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Abstract. Multiple criteria decision making (MCDM) has received in-
creasing attentions in both engineering and economic fields. Weights of
the criteria directly affect decision results in MCDM, so it is important
for us to acquire the appropriate weights of the criteria. In some decision
making problems, experts always express their preference by multiplica-
tive preference relation and fuzzy preference relation. In this paper, an
objective method based on information granularity is proposed for ac-
quiring weights of the criteria in MCDM. Moreover, we prove that the
essence of a consistence preference relation is a partial relation, and an-
alyze the corresponding partial granular structure of the alternative set
according to the given partial relation.

Keywords: Information granularity, Granular structure, Multiplicative
preference relation, Fuzzy preference relation, Partial relation.

1 Introduction

Decision making is a key issue of the decision theory. One of the most impor-
tant decision making problems is the multi-criteria decision making problem
(MCDM), which is characterized by the ranking of objects according to a set
of criteria with pre-defined preference-ordered decision classes. It is widely used
in credit approval, stock risk estimation, university ranking, etc[1–5]. In multi-
criteria decision making problems, different weighting systems decide different
results, so it is important for us to search for a rational weighting method. And
weighting methods are classified into subjective method, objective method and
the integrated method. Analytic hierarchy Process (AHP) introduced by Satty[6]
is a very important approach to support the decision making. Using AHP, the
decision maker(s) must compare all pairs of criteria and decision alternatives
using a ratio scale to form some judgment matrixes, which are indeed the multi-
plicative preference relations. Fuzzy preference relation, the other common used
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preference format proposed by Basu[7], is also widely used in group decision
making problems[8, 9].

Granular computing is an emerging field of study on human-centered, knowl-
edge intensive problem solving using multiple levels of granularity [10, 11]. Gran-
ule, granulation and granularity are regarded as the three primitive notions of
granular computing. A granule is a clump of objects drawn together by indistin-
guishability, similarity, and proximity of functionality [12, 13]. And granulation
of an object leads to a collection of granules. The granularity is the measure-
ment of the granulation degree of objects[14]. A triarchic theory of granular
computing is proposed by Yao based on the three perspectives on philosophy,
methodology and information processing paradigm. In methodological perspec-
tive, the granular computing is a structured problem solving method [15]. Of
course, the granular computing can be used in the decision making problems,
and many researchers have paid their attention to this field [16–19].

Granular computing has been used in decision problem in many fields. Gran-
ular reciprocal matrix was proposed by Pedrycz and Song in group decision
making problems, and the flexibility offered by the level of granularity is used to
increase the level of consensus within the group [16]. Different decision makers
may provide multi-granular linguistic information in multi-criteria group deci-
sion making problems, so Herrera-Viedma et al. defined the measurements of
consensus to help gain the more rational decision results[17], and paper[18] pro-
vided a way to use multi-granular linguistic model for management decision
making in performance appraisal. In another study, Zheng et al. used granule
sets to develop the bi-level decision models[19].

In this paper, we propose a special objective weights based on information
granularity in multi-criteria decision problems. Moreover, we analyze the implied
preference structure in the two preference relations: multiplicative preference re-
lation and fuzzy preference relation. We prove that a consistent preference rela-
tion is indeed a partial relation under the given condition. And the corresponding
partial relation induces a partial granular structure. This paper is organized as
follows. Section 2 presents an objective weights acquisition method based on in-
formation granularity. Section 3 concludes that a consistent preference relation
is truly a partial relation, and it can induce a partial granular structure. Section
4 concludes the paper and discusses the future research.

2 Weights Acquisition Based on Information Granularity

Multi-criteria decision making problems(MCDM)could be described by means
of the following sets: U = {u1, u2, · · · , un}(n ≥ 2) be a discrete set of n feasible
alternatives; A = {a1, a2, · · · , am} be a finite set of attributes, and ai(uj) = vij
denote the value of uj in the ith attribute; ω = (ω1, ω2, · · · , ωm) be a weight
vector of attributes, where ωi ≥ 0(i = 1, 2, · · · ,m),

∑m
i=1 ωi = 1.

Several weighting methods have been summarized in reference[21]. In the fol-
lowing, we give a new weights acquisition method based on information granular-
ity and we suppose all the attributes of the discrete numeric or linguistic values.
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Given ai ∈ A, let ind(ai) = {(uj, uk)|ai(uj) = ai(uk)}, apparently, ind(ai) is the
equivalence relation on U , and U/ind(ai) is the partition of the alternative set
U , shortly and conveniently denoted by U/ai = {[u1]ai , [u2]ai , · · · , [un]ai} .

