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An ordered decision table is one of the most effective frameworks for the intelligent decision-making sys-
tems. As two classical measures, approximation accuracy and quality of approximation can be extended
for evaluating the decision performance of an ordered decision table. However, from the viewpoint of
evaluating the decision performance of a set of decision rules, these two measures are still not able to
well measure the entire certainty and consistency of an ordered decision rule set. To overcome this defi-
ciency, we first present three new measures for evaluating the decision performance of a decision-rule set
extracted from an ordered decision table, and then analyze how each of these new measures depends on
the condition granulation and the decision granulation of an ordered decision table. Applications and
experimental analysis of five types of ordered decision tables show that the three new measures appear
to be well suited for evaluating the decision performance of a decision-rule set extracted from each of
these five types of decision tables and the results are much better than those of the two extended
measures.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Rough set theory proposed by Pawlak in [41,42] is a relatively
new soft computing mechanism for the analysis of a vague descrip-
tion of an object, and has become a popular mathematical frame-
work for such areas as pattern recognition, image processing,
feature selection, neuro computing, conflict analysis, decision sup-
port, data mining and knowledge discovery process from large data
sets [1,20,39,40,43–48,72,73]. The indiscernibility relation consti-
tutes a mathematical basis of rough set theory. It induces a parti-
tion of the universe into blocks of indiscernible objects, called
elementary sets, which can be used to build knowledge about a
real or abstract world [37,42,52,55,65,66,68–71,75].

The original rough set theory does not consider attributes with
preference-ordered domains, that is, criteria [68–71]. However, in
many real situations, we often face problems in which the ordering
of properties of the considered attributes plays a crucial role. One
such type of problems is the ordering of objects. For this reason,
Greco et al. [11,12] proposed an extension of rough set theory,
called the dominance-based rough set approach (DRSA) to take
into account the ordering properties of criteria. This innovation is
ll rights reserved.
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mainly based on a substitution of the indiscernibility relation by
a dominance relation. In DRSA, condition attributes are criteria,
classes are preference ordered, the knowledge (approximated) is
a collection of upward and downward unions of classes, and the
granules of knowledge are sets of objects defined by using a dom-
inance relation. In recent years, many studies in DRSA have been
made [6,7,60,61,64]. DRSA starts from a so-called ordered decision
table, which is used to extract a decision-rule set in practical deci-
sion problems.

For decision problems in rough set theory, by various kinds of
reduction techniques, a set of decision rules is generated from a
decision table for classification and prediction using information
granules [5,18,26,31,62]. In the past two decades, many kinds of
reduction techniques for information systems and decision tables
have been proposed in rough set theory [4,23,27,34–
38,42,43,59,63,67,74,75]. For our further developments, as follows,
we briefly review some methods for attribute reduction from deci-
sion tables. b-reduct proposed by Ziarko provides a kind of attri-
bute reduction methods for the variable precision rough set
model [74]. a-reduct and a-relative reduct that allow the occur-
rence of additional inconsistency were proposed in [38] for infor-
mation systems and decision tables, respectively. An attribute
reduction method that preserves the class membership distribu-
tion of all objects in information systems was proposed by Slezak
in [63,64]. Five kinds of attribute reducts and their relationships
in inconsistent systems were investigated by Kryszkiewicz [23],
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Li et al. [28] and Mi et al. [36], respectively. By eliminating some
rigorous conditions required by the distribution reduct, a maxi-
mum distribution reduct was introduced by Mi et al. in [36]. Unlike
the possible reduct [28], the maximum distribution reduct can de-
rive decision rules that are compatible with the original system.
Shao and Zhang proposed a kind of attribute reduction technique
to reduce the number of criteria in an incomplete ordered informa-
tion system and an incomplete ordered decision table [61].

Generally speaking, a set of decision rules can be generated
from a decision table by adopting any kind of rule extracting meth-
ods. In recent years, the method of evaluating the decision perfor-
mance of a decision rule has become a very important issue in
rough set theory [17,19,29,31]. In [9], based on information entro-
py, Düntsch suggested some uncertainty measures of a decision
rule and proposed three criteria for model selection. In [13], Greco
et al. applied some well-known confirmation measures in the
rough set approach to discover relationships in data in terms of
decision rules. For a decision rule set consisting of every decision
rule induced from a decision table, three parameters are tradition-
ally associated: the strength, the certainty factor and the coverage
factor of the rule [13]. In many practical decision problems, we al-
ways adopt several rule-extracting methods for the same decision
table. In this case, it is very important to check whether or not each
of the rule-extracting approaches adopted is suitable for a given
decision table. In other words, it is desirable to evaluate the deci-
sion performance of the decision-rule set extracted by each of
the rule-extracting approaches. This strategy can help a decision
maker to determine which rule-extracting method should be
adopted for a given decision table. However, all of the above mea-
sures are only defined for a single decision rule and are not suitable
for evaluating the decision performance of a decision-rule set.
There are two more kinds of measures in the literature [42,45],
namely approximation accuracy for decision classification and
consistency degree for a decision table. Although these two mea-
sures, in some sense, could be regarded as measures for evaluating
the decision performance of all decision rules generated from a
complete decision table, they have some limitations. For instance,
the certainty and consistency of a rule set could not be well char-
acterized by the approximation accuracy and consistency degree
when their values reach zero. We know that when the approxima-
tion accuracy or consistency degree is equal to zero, it only implies
that there is no decision rule with the certainty of one in the deci-
sion table. This shows that the approximation accuracy and consis-
tency degree of a decision table cannot be used to well measure the
certainty and consistency of a rule set. To overcome the shortcom-
ings of the existing measures, Qian et al. proposed four new eval-
uation measures for evaluating the decision performance of a set
of decision rules extracted from a complete/incomplete decision
table, which are certainty measure ðaÞ, consistency measure ðbÞ,
support measure ðcÞ and covering measure ð#Þ [51,57].

Like that in the case of complete/incomplete decision tables, it
is also very important to check whether or not each of the rule-
extracting approaches adopted is suitable for a given ordered deci-
sion table. To date, however, no method for assessing the decision
performance of a decision-rule set extracted from an ordered deci-
sion table has been reported. As mentioned by Greco et al. in [11],
an ordered decision table can be interpreted as a set of ordered
decision rules. In this study, we still read an ordered decision table
as ordered decision rules. Like those for the existing measures, the
certainty, consistency, support and covering of a decision-rule set
extracted from an ordered decision table will also be analyzed in
order to assess their decision performances. These measures are
based on ordered decision rules instead of rough approximations
for the dominance-based rough set approach. We know that each
object can induce its corresponding dominance class and generate
its corresponding ordered decision rules. Under this consideration,
the support measure of each decision rule is easily determined by
those objects that support the decision rule. With a view to having
simplicity, we will not deal with the support measure c in this
paper.

In what follows, we explain the meaning of the certainty, con-
sistency and covering measures from the viewpoint of a set of or-
dered decision rules from an ordered decision table, respectively.

� The certainty measure characterizes the entire certainty of all
ordered decision rules from an ordered decision table. In
other words, in some sense, this measure is to assess the aver-
age certainty of all extracted ordered decision rules. The
greater the coefficient, the better the decision performance
of these ordered decision rules.

� The consistency measure denotes the entire consistency
degree of all ordered decision rules from an ordered decision
table. If the certainty degree of each of ordered decision rules
induced by a given condition class is equal to 1=2, then the
decision rules are the worst from the viewpoint of decision
performance. In this situation, a decision maker does not
know which ordered decision rule should be adopted. Using
a fuzzy measure for evaluating this uncertainty, we can char-
acterize the consistency of an ordered decision table by tak-
ing into consideration the fuzziness of each condition class.
Like the certainty, the greater the coefficient, the better the
decision performance of these ordered decision rules.

