by the number of clusters k. The complexities of CO + SL, CO + CL, CO + AL and 
CSPA are influenced by the number of objects n. Compared with other datasets, the 
number of clusters k on MF is ten,which is the largest, but the number of objects n of the 
MF dataset is 2,000, which is the smallest. Therefore, it is reasonable that the execution 
time of ENCA on MF is higher than that of CO + SL, CO + CL, CO + AL and CSPA. In 
all the other cases, ENCA is faster than them. In conclusion, ENCA is a better choice 
when the number of objects is very large by taking into account the importance of both 
the execution time and the accuracy. 

5 Conclusions 

Ensemble clustering algorithms for large multi-view datasets are becoming more and 
more important in real-world applications. In this paper, we introduced a new ensemble 
clustering algorithm for multi-view data. Our method works on cluster level and the 



   

 

   

   
 

   

   

 

   

    Multi-view data ensemble clustering: a cluster-level perspective 117    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

number of clusters is usually far smaller than the number of objects. Therefore, the 
efficiency of the proposed algorithm is high for large-scale datasets clustering. To 
demonstrate the effectiveness and efficiency of the proposed algorithm, a serial of 
experiments are conducted on several multi view datasets in terms of three benchmark 
evaluation measures. The results show that the proposed algorithm outperforms the other 
traditional ensemble clustering algorithms for multi-view data by taking into account the 
importance of both the execution time and the accuracy. 

Figure 9 Running time comparison of different clustering algorithms, (a) MF (b) IS  
(c) Rt.SP−EN (d) Rt.EN−FR (e) Rt.IT−SP (f) Rt.FR−GR (g) Rt.GR−IT (see online 
version for colours) 

 
(a) (b) (c) 

 
(a) (b) (c) (d) 
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