Definition 1. [20] Let U/ai = {[u1]ai , [u2]ai , · · · , [un]ai}, then the information
granularity GR(ai) of the attribute ai is defined as

GR(ai) =
1

n

n∑

j=1

|[uj ]ai |
n

. (1)

Where |[uj ]ai | is the cardinality of the equivalence class of uj .

Property 1. 1
n ≤ GR(ai) ≤ 1

Proof. 1 ≤ |[uj ]ai | ≤ n, so 1
n ≤ 1

n

n∑

j=1

|[uj ]ai
|

n ≤ 1.

There are two special cases, the first case is that every alternative has all the same
value under the attribute ai , the other case is that each alternative has unique
value under the attribute ai . In the former case, the attribute ai contribute
nothing to the decision making process, so we can set less weight even 0 for it.
While in the other case, the ai can distinguish the alternatives from each other,
so we can set more weight for it. Just like information entropy, the information
granulation GR(ai) can depict the distinguish ability of the attribute ai . So we
propose the weighting method based on information granularity in the following.

Definition 2. In the MCDM problem given above, the distinguish importance
of the attribute ai is defined as

DI(ai) = 1−GR(ai). (2)

Definition 3. In the MCDM problem given above, the weight of the attribute ai
is defined as

ωi =
DI(ai)∑m
j=1 DI(aj)

. (3)

Apparently, ωi ≥ 0(i = 1, 2, · · · ,m),
∑m

i=1 ωi = 1.

Example 1. An evaluation information system is given in table 1, we compute
the weights of the criteria by the method given in this section.

U/a1 = {{u1, u3, u4, u8, u9}, {u2, u7}, {u5, u6, u10}}
U/a2 = {{u1, u2, u3, u4}, {u5, u6, u7, u8, u9}, {u10}}
U/a3 = {{u1, u8}, {u2, u5, u10}, {u3, u6}, {u4, u7, u9}}
U/a4 = {{u1}, {u2, u3, u4, u5, u6, u7, u8, u9, u10}}
GR(a1) =

1
10 × ( 5

10 + 2
10 + 5

10 + 5
10 + 3

10 + 3
10 + 2

10 + 5
10 + 5

10 + 3
10 ) =

38
100

GR(a2) =
1
10 × ( 4

10 + 4
10 + 4

10 + 4
10 + 5

10 + 5
10 + 5

10 + 5
10 + 5

10 + 1
10 ) =

42
100

GR(a3) =
1
10 × ( 2

10 + 3
10 + 2

10 + 3
10 + 3

10 + 2
10 + 3

10 + 2
10 + 3

10 + 3
10 ) =

26
100

GR(a4) =
1
10 × ( 1

10 + 9
10 + 9

10 + 9
10 + 9

10 + 9
10 + 9

10 + 9
10 + 9

10 + 9
10 ) =

82
100
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DI(a1) = 1−GR(a1) = 1− 38
100 = 62

100

DI(a2) = 1−GR(a2) = 1− 42
100 = 58

100

DI(a3) = 1−GR(a3) = 1− 26
100 = 74

100

DI(a4) = 1−GR(a3) = 1− 82
100 = 18

100

ω1 = DI(a1)
4∑

j=1
DI(aj)

=
62
100

62
100+

58
100+

74
100+

18
100

= 0.292

ω2 = 0.274, ω3 = 0.349, ω4 = 0.085

From the Table 1, we can see that the discernibility of a3 is the largest in the
criteria and ω3 is the same. The values of the alternatives under a4 are almost
all the same, so the importance of a4 is the least. We just present the method
of weights acquisition of this problem, the aggregation of it is not talked about
here.

Table 1. An evaluation information system in a MCDM problem

U a1 a2 a3 a4

u1 good medium good good
u2 poor medium very poor medium
u3 good medium poor medium
u4 good medium medium medium
u5 medium poor very poor medium
u6 medium poor poor medium
u7 poor poor medium medium
u8 good poor good medium
u9 good poor medium medium
u10 medium good very poor medium

The weighting method given above is an objective method, it can be used
in MCDM, when it is hard to get the subjective weights. And it can also be
combined with the subjective weights in integrated methods. Sometimes, the
weights determined by objective methods are inconsistent with the DM’s subjec-
tive preferences. Contrariwise, the judgments of the decision makers occasionally
absolutely depend on their knowledge or experience, and the error in weights to
some extent is unavoidable. As we all know, none of the two approaches is per-
fect, and a integrated method might be the most appropriate for determining
the weights of criteria [21].

3 The Partial Granular Structure in Preference Relation

3.1 Multiplicative Preference Relation and Fuzzy Preference
Relation

In some group decision making problems, decision makers expressed their pref-
erence by means of preference relation defined over a finite and fixed set of
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alternatives. Let U = {u1, u2, · · · , un}(n ≥ 2) be a set of the alternatives.
In a preference relation a decision maker associates to every pair of alternatives
a value that reflects some degree of preference of the first alternative over the
second one. Many important decision models have been developed using main
two kinds of preference relations: multiplicative preference relation and fuzzy
preference relation.