� The covering measure is also an important index for evaluat-
ing the decision performance of all ordered decision rules
from an ordered decision table, which is used to measure
the level of granulation determined by the condition classes
of this decision table.

In fact, the approximation accuracy and consistency degree can
be extended to evaluate the decision performance of the ordered
decision rules from an ordered decision table. Nevertheless, these
two extensions have the same limitations as the original measures
and still cannot give elaborate depictions of the certainty and con-
sistency of a decision-rule set extracted from an ordered decision
table. If the approximation accuracy (or consistency degree) of
one ordered decision table is the same as that of another ordered
decision table, it does not imply that these two ordered decision ta-
bles have the same certainty/consistency, because that the mea-
sure cannot really reveal the certainty of an ordered decision
table from the viewpoint of ordered decision rules. One should take
into account the certainty of every ordered decision rule in evalu-
ating the decision performance of an ordered decision table. It is
worth pointing out that the existing four measures (a; b; c and #)
are very disappointing at evaluating the decision performance of
an ordered decision table in which the classes for constructing
decision rules are not equivalence classes or tolerance classes,
but dominance classes, and decision rules extracted are also not
classical decision rules, but dominance rules. In particular, decision
classes in ordered decision tables are a series of upward unions or
downward unions, but not an equivalence partition. Hence, it is
necessary to define several new measures for evaluating the deci-
sion performance of an ordered decision table. For this purpose,
this paper introduces three new measures for evaluating the deci-
sion performance of a set of decision rules extracted from an or-
dered decision table, namely certainty measure ðaÞ, consistency
measure ðbÞ and covering measure ðGÞ.

The rest of this paper is organized as follows. Some preliminary
concepts such as ordered information systems, ordered decision
tables, dominance relation and decision rules are briefly reviewed
in Section 2. In Section 3, we introduce some new concepts, reveal
the limitations of the two extended measures, and propose three
new measures (a; b and G) for evaluating the decision performance
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of a set of rules extracted from an ordered decision table. It is ana-
lyzed how each of these three measures depends on the condition
granulation and decision granulation of an ordered decision table.
In Section 4, applications and experimental analysis of each of the
measures (a; b and G) are performed on five types of practical or-
dered decision tables. Finally, Section 5 concludes this paper with
some remarks and discussion.

2. Preliminaries

In this section, we review some basic concepts of ordered infor-
mation systems, ordered decision tables, dominance relation and
ordered decision rules.

An information system (IS) is a quadruple S ¼ ðU;AT;V ; f Þ,
where U is a finite nonempty set of objects and AT is a finite non-
empty set of attributes, V ¼

S
a2AT Va with Va being a domain of

attribute a, and f : U � AT ! V is a total function such that
f ðx; aÞ 2 Va for every a 2 AT and x 2 U, called an information func-
tion. A decision table is a special case of an information system in
which, among all the attributes, we distinguish one (called a deci-
sion attribute) from the others (called condition attributes). There-
fore, S ¼ ðU;C [ fdg;V ; f Þ and C \ fdg ¼ Ø, where set C contains so-
called condition attributes and d, the decision attribute.

If the domain (scale) of a condition attribute is ordered accord-
ing to a decreasing or increasing preference, then the attribute is a
criterion.

Definition 1 11. An information system is called an ordered
information system (OIS) if all condition attributes are criteria.

It is assumed that the domain of a criterion a 2 AT is completely
pre-ordered by an outranking relation �a; x �a y means that x is at
least as good as (outranks) y with respect to criterion a. In the
following, without any loss of generality, we consider a condition
criterion having a numerical domain, that is, Va # R (R denotes
the set of real numbers) and being of type gain, that is,
x �a y() f ðx; aÞP f ðy; aÞ (according to the increasing preference)
or x �a y() f ðx; aÞ 6 f ðy; aÞ (according to decreasing preference),
where a 2 AT; x; y 2 U. For a subset of attributes B # C, we say
x �B y if, for all a 2 B; f ðx; aÞP f ðy; aÞ. In other words, x is at least
as good as y with respect to all attributes in B. In general, the
domain of a condition criterion may be also discrete, but the
preference order between its values has to be provided.

In the following, we review the dominance relation that
identifies granules of knowledge. In a given OIS, we say that x
dominates y with respect to B # C if x �B y, and denote it by xRP

B y
[11]. That is

RP
B ¼ fðy; xÞ 2 U � Ujy �B xg:

Obviously, if ðy; xÞ 2 RP
B , then y dominates x with respect to B.

Let B1 be an attribute set according to an increasing preference
and B2 an attribute set according to a decreasing preference. Then,
B ¼ B1 [ B2. The granules of knowledge induced by the dominance
relation RP

B are the set of objects dominating x,

½x�PB ¼ fy 2 Ujf ðy; a1ÞP f ðx; a1Þð8a1 2 B1Þ;
f ðy; a2Þ 6 f ðx; a2Þð8a2 2 B2Þg ¼ y 2 Ujðy; xÞ 2 RP

B

� �
;

and the set of objects dominated by x,

½x�6B ¼ fy 2 Ujf ðy; a1Þ 6 f ðx; a1Þð8a1 2 B1Þ;
f ðy; a2ÞP f ðx; a2Þð8a2 2 B2Þg ¼ y 2 Ujðx; yÞ 2 RP

B

� �
;

which are called a B-dominating set and a B-dominated set with re-
spect to x 2 U, respectively. For simplicity, without any loss of gen-
erality, we only consider in the following the condition attributes
with an increasing preference.
An ordered decision table (ODT) is an ordered information
system S ¼ ðU;C [ fdg;V ; f Þ, where d is an overall preference called
the decision, and all the elements of C are criteria. Furthermore,
assume that the decision attribute d induces a partition of U into a
finite number of classes; let D ¼ fD1;D2; . . . ;Drg be an ordered set
of these classes, that is, for all i; j 6 r, if i P j, then the objects from
Di are preferred to the objects from Dj. The sets to be approximated
are an upward union and a downward union of classes [11], which
are defined as follows:

DP
i ¼

[
jPi

Dj; D6i ¼
[
j6i

Dj; ði; j 6 rÞ:

The statement x 2 DP
i means ‘‘x belongs to at least class Di’’,

whereas x 2 D6i means ‘‘x belongs to at most class Di’’.
Definition 2 (11,12). Let S ¼ ðU;C [ fdg;V ; f Þ be an ODT, A # C and
D ¼ fD1;D2; . . . ;Drg the decision induced by d. Then, the lower and
upper approximations of DP

i ði 6 rÞ with respect to the dominance
relation RP

A are defined by

RP
A DP

i

� �
¼ x 2 Uj½x�PA # DP

i

� �
; RP

A DP
i

� �
¼
[

x2DP
i

½x�PA :

Similarly, one can define the lower and upper approximations
of D6i ði 6 rÞ with respect to the dominance relation RP

A in an ODT.
Definition 3 (11,12). Let S ¼ ðU;C [ fdg;V ; f Þ be an ODT, A # C and
D ¼ fD1;D2; . . . ;Drg the decision induced by d. Then, the lower and
upper approximations of D6i ði 6 rÞ with respect to the dominance
relation RP

A are defined by

RP
A ðD

6

i Þ ¼ x 2 Uj½x�6A # D6i
� �

; RP
A D6i
� �

¼
[

x2D6
i

½x�6A :

Naturally, the A-boundaries of DP
i ði 6 rÞ and D6i ði 6 rÞ can be

defined by

BnA DP
i

� �
¼ RP

A DP
i

� �
� RP

A DP
i

� �
; BnA D6i

� �
¼ RP

A D6i
� �

� RP
A D6i
� �

:

The lower approximations RP
A DP

i

� �
and RP

A D6i
� �

can be used to
extract certain decision rules, while the boundaries BnA DP

i

� �
and

BnA D6i
� �

can be used to induce possible decision rules from an
ordered decision table.

In [60], an atomic expression over a single attribute a is defined
as either ða;PÞ (according to increasing preference) or ða;6Þ
(according to decreasing preference) in an ordered information
system. For any A # AT , an expression over A in an ordered
information system is defined by

V
a2AeðaÞ, where eðaÞ is an atomic

expression over a. The set of all expressions over A in an OIS is
denoted by EðAÞ. For instance, in Table 1, AT ¼ fa1; a2; a3g, the set of
EðATÞ is as follows:

Eðfa1; a2; a3gÞ ¼ fða1;PÞ ^ ða2;PÞ ^ ða3;PÞ; ða1;PÞ
^ ða2;PÞ ^ ða3;6Þ; . . . ; ða1;6Þ ^ ða2;6Þ ^ ða3;6Þg:

In an OIS, for a 2 AT and v1 2 Va, an atomic formula over a single
attribute a is defined as either ða;P; v1Þ (according to increasing
preference) or ða;6; v1Þ (according to decreasing preference). For
any A # AT, a formula over A in an OIS is defined by

V
a2AmðaÞ, where

mðaÞ is an atomic formula over a. The set of all formulas over A in an
OIS is denoted by MðAÞ. Let the formula / 2 MðAÞ, and k/k denotes
the set of objects satisfying formula /. For example, if ða;P; v1Þ and
ða;6; v1Þ are atomic formulas, then

kða;P;v1Þk ¼ fx 2 Ujf ðx; aÞP v1g;
kða;6;v1Þk ¼ fx 2 Ujf ðx; aÞ 6 v1g:
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Now we consider an ODT S ¼ ðU;C [ fdg;V ; f Þ and A # C. For
two formulas / 2 MðAÞ and u 2 MðdÞ, a decision rule, denoted by
/! u, is read as ‘‘if / then u.’’ The formula / is called the rule’s
antecedent, and the formula u is called the rule’s consequent. We
say that an object supports a decision rule if it matches both the
condition and the decision parts of the rule. On the other hand,
an object is covered by a decision rule if it matches the condition
part of the rule. A decision rule states how ‘‘evaluation of objects
on attributes A is at least as good as a given level’’ or ‘‘evaluation
of objects on attributes A is at most as good as a given level’’ deter-
mines ‘‘objects belong (or possibly belong) to at least a given class’’
or ‘‘objects belong (or possibly belong) to at most a given class.’’ As
follows, there are four types of decision rules to be considered
[11,12]:

(1) certain P-decision rules with the following syntax:
if ðf ðx; a1ÞP va1 Þ ^ ðf ðx; a2ÞP va2 Þ ^ � � � ^ ðf ðx; akÞ P vak

Þ^
ðf ðx; akþ1Þ 6 vakþ1

Þ ^ � � � ^ ðf ðx; apÞ 6 vap Þ, then x 2 DP
i ;

(2) possible P-decision rules with the following syntax:
if ðf ðx; a1ÞP va1 Þ ^ ðf ðx; a2ÞP va2 Þ ^ � � � ^ ðf ðx; akÞP vak

Þ^
ðf ðx; akþ1Þ 6 vakþ1

Þ ^ � � � ^ ðf ðx; apÞ 6 vap Þ, then x could belong
to DP

i ;
(3) certain 6-decision rules with the following syntax:

if ðf ðx; a1Þ 6 va1 Þ ^ ðf ðx; a2Þ 6 va2 Þ ^ � � � ^ ðf ðx; akÞ 6 vak
Þ^

ðf ðx; akþ1Þ P vakþ1
Þ^ � � � ^ ðf ðx; apÞP vap Þ, then x 2 D6i ;

(4) possible 6-decision rules with the following syntax:
if ðf ðx; a1Þ 6 va1 Þ ^ ðf ðx; a2Þ 6 va2 Þ ^ � � � ^ ðf ðx; akÞ 6 vak

Þ^
ðf ðx; akþ1ÞP vakþ1

Þ ^ � � � ^ ðf ðx; apÞP vap Þ, then x could
belong to D6i ; where O1 ¼ fa1; a2; . . . ; akg# C;O2 ¼
fakþ1; akþ2; . . . ; apg# C;C ¼ O1 [ O2;O1 with increasing pref-
erence and O2 with decreasing preference, ðva1 ;va2 ; . . . ;

vap Þ 2 Va1 � Va2 � � � � � Vap ; i 6 r.

Therefore, in an ODT, for a given upward or downward union
DP

i or D6j ; i; j 6 r, the rules induced under a hypothesis that objects

belonging to RP
A DP

i

� �
or to R6A D6j

� �
are positive and all the others

negative suggest the assignment of an object to ‘‘at least class Di’’
or to ‘‘at most class Dj’’, respectively. Similarly, the rules induced

under a hypothesis that objects belonging to RP
A DP

i

� �
or to R6A D6j

� �
are positive and all the others negative suggest the assignment of
an object could belong to ‘‘at least class Di’’ or to ‘‘at most class Dj’’,
respectively.

From the definitions of DP
i and D6i , it is easy to see that there is

a complement relation between DP
i and D6i�1. Therefore, in this

paper, we only investigate the former two types of decision rules,
i.e., the decision rules induced by DP

i . Let S ¼ ðU;C [ fdg;V ; f Þ be an
ODT, A # C and D ¼ fD1;D2; . . . ;Drg the decision induced by d. For
our further development, we denote a decision rule by

Zij : des ½xi�PA
� �

! xi 2 DP
j

� �
; i 6 jUj; j 6 r;

where des ½xi�PA
� �

denotes the description (i.e., the condition part of
each of the above four kinds of decision rules) of the dominance
class ½xi�PA in S.
3. Three measures for evaluating the decision performance of
an ordered decision table

In this section, by introducing a partial relation in an ordered
information system and an ordered decision table, three measures
are proposed for evaluating the decision performance of an ordered
decision table, which are certainty measure ðaÞ, consistency mea-
sure ðbÞ and covering measure ðGÞ. Furthermore, it is analyzed
how each of these three measures depends on the condition gran-
ulation and the decision granulation of an ordered decision table as
well.

In the first part of this section, we introduce several new con-
cepts and notations, which will be applied in what follows.

Let S ¼ ðU;AT;V ; f Þ be an ordered information system, P;

Q # AT; U=RP
P ¼ ½x1�PP ; ½x2�PP ; . . . ; ½xjUj�PP

� �
and U=RP

Q ¼ ½x1�PQ ; ½x2�PQ ;
n

. . . ; ½xjUj�PQ g. We define a partial relation � as follows: P � Q ()
½xi�PP # ½xi�PQ for any xi 2 U, where ½xi�PP 2 U=RP

P and ½xi�PQ 2 U=RP
Q . If

P � Q , we say that Q is coarser than P (or P is finer than Q).
Let S ¼ ðU;C [ fdg;V ; f Þ be an ordered decision table, U=RP

C ¼
½x1�PC ; ½x2�PC ; . . . ; ½xjUj�PC
� �

and U=RP
d ¼ ½x1�Pd ; ½x2�Pd ; . . . ;

�
½xjUj�Pd g. If

C � fdg, then S is said to be a consistent ordered decision table;
otherwise, S is said to be inconsistent.