Multiplicative Preference Relations[22, 23]: A multiplicative preference re-
lation A on the alternative set U is represented by a matrix A = (aij) , while
aij is interpreted as ui is aij times as good as uj. Satty suggests measuring
aij using a ratio scale, and precisely the 1-9 scale [6]: aij = 1 indicates in-
difference between ui and uj , aij = 9 indicates ui is absolutely preference
to uj , and aij ∈ {2, 3, · · · , 8} indicates intermediate preference evaluations,
while aij ∈ { 1

2 ,
1
3 , · · · , 1

8} indicates the uj is intermediate preference to ui . In
this case, the preference A is usually assumed multiplicative reciprocal, i.e.,
aij · aji = 1, ∀i, j ∈ {1, 2, · · · , n} .

Definition 4. A reciprocal multiplicative preference relation A = (aij) is
consistent if

aij · ajk = aik, ∀i, j, k = 1, 2, · · · , n. (4)

Fuzzy Preference Relations[23]: A fuzzy preference relation B on the alter-
native set U is a fuzzy set on the product set U ×U , that is characterized by a
membership function μB : U × U → [0, 1] .

When cardinality of U is small, the preference relation may be conveniently
represented by the n × n matrix B = (bij) being bij = μB(ui, uj)∀i, j =
1, 2, · · · , n. bij is interpreted as the preference degree of the alternative ui over
uj : bij = 1

2 indicates indifference between ui and uj(ui ∼ uj) , bij = 1 indi-
cates ui is absolutely preference to uj , and bij >

1
2 indicates ui is preference to

uj(ui � uj) . In this case, the preference matrix B is usually assumed addictive
reciprocal, i.e.,bij + bji = 1, ∀i, j ∈ 1, 2, · · · , n .

Definition 5. [24] A fuzzy preference relation B = (bij) is consistent if the rela-
tion satisfy the additive transitivity condition: reciprocal multiplicative preference
relation A = (aij) is consistent if

bij + bjk − bik =
1

2
or bij + bjk + bki =

3

2
(∀i, j, k ∈ {1, 2, · · · , n}). (5)

3.2 Partial Granular Structure

Partial Relation and Consistent Multiplicative Preference Relation

Definition 6. Let A = (aij)n×n be a consistent multiplicative preference
relation, ∀α ∈ [ 19 , 9] , the binary relation RAα

on U is defined as

RAα

= {(ui, uj)|aij > α or i = j}. (6)
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Theorem 1. If α ≥ 1, the binary relation RAα

induced by the consistent mul-
tiplicative relation A is a partial relation.

Proof. Reflexivity. According to the definition of RAα

, ∀μi ∈ U , (ui, ui) ∈ RAα

.
Anti-symmetry. If(ui, uj) ∈ RAα

and (uj , ui) ∈ RAα

hold at the same time,
according to the definition of RAα

, and the condition α ≥ 1, we have the com-
pound proposition (aij > 1) or (i = j) and (aji > 1) or (i = j) is true. If
aij > 1 is true, then aji = 1/aij < 1, for the(aij > 1) or (i = j) is true, so
i = j; If aij ≤ 1, for (aij > 1) or (i = j) is true, then i = j;. So we can conclude
that if (ui, uj) ∈ RAα

and (uj , ui) ∈ RAα

then ui = uj .
Transitivity. (ui, uj) ∈ RAα

and (uj , uk) ∈ RAα

. When i = j or j = k,
obviously, (ui, uk) ∈ RAα

is true. When i 	= j and j 	= k, according to the
definition of RAα

and the condition α ≥ 1, we have aij > 1, ajk > 1, then
aik = aij × ajk > 1, so (ui, uk) ∈ RAα

.
This completes the proof.

Partial Relation and Consistent Fuzzy Preference Relation

Definition 7. Let B = (bij)n×n be a consistence fuzzy preference relation, ∀α ∈
[0, 1] , the binary relation RBα

on U is defined as

RBα

= {(ui, uj)|bij > α or i = j}. (7)

Theorem 2. If α ≥ 0.5, the binary relation RBα

induced by the consistent fuzzy
preference relation B is a partial relation.

Proof. Reflexivity. According to the definition of RBα

, ∀μi ∈ U , (ui, ui) ∈ RBα

.