In general, knowledge granulation is employed to measure the
discernibility ability of knowledge in rough set theory. The smaller
granulation of knowledge, the stronger its discernibility ability
[50,53,56,58]. Liang et al. introduced a knowledge granulation
GðAÞ to measure the discernibility ability of knowledge in an infor-
mation system [32,33]. In [52], Qian and Liang proposed another
kind of knowledge granulations, called combination granulations,
in complete and incomplete information systems. In [30], Liang
and Qian established an axiomatic approach of knowledge granu-
lation in information systems. Accordingly, we introduce a new
knowledge granulation to measure the discernibility ability of
knowledge in an ordered information system, which is given in
the following definition.

Definition 4. Let S ¼ ðU;AT;V ; f Þ be an ordered information sys-
tem and U=RP

AT ¼ ½x1�PAT ; ½x2�PAT ; . . . ; ½xjUj�PAT

� �
. Knowledge granulation

of AT is defined as

GðATÞ ¼ 1
jUj
XjUj
i¼1

j½xi�PAT j
jUj : ð1Þ

Following this definition, for a given ordered decision table
S ¼ ðU;C [ fdg;V ; f Þ, we call GðCÞ; GðdÞ and GðC [ dÞ condition
granulation, decision granulation and granulation of S,
respectively.

As a result of the above discussion, we come to the following
theorem.

Theorem 1. Let S ¼ ðU;AT;V ; f Þ be an ordered information system
and P;Q # AT with P � Q. Then, GðPÞ 6 GðQÞ.

In rough set theory, several measures for a decision rule
Zij : desðXiÞ ! desðYjÞ have been introduced in [42], such as
certainty measure lðXi;YjÞ ¼ jXi \ Yjj=jXij, support measure
sðXi;YjÞ ¼ jXi \ Yjj=jUj and coverage measure sðXi;YjÞ ¼
jXi \ Yjj=jYjj. Naturally, the extensions of these measures are also
suitable for evaluating the decision performance of a decision rule
extracted from an ordered decision table. However, because
lðXi;YjÞ; sðXi;YjÞ and sðXi;YjÞ are only defined for a single decision
rule, they are not suitable for evaluating the decision performance
of a decision-rule set extracted from an ordered decision table.

In [42], approximation accuracy of a classification is introduced
by Pawlak. Let F ¼ fY1;Y2; . . . ;Yng be a classification or decision of
the universe U (it can be regarded as a partition induced by deci-
sion attribute set D in a decision table, i.e., F ¼ U=D) and C a condi-
tion attribute set. CF ¼ fCY1;CY2; . . . ;CYng and CF ¼ fCY1;CY2; . . . ;

CYng are called C-lower and C-upper approximations of F, respec-
tively, where CYi ¼

S
fx 2 Uj½x�C # Yi 2 Fg ð1 6 i 6 nÞ and

CYi ¼
S
fx 2 Uj½x�C \ Yi – Ø;Yi 2 Fg ð1 6 i 6 nÞ. The approximation

accuracy of F by C is defined as

aCðFÞ ¼
P

Yi2U=DjCYijP
Yi2U=DjCYij

: ð2Þ



Table 1
An ordered decision table.

U a1 a2 d

x1 1 2 1
x2 3 2 2
x3 1 1 1
x4 2 1 2
x5 3 3 1
x6 3 2 2
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It is the percentage of possible correct decisions when classifying
objects by employing the attribute set C.

In an ordered decision table, similar to formula (2), the approx-
imation accuracy of D by C can be defined as

aCðDÞ ¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 RP

C DP
i

� ���� ��� : ð3Þ

According to Pawlak’s viewpoint, aCðDÞ can be used to measure the
certainty of an ordered decision table. However, it has some limita-
tions, one of which is illustrated in the following example.

Example 1. An ODT is presented in Table 1, where U ¼ fx1; x2; x3;

x4; x5; x6g and C ¼ fa1; a2g.
In this table, from the definition of dominance classes, one can

obtain that the dominance classes determined by fa1g and C are

½x1�Pfa1g ¼ ½x3�Pfa1g ¼ fx1; x2; x3; x4; x5; x6g; ½x2�Pfa1g ¼ ½x5�Pfa1g ¼ ½x6�Pfa1g

¼ fx2; x5; x6g; ½x4�Pfa1g ¼ fx2; x4; x5; x6g;

½x1�PC ¼ fx1; x2; x5; x6g; ½x2�PC ¼ ½x6�PC ¼ fx2; x5; x6g; ½x3�PC
¼ fx1; x2; x3; x4; x5; x6g; ½x4�PC ¼ fx2; x4; x5; x6g; ½x5�PC
¼ fx5g;

and the ordered classes determined by d are

DP
1 ¼ fx1; x2; x3; x4; x5; x6g and DP

2 ¼ fx2; x4; x6g:

Therefore,

afa1gðDÞ ¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 RP

C DP
i

� ���� ��� ¼
6þ 0
6þ 4

¼ 0:6 and aCðDÞ

¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 RP

C DP
i

� ���� ��� ¼
6þ 0
6þ 4

¼ 0:6:

That is to say afa1gðDÞ ¼ aCðDÞ. This implies that the relation
C < fa1g (< denotes finer) is not revealed by the extended approx-
imation accuracy.

In fact, the shortcoming is mainly caused by the construction of
the coefficient. The measure cannot really reveal the certainty of
the decision rule set from an ordered decision table. To overcome
this deficiency, one should take into account the certainty of every
ordered decision rule for evaluating the entire certainty. For a
consistent ordered decision table, the certainty of each ordered
decision rule is equal to one. On the other side, in an inconsistent
ordered decision table, there exists at least one dominance class in
the condition part that cannot be included in the lower approx-
imation of the target decision. This dominance class can induce
some uncertain ordered decision rules. Hence, one can draw the
conclusion that the extension of the approximation accuracy can
not be employed to effectively evaluate the decision performance
of an ordered decision table. To overcome this drawback of the
extended measures, any new measure should take into account the
certainty of each ordered decision rule in evaluating the decision
performance of the decision rule set from an ordered decision
table. Therefore, a more comprehensive and effective measure for
evaluating the certainty of the decision rule set from an ordered
decision table is desired.

The consistency degree of a complete decision table
S ¼ ðU;C [ DÞ, another important measure proposed in [42], is
defined as

cCðDÞ ¼
Pn

i¼1jCYij
jUj : ð4Þ

It is the percentage of objects which can be correctly classified to
decision classes of U=D by a condition attribute set C. In some situ-
ations, cCðDÞ can be employed to evaluate the consistency of a deci-
sion table.

The consistency degree of an ordered decision table is defined
as

cCðDÞ ¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 DP

i

�� �� : ð5Þ

For an ordered decision table, one can also extend the consis-
tency degree for measuring the consistency of a decision-rule set.
However, similar to formula (3), the extended consistency degree
cannot well characterize the consistency of an ordered decision ta-
ble because it only considers the lower approximation of a target
decision. This is revealed in the following example.
Example 2 (Continued from Example 1). Computing the consis-
tency degree, we have that

cfa1gðDÞ ¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 DP

i

�� �� ¼ 6þ 0
6þ 3

¼ 0:6667 and

cCðDÞ ¼
Pr

i¼1 RP
C DP

i

� ���� ���Pr
i¼1 DP

i

�� �� ¼ 6þ 0
6þ 3

¼ 0:6667:

Obviously, cfa1gðDÞ ¼ cCðDÞ. In other words, one can draw the con-
clusion that the extension of the consistency degree cannot be em-
ployed to effectively evaluate the consistency of an ordered decision
table.

In [11] Greco et al. extended the quality of approximation to
ordered decision tables, which is defined by the following form

!CðDÞ ¼
U �

S
i6rBnC DP

i

� �� ��
[
S

i6rBnC D6i
� �� ��� ��

jUj :

In addition, Dembczynski et al. [8] proposed another form of the
quality of approximation, which is equivalent to the quality of
approximation

!CðDÞ ¼
Pr

i¼2 RP
C DP

i

� ���� ���þPr�1
i¼1 RP

C D6i
� ���� ���Pr

i¼2 DP
i

�� ��þPr�1
i¼1 D6i
�� ��

defined by Düntsch and Gediga [10]. These two measures are both
used to characterize the average relative width of C-generalized
decisions of reference objects [8]. However they also cannot well
characterize the decision performance of an ordered decision table
from the viewpoint of ordered decision rules. These measures have
the same limitations as the approximation accuracy and consis-
tency degree, which are also based on the lower/upper approxima-
tions in the dominance-based rough set approach. Thus, to depict
the decision performance of an ordered decision rule set, a more
comprehensive and effective measure is desired for evaluating the
consistency of the decision rules set from an incomplete ordered
decision table.
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In order to evaluate the decision performance of a decision-rule
set extracted from a complete/incomplete decision table, one must
take into consideration three important factors, that is, the
certainty, consistency and support of the decision-rule set
[49,51,57]. For decision problems in ordered decision tables, these
three factors also play important roles. Furthermore, the degree of
the covering induced by the dominance classes in the condition
part can affect the decision performance of a decision-rule set
extracted from an ordered decision table. However, since the
support measure of each decision rule from a given ordered
decision table is one,1 this measure will be ignored in this paper.

In the next part, we deal with how to evaluate the decision
performance of the decision rule set from an ordered decision
table. Firstly, we investigate the certainty of an ordered decision
rule set.
Definition 5. Let S ¼ ðU;C [ fdg;V ; f Þ be an ordered decision table,
A # C, U=RP

A ¼ ½x1�PA ; ½x2�PA ; . . . ; ½xjUj �PA
� �

; D ¼ fD1;D2; . . . ;Drg and

RULE ¼ ZijjZij : des ½xi�PA
� �

! x 2 DP
j

� �
; i 6 jUj; j 6 r

n o
. Certainty

measure a of RULE is defined as

aðSÞ ¼ 1
jUj
XjUj
i¼1

1
Ni

XNi

j¼1

½xi�PA \ DP
j

��� ���
½xi�PA
�� �� ; ð6Þ

where Ni is the number of ordered decision classes with nonempty
intersection with the dominance class ½xi�PA in the ordered decision
table.

The mechanism of this definition is illustrated by the following
example.

Example 3 (Continued from Example 1). Let S1 be the ordered
decision table induced by fa1g and S2 the ordered decision table
induced by C. Computing the certainty measure, we have that

aðS1Þ ¼
1
jUj
XjUj
i¼1

1
Ni

XNi

j¼1

½xi�PC \ DP
j

��� ���
½xi�PC
�� ��

¼ 1
6

1
2

1þ 1
2

	 

� 2þ 1

2
1þ 2

3

	 

� 3þ 1

2
1þ 3

4

	 
� �
¼ 0:8125

and

aðS2Þ ¼
1
jUj
XjUj
i¼1

1
Ni

XNi

j¼1

½xi�PC \ DP
j

��� ���
½xi�PC
�� ��

¼ 1
6

1
2

1þ 1
2

	 

� 2þ 1

2
1þ 2

3

	 

� 2þ 1

2
1þ 3

4

	 

þ 1

� �
¼ 0:8403:

That is aðS2Þ > aðS1Þ. Thus, the measure a is much better than the
extended approximation accuracy for measuring the certainty of
the decision rule set from an inconsistent ordered decision table.

In what follows, we discuss the monotonicity of measure a in an
ordered decision table.
Theorem 2. Let S1 ¼ ðU; C1 [ fd1g;V1; f1Þ and S2 ¼ ðU;C2 [ fd2g;
V2; f2Þ be two ordered decision tables. If U=RP

C1
¼ U=RP

C2
and d1 � d2,

then aðS1Þ 6 aðS2Þ.
1 From the definition of an ordered decision rule, we know that the ordered
decision rule induced by an object is only supported by itself in an ordered decision
table, and its support measure is equal to one.
Proof. Let D1 ¼ fD1;D2; . . . ;Drg and D2 ¼ fK1;K2; . . . ;Ksg be the
ordered decisions of S1 and S2, respectively. From d1 � d2, it follows
that r P s, and there exists some partition T ¼ fT1; T1; . . . ; Tsg of
f1;2; . . . ; rg such that Kt ¼

S
k2Tt

Dk; t ¼ 1;2; . . . ; s. Hence, for any
Dj 2 D1, there exists some Kt 2 D2 such that Dj # Kt . Thus, one
has that DP

j # KP
t and ½xi�PC \ DP

j # ½xi�PC \ KP
t . Let NiðS1Þ and NiðS2Þ

denote the number of ordered decision classes induced by the
dominance classes ½xi�PC1

and that induced by ½xi�PC2
, respectively.

So, it follows from d1 � d2 that NiðS1ÞP NiðS2Þ. And since
U=RP

C1
¼ U=RP

C2
, one has that ½xi�PC1

¼ ½xi�PC2
; i 6 jUj. Therefore,

aðS1Þ ¼
1
jUj
XjUj
i¼1

1
NiðS1Þ

XNiðS1Þ

j¼1

½xi�PC1
\ DP

j

��� ���
½xi�PC1

��� ���
6

1
jUj
XjUj
i¼1

1
NiðS2Þ

XNiðS2Þ

t¼1

½xi�PC2
\ KP

t

��� ���
½xi�PC2

��� ��� ¼ aðS2Þ:

This completes the proof. �

Theorem 2 states that the certainty measure a of all decision
rules from an ordered decision table decreases as its ordered deci-
sion classes becomes finer.

Next, we discuss the consistency of the decision rule set from an
ordered decision table.

Definition 6. Let S ¼ ðU;C [ fdg;V ; f Þ be an ordered decision table,
A # C; U=RP

A ¼ ½x1�PA ; ½x2�PA ; . . . ; ½xjUj�PA
� �

; D ¼ fD1;D2; . . . ;Drg and

RULE ¼ ZijjZij : des ½xi�PA
� �

! x 2 DP
j

� �
; i 6 jUj; j 6 r

n o
. Consis-

tency measure b of RULE is defined as

bðSÞ ¼ 1
jUj
XjUj
i¼1

1� 4
r

Xr

j¼1

lðZijÞð1� lðZijÞÞ
" #

; ð7Þ

where lðZijÞ ¼
½xi �PA \DP

j

��� ���
½xi �PAj j is the certainty degree of the decision rule

Zij. The following example will be helpful for understanding the
meaning of this definition.
Example 4 (Continued from Example 3). Computing the measure b,
we have that

bðS1Þ ¼
1
jUj
XjUj
i¼1

1� 4
r

Xr

j¼1

lðZijÞð1� lðZijÞÞ
" #

¼ 1
6

1� 1
2

	 

� 2þ 1� 4

9

	 

� 3þ 1� 3

8

	 
� �
¼ 0:5486

and

bðS2Þ ¼
1
jUj
XjUj
i¼1

1�4
r

Xr

j¼1

lðZijÞð1�lðZijÞÞ
" #

¼ 1
6

1�1
2

	 

�2þ 1�4

9

	 

�2þ 1�3

8

	 

þð1�0Þ

� �
¼ 0:6227:

That is bðS2Þ > bðS1Þ. It can be interpreted in the sense that ordered
decision table S2 has much bigger consistency and much smaller
fuzziness than S1. Unlike the extended consistency degree, the mea-
sure b can be used to evaluate the consistency of an ordered decision
table.

In the following, we investigate the monotonicity of the
measure b in an ordered decision table.
Theorem 3. Let S1 ¼ U;C1 [ fd1g;V1; f1ð Þ and S2 ¼ U;C2 [ fd2g;ð
V2; f2Þ be two ordered decision tables. If U=RP

C1
¼ U=RP

C2
and d1 � d2,

then bðS1Þ 6 bðS2Þ for 8lðZijÞP 1
2.
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Proof. From Definition 6, it follows that

bðSÞ¼ 1
jUj
XjUj
i¼1

1�4
r

Xr

j¼1

lðZijÞð1�lðZijÞÞ
" #

¼ 1
jUj
XjUj
i¼1

4
r

Xr

j¼1

lðZijÞ�
1
2

	 
2

:

Let D1 ¼ fD1;D2; . . . ;Drg and D2 ¼ fK1;K2; . . . ;Ksg be the
ordered decisions of S1 and S2, respectively. From d1 � d2, it follows
that r P s, and there exists some partition T ¼ fT1; T1; . . . ; Tsg of
f1;2; . . . ; rg such that Kt ¼

S
k2Tt

Dk; t ¼ 1;2; . . . ; s. Hence, for any
Dj 2 D1, there exists some Kt 2 D2 such that Dj # Kt . Thus, one
has that DP

j # KP
t and ½xi�PC \ DP

j # ½xi�PC \ KP
t . And since

U=RP
C1
¼ U=RP

C2
, one has that ½xi�PC1

¼ ½xi�PC2
; i 6 jUj. So, it follows that

lðZijÞ 6 lðZitÞ. Therefore, when 8lðZijÞP 1
2, we have that

bðS1Þ ¼
1
jUj
XjUj
i¼1

1� 4
r

Xr

j¼1

lðZijÞð1� lðZijÞÞ
" #

¼ 1
jUj
XjUj
i¼1

4
r

Xr

j¼1

lðZijÞ �
1
2

	 
2

6
1
jUj
XjUj
i¼1

4
s

Xs

k¼1

lðZikÞ �
1
2

	 
2

¼ 1
jUj
XjUj
i¼1

1� 4
s

Xs

k¼1

lðZikÞð1� lðZikÞÞ
" #

¼ bðS2Þ:

That is bðS1Þ 6 bðS2Þ. This completes the proof. �

Theorem 3 shows that the consistency measure b of all decision
rules from an ordered decision table decreases with decision clas-
ses becoming finer for 8lðZijÞP 1

2.
From these two definitions and their properties, it can be seen

that their successes are because that the two measures are con-
structed through considering certainty/consistency of each ordered
decision rule from a given ordered decision table. From this idea,
these two proposed measures can characterize the entire decision
performance of an ordered decision rule set, and the old ones can
not do.

It is worth pointing out that the values of the two new measures
(a and b), in some sense, are dependent on the situation of the cov-
ering induced by the dominance classes in the condition part of an
ordered decision table. In the following, we investigate how to
measure the degree of the covering in the condition part of an or-
dered decision table. In fact, from the viewpoint of granular com-
puting, the degree of the covering is also seen as the level of
granulation of objects. Knowledge granulation in Definition 4 can
be used to characterize the degree of the covering. In order to char-
acterize the covering in ordered decision tables, we call it the
knowledge granulation covering measure, still denoted by G.

4. Evaluations on the performance of an ordered decision table

In this section, we will apply the three measures (a; b and #)
proposed in this paper to five types of ordered decision tables
and demonstrate through experimental analysis the validity and
effectiveness of each of them for evaluating the decision perfor-
mance of each of these five types of ordered decision tables
through experimental analysis. The five types of ordered decision
tables are single-valued ordered decision tables, incomplete or-
dered decision tables, interval ordered decision tables, disjunctive
set-valued ordered decision tables and conjunctive set-valued or-
dered decision tables.

4.1. Five types of ordered decision tables

4.1.1. Single-valued ordered decision tables
A single-valued ordered decision table is an ordered information

system S ¼ U;C [ fdg;V ; fð Þ, where d (d R C and f ðx; aÞ; f ðx; dÞ
ðx 2 U; a 2 CÞ are all single-valued) is an overall preference called
the decision and all the elements of C are criteria. Furthermore, as-
sume that the decision attribute d induces a partition of U into a fi-
nite number of classes; let D ¼ fD1;D2; . . . ;Drg be an ordered set of
these classes, that is, for all i; j 6 r, if i P j, then the objects from Di

are preferred to the objects from Dj. In fact, the type of ordered deci-
sion tables discussed in Section 2 are single-valued ordered decision
tables.

4.1.2. Incomplete ordered decision tables
An incomplete ordered decision table (IODT) is an incomplete or-

dered information system S ¼ ðU;C [ fdg;V ; f Þ, where d (d R C and
f ðx; dÞ ðx 2 UÞ is single-valued) is an overall preference called the
decision and all the elements of C are criteria. In [11], Greco
et al. proposed a general framework for incomplete ordered deci-
sion tables. Let R	PA with A # AT denote a dominance relation be-
tween objects that are possibly dominant in terms of values of
attributes set A, in which ‘‘	’’ denotes a missing value
[2,3,15,16,21–25]. The dominance relation is defined by

R	PA ¼ fðy; xÞ 2 U � Uj8a 2 A; f ðy; aÞP f ðx; aÞ or f ðx; aÞ
¼ 	 or f ðy; aÞ ¼ 	g:

By the definition of R	PA , it can be observed that if a pair of objects
ðy; xÞ from U � U is in R	PA , then they are perceived as y dominates
x; in other words, y may have a better property than x with respect
to A in reality. Defined by

½x�	PA ¼ y 2 Ujðy; xÞ 2 R	PA

� �
;

½x�	PA describes objects that may dominate x in terms of A. Let U=R	PA

denote classification, which is the family set ½x�	PA jx 2 U
� �

. Any ele-
ment from U=R	PA will be called a dominance class. The lower and
upper approximations of DP

i with respect to the dominance relation
R	PA are defined in [11,61] as

R	PA DP
i

� �
¼ x 2 Uj½x�	PA # DP

i

� �
; R	PA DP

i

� �
¼
[

x2DP
i

½x�	PA :
4.1.3. Interval ordered decision tables
Interval information systems are an important type of data ta-

bles, and generalized models of single-valued information systems.
An interval information system (IIS) is a quadruple S ¼ ðU;AT;V ; f Þ,
where U is a finite non-empty set of objects and AT is a finite
non-empty set of attributes, V ¼

S
a2AT Va and Va is a domain of

attribute a; f : U � AT ! V is a total function such that f ðx; aÞ 2 Va

for every a 2 AT; x 2 U, called an information function, where Va

is a set of interval numbers. Denoted by

f ðx; aÞ ¼ ½aLðxÞ; aUðxÞ� ¼ fpjaLðxÞ 6 p 6 aUðxÞ; aLðxÞ; aUðxÞ 2 Rg;

we call it the interval number of x under the attribute a. In partic-
ular, f ðx; aÞ would degenerate into a real number if aLðxÞ ¼ aUðxÞ.
Under this consideration, we regard a single-valued information
system as a special form of interval information systems.

Given A # AT with increasing preference, we define a dominance
relation RwA in interval ordered information systems as follows:

RwA ¼ fðy; xÞ 2 U � UjaLðyÞP aLðxÞ; aUðyÞP aUðxÞ; 8a 2 AÞ:

The dominance classes induced by the dominance relation RwA are
the set of objects dominating x, that is,

½x�wA ¼ fy 2 UjaLðyÞP aLðxÞ; aUðyÞP aUðxÞ; 8a 2 AÞ:

An interval ordered decision table (IODT) is an interval ordered
information system S ¼ ðU;C [ d;V ; f Þ, where d ðd R C and
f ðx; dÞðx 2 UÞ is single-valued) is an overall preference called the
decision and all the elements of C are criteria. Furthermore, assume
that the decision attribute d induces a partition of U into a finite
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number of classes; let D ¼ fD1;D2; . . . ;Drg be a set of these classes
that are ordered, that is, for all i; j 6 r, if i P j, then the objects from
Di are preferred to the objects from Dj. Table 2 gives an interval or-
dered decision table.

Let S ¼ ðU;C [ d;V ; f Þ be an IODT, A # C and D ¼ fD1;D2; . . . ;Drg
be the decision induced by d. Lower and upper approximations of
DP

i ði 6 rÞ with respect to the dominance relation RwA are defined as
[54] 1 mm

RwA DP
i

� �
¼ x 2 Uj½x�wA # DP

i

� �
; RwA DP

i

� �
¼
[

x2DP
i

½x�wA :
4.1.4. Conjunctive set-valued ordered decision tables
Set-valued information systems are another important type of

data tables, and generalized models of single-valued information
systems. Let U be a finite set of objects, called the universe of dis-
course, and AT be a finite set of attributes. With every attribute
a 2 AT , a set of its values Va is associated. f : U � AT ! V is a total
function such that f ðx; aÞ# Va for every a 2 AT; x 2 U. If each
attribute has a unique attribute value, then ðU;AT;V ; f Þ with
V ¼ [a2AT Va is called a single-valued information system; if a
system is not a single-valued information system, it is called a
set-valued (multi-valued) information system. A set-valued deci-
sion table is always denoted by S ¼ U; C [ fdg;V ; fð Þ, where C is a
finite set of condition attributes and d is a decision attribute with
C \ d ¼ Ø.

There are many ways to give a semantic interpretation of the
set-valued information systems. Here we summarize them as
two types [14]: conjunctive set-valued information systems and
disjunctive set-valued information systems. In this section,
through introduction of a dominance relation to a conjunctive
set-valued information system, we investigate conjunctive set-val-
ued ordered decision tables and dominance decision rules ex-
tracted from this type of decision tables, and apply the three
measures (a; b and #) for evaluating the decision performance of
an conjunctive set-valued ordered decision table.

For x 2 U and c 2 C; cðxÞ is interpreted conjunctively. For
example, if c is the attribute ‘‘speaking a language’’, then
cðxÞ ¼ fGerman; Polish; Frenchg can be interpreted as: x speaks
German, Polish, and French. When considering the attribute ‘‘feed-
ing habits’’ of animals, if we denote the attribute value of herbivore
as ‘‘0’’ and carnivore as ‘‘1’’, then animals possessing attribute value
f0;1g are considered as possessing both herbivorous and carnivo-
rous nature. Let us take blood origin for another example. If we de-
note the three types of pure blood as ‘‘0’’, ‘‘1’’ and ‘‘2’’, then we can
denote the mixed-blood as f0;1g or f1;2g, etc. Under this interpre-
tation, we say it is a ‘‘

V
’’ set-valued information system in this

paper.
In what follows, we define a dominance relation R^PA in a ‘‘

V
’’

set-valued information system as [53]

R^PA ¼ fðy; xÞ 2 U � Ujf ðy; aÞ 
 f ðx; aÞ; 8a 2 AÞg:
Table 2
An interval ordered decision table.

U a1 a2 a3 a4 a5 d

x1 1 ½0;1� 2 1 ½1;2� 1
x2 ½0;1� 0 ½1;2� 0 1 1
x3 ½0;1� 0 ½1;2� 1 1 1
x4 0 0 1 0 1 1
x5 2 ½1;2� 3 ½1;2� ½2;3� 2
x6 ½0;2� ½1;2� ½1;3� ½1;2� ½2;3� 1
x7 1 1 2 1 2 2
x8 ½1;2� ½1;2� ½2;3� 2 ½2;3� 2
x9 ½1;2� 2 ½2;3� ½0;2� 3 2
x10 2 2 3 ½0;1� 3 2
By the definition of the dominance relation R^PA , it can be observed
that if a pair of objects ðy; xÞ from U � U lies in R^PA , then they are
perceived as y dominates x; in other words, y may have a better
property than x with respect to A in reality. Furthermore, denoted
by

½x�^PA ¼ y 2 Ujðy; xÞ 2 R^PA

� �
;

where the dominance class ½x�^PA describes objects that may domi-
nate x in terms of A in a ‘‘

V
’’ set-valued ordered information system.

A ‘‘
V

’’ set-valued ordered decision table (ODT) is a ‘‘
V

’’ set-valued
ordered information system S ¼ U; C [ d;V ; fð Þ, where d (d R C and
f ðx; dÞðx 2 UÞ is single-valued) is an overall preference called the
decision, and all the elements of C are criterions, and
f : U � C ! 2V is a set-valued mapping. For example, Table 3 shows
a conjunctive set-valued ordered decision table.

Let S ¼ U;C [ d;V ; fð Þ be a ‘‘
V

’’ set-valued ODT, A # C, and
D ¼ fD1;D2; . . . ;Drg be the decision induced by d. The lower and
upper approximations of DP

i ði 6 rÞ with respect to the dominance
relation R^PA are defined as [53]

R^PA DP
i

� �
¼ x 2 Uj½x�^PA # DP

i

� �
; R^PA DP

i

� �
¼
[

x2DP
i

½x�^PA :
4.1.5. Disjunctive set-valued ordered decision tables
For a ‘‘

W
’’ set-valued information system S ¼ ðU;AT;V ; f Þ, the

relationships among any set f ðx; aÞ; x 2 U; a 2 AT are disjunctive.
For convenience, let R_PA ; A # AT , denote a dominance relation be-
tween objects that are possibly dominant in terms of values of
attributes set A. Under this consideration, we call S a ‘‘

W
’’ set-valued

ordered information system. Let us define the dominance relation
more precisely as follows:

R_PA ¼ fðy; xÞ 2 U � Uj8a 2 A;9uy 2 f ðy; aÞ; 9vx

2 f ðx; aÞ such that uy P vxg:

By the definition of the dominance relation R_PA , it can be observed
that if a pair of objects ðy; xÞ from U � U lies in R_PA , then they are
perceived as y dominates x; in other words, y may have a better
property than x with respect to A in reality. In fact, this dominance
relation is equivalent to the representation below

R_PA ¼ fðy; xÞ 2 U � Uj8a 2 A;max f ðy; aÞP min f ðx; aÞg:

A ‘‘
W

’’ set-valued ordered decision table (ODT) is a ‘‘
W

’’ set-valued
ordered information system S ¼ U; C [ d;V ; fð Þ, where d (d R C and
f ðx; dÞðx 2 UÞ is single-valued) is an overall preference called the
decision, and all the elements of C are criterions, and
f : U � C ! 2V is a set-valued mapping. A disjunctive set-valued
is shown in Table 4.

Let S ¼ U;C [ d;V ; fð Þ be a ‘‘
W

’’ set-valued ODT, A # C; D ¼
fD1;D2; . . . ;Drg is the decision induced by d, the lower and upper
approximations of DP

i ði 6 rÞ with respect to the dominance rela-
tion R_PA are defined as [53]
Table 3
A ‘‘
V

’’ set-valued ordered decision table about language ability.

U Audition Spoken language Reading Writing d

x1 fEg fEg fF;Gg fF;Gg Poor
x2 fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg Good
x3 fE;Gg fE; Fg fF;Gg fF;Gg Good
x4 fE; Fg fE;Gg fF;Gg fFg Poor
x5 fF;Gg fF;Gg fF;Gg fFg Poor
x6 fFg fFg fE; Fg fE; Fg Poor
x7 fE; F;Gg fE; F;Gg fE;Gg fE; F;Gg Good
x8 fE; Fg fF;Gg fE; F;Gg fE;Gg Good
x9 fF;Gg fGg fF;Gg fF;Gg Poor
x10 fE; Fg fE;Gg fF;Gg fE; Fg Good



Table 4
A ‘‘
W

’’ set-valued information system.

U a1 a2 a3 a4 a5 d

x1 f1g f0;1g f0g f1;2g f2g 2
x2 f0;1g f2g f1;2g f0g f0g 1
x3 f0g f1;2g f1g f0;1g f0g 1
x4 f0g f1g f1g f1g f0;2g 1
x5 f2g f1g f0;1g f0g f1g 2
x6 f0;2g f1g f0;1g f0g f1g 1
x7 f1g f0;2g f0;1g f1g f2g 2
x8 f0g f2g f1g f0g f0;1g 1
x9 f1g f0;1g f0;2g f1g f2g 2
x10 f1g f1g f2g f0;1g f2g 2
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R_PA DP
i

� �
¼ x 2 Uj½x�_PA # DP

i

� �
; R_PA DP

i

� �
¼
[

x2DP
i

½x�_PA :
4.2. Experimental analysis

In order to verify the effectiveness of the measure a over the ex-
tended measure aCðDÞ, we first compare the certainty measure a
with the measure aCðDÞ through the evaluation of the certainty of
each of five types of ordered decision tables. For this task, we have
downloaded the public data sets Car (a single-valued ordered deci-
sion table) and Post-operative (an incomplete ordered decision ta-
ble) from UCI Repository of machine learning databases [76], and
have employed Table 2 (an interval ordered decision table), Table
3 (a conjunctive set-valued ordered decision table) and Table 4 (a
disjunctive set-valued ordered decision table). In the data set Car,
there are six condition attributes and one decision attribute. Their
orders within the value sets of attributes are low! mid!
high! v � high (buying), low! mid! high! v � high (maint),
5�more! 4! 3! 2 (doors), more! 4! 2 (persons), big !
mid! small (lug boot), high! mid! low (safety), and
v � good! good! acc! unacc (decision attribute). In the data
set Post-operative, there are eight condition attributes and one
decision attribute. Their orders within the value sets of attributes
Fig. 1. Variation of certainty measure a and the appro
are low! mid! high (L-CORE), low! mid! high (L-SURF),
excellent ! good! fair ! poor (L-O2), low! mid! high (L-BP),
stable! mod� stable! unstable (SURF-STBL), stable! mod�
stable! unstable (CORE-STBL), stable! mod� stable! unstable
(BP-STBL), 20! 19! 18 � � � ! 1! 0 (COMFORT), and S! A! I
(decision attribute). The comparisons of values of two measures
with the numbers of features are shown in Figs. 1–5.

It can be seen from sub-figure (a) in Fig. 1 that the values of the
extended approximation accuracy are unchanged when the num-
ber of features falls in between 2 and 3. In this situation, one low-
er/upper approximation of the target decision is the same as
another lower/upper approximation of the target decision in the
single-valued ordered decision table. But, for the same situation,
as the number of features varies from 2 to 3, the value of the cer-
tainty measure a changes from 0.420 to 0.431. By adding a new
attribute to existing attributes, the condition classes may become
much finer, which can induce more ordered decision rules with
bigger certainty accordingly. The proposed certainty measure a
does characterize the character of ordered decision rules, while
the extended approximation accuracy is not competent for the
objective. From other sub-figures, one can see the same situation.
Thus, the measure a is much better than the extended approxima-
tion accuracy for the single-valued ordered decision table. In other
words, when the value of aCðDÞ is kept unchanged, the measure a
may be still valid for evaluating the certainty of the set of decision
rules obtained by using these selected features. Therefore, the
measure a may be better than the extended approximation accu-
racy for evaluating the certainty of a single-valued ordered deci-
sion table.

Now, we show the effectiveness of the measure b proposed in
this paper and compare the consistency measure b with the mea-
sure cCðDÞ through evaluation of the consistency of each of the five
types of ordered decision tables. Comparisons of values of two
measures with the numbers of features are shown in Fig. 2.

From sub-figure (a) in Fig. 2, it is easy to see that the values of
the consistency degree equal 0.707 when the number of features
falls in between 1 and 5. In this situation, the lower approxima-
ximation accuracy with the number of features.



Fig. 2. Variation of consistency measure b and the quality of approximation with the number of features.

Fig. 3. Variation of the covering measure # with the number of features.
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tions of the target decision retain in the single-valued ordered
decision table Car. However, through adding new features, those
condition classes in lower approximations may gradually become
much smaller, which will change the entire consistency of ordered
decision rules. Because the extension of consistency degree only
depends on lower approximations, it hence cannot be used to
effectively characterize the consistency of the single-valued or-
dered decision table when the value of the consistency degree is
invariable. However, for the same situation, as the number of fea-
tures varies from 1 to 5, the value of the consistency measure b
changes within the interval [0.424,0.599]. It shows that unlike
the extended consistency degree, the consistency measure b is still
valid for evaluating the consistency of the single-valued ordered
decision table when the lower approximation of the target decision
keeps unchanged. Sub-figures (b)–(e) support the same conclusion.
Therefore, the measure b is much better than the extended consis-
tency degree for evaluating the decision performance based on the
idea of reading the ordered decision table a set of ordered decision
rules.

Finally, we investigate the variation of the values of the cover-
ing measure G with the numbers of features in ordered decision ta-
bles. The values of the measure with the number of features in
ordered decision tables are shown in Fig. 3.

From Fig. 3, one can see that the value of the covering measure
G decreases with the number of condition features becoming big-
ger in the same data set. Note that one may extract more decision
rules through adding the number of condition features in general.
In fact, the greater the number of decision rules, the smaller the
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value of the covering measure in the same data set. Therefore, the
measure G is able to effectively evaluate the covering degree of all
dominance classes in a given ordered decision table.

5. Conclusions and discussion

In rough set theory, several classical measures for evaluating a
decision rule or a decision table, such as the certainty, support
and coverage measures of a decision rule and the approximation
accuracy and consistency degree (quality of approximation) of a
decision table, can be extended for evaluating the decision perfor-
mance of a decision rule (set) extracted from an ordered decision
table. However, these extensions are not effective for evaluating
the decision performance of a set of ordered decision rules. In this
paper, the limitations of these extensions have been analyzed on
ordered decision tables. To overcome these limitations, three
new and more effective measures (a; b and G) have been intro-
duced for evaluating the certainty, consistency and covering of a
decision-rule set extracted from an ordered decision table, respec-
tively. It has been analyzed how each of these three new measures
depends on the condition granulation and decision granulation of
ordered decision tables.

In order to apply the three new measures for evaluating the
decision performance of a decision-rule set in practical decision
problems, the experimental analysis on five types of ordered deci-
sion tables have been performed, which are single-valued ordered
decision tables, incomplete ordered decision tables, interval or-
dered decision tables, conjunctive set-valued ordered decision
tables and disjunctive set-valued ordered decision tables. Experi-
mental results show that the three new measures ða; b;GÞ are ade-
quate for evaluating the decision performance of a decision-rule
set extracted from any type of ordered decision tables. The three
measures may be helpful for determining which of rule extracting
approaches is preferred for a practical decision problem in the con-
text of ordered decision tables.
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