Anti-symmetry. If(ui, uj) ∈ RBα

and (uj , ui) ∈ RBα

hold at the same time,
according to the definition of RBα

, and the condition α ≥ 0.5, we have the
compound proposition (bij > 0.5) or (i = j) and (bji > 0.5) or (i = j) is
true. If bij > 0.5 is true, then bji = 1 − bij < 0.5, for the(bij > 0.5) or (i = j)
is true, so i = j; If bij ≤ 0.5, for (bij > 0.5) or (i = j) is true, then i = j;. So
we can conclude that if (ui, uj) ∈ RBα

and (uj , ui) ∈ RBα

then ui = uj .
Transitivity. (ui, uj) ∈ RBα

and (uj , uk) ∈ RBα

. When i = j or j = k,
obviously, (ui, uk) ∈ RBα

is true. When i 	= j andj 	= k, according to the
definition of RBα

and the condition α ≥ 0.5, we have bij > 0.5, bjk > 0.5, then
bik = bij + bjk − 0.5 > 0.5, so (ui, uk) ∈ RBα

.
This completes the proof.

Let U = {u1, u2, · · · , un} be a set of alternatives, and P be a partial relation on
U , (ui, uj) ∈ P , shortly, denoted by ui 
P uj, means ui preference to uj under
the partial relation P . The granule of knowledge induced by partial relation P
is the set of objects dominating ui, i.e. [ui]

�P = {uj|uj 
 ui}.
Definition 8. Let U = {u1, u2, · · · , un} be a set of alternatives, and P be a
partial relation on U , define GP (U) is the partial granular structure of U induced
by P, and denoted as

GP (U) = {[u1]
�P , [u2]

�P , · · · , [un]
�P } (8)
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An approach to sorting for objects in set-valued ordered information systems
are given based on the partial granulation induced by a partial relation in [25].
In this paper, we only discuss the partial granular structure induced by the two
kinds of preference relation, and the applications are the further researches. The
example given in the following is to demonstrate the partial granular structure
implied in the consistent multiplicative preference relation and fuzzy preference
relation.

Example 2. Suppose that we have a set of four alternatives {u1, u2, u3, u4, u5}
and a decision maker gives his or her consistent multiplicative preference relation
as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2 3 4 1

2 1 6 8 2
1
3

1
6 1 4

3
1
3

1
4

1
8

3
4 1 1

4

1 1
2 3 4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Then, we get
RA1

= {(u1, u1), (u1, u3), (u1, u4), (u2, u1), (u2, u2), (u2, u3), (u2, u4), (u2, u5),
(u3, u3), (u3, u4), (u4, u4), (u5, u3), (u5, u4), (u5, u5)}

RA3

= {(u1, u1), (u1, u4), (u2, u2), (u2, u3), (u2, u4), (u3, u3), (u4, u4), (u5, u4),
(u5, u5)}

RA6

= {(u1, u1), (u2, u2), (u2, u4), (u3, u3), (u4, u4), (u5, u5)}
It is easily to prove that RA1

,RA3

,RA8

are partial relations, and their corre-
sponding partial granular structure are:

GRA1 (U) = {[u1]
�

RA1 , [u2]
�

RA1 , [u3]
�

RA1 , [u4]
�

RA1 , [u5]
�

RA1 }
= {{u2, u1}, {u2}, {u1, u2, u3, u5}, {u1, u2, u3, u4, u5}, {u2, u5}},

GRA3 (U) = {[u1]
�

RA3 , [u2]
�

RA3 , [u3]
�

RA3 , [u4]
�

RA3 , [u5]
�

RA3 }
= {{u1}, {u2}, {u2, u3}, {u1, u2, u4, u5}, {u5}},

GRA6 (U) = {[u1]
�

RA6 , [u2]
�

RA6 , [u3]
�

RA6 , [u4]
�

RA6 , [u5]
�

RA6 }
= {{u1}, {u2}, {u3}, {u2, u4}, {u5}}.

From the example, we can see the smaller value of α ≥ 1, the more preference
information can draw from the corresponding granular structure. So we can get
the finest preference order is:

u2 �
(
u1

u5

)

� u3 � u4.



Information Granularity and Granular Structure in Decision Making 447

Example 3. Suppose that we have a set of four alternatives {u1, u2, u3, u4} and
a decision maker gives his or her fuzzy preference relation as follows:

B =

⎡

⎢
⎢
⎣

0.5 0.55 0.7 0.95
0.45 0.5 0.65 0.9
0.3 0.35 0.5 0.75
0.05 0.1 0.25 0.5

⎤

⎥
⎥
⎦ ,

It is easy to prove that B is a consistent fuzzy preference relation. According to
the definition 7, we get

RB0.5

= {(u1, u1), (u2, u2), (u3, u3), (u4, u4), (u1, u2), (u1, u3),
(u1, u4), (u2, u3), (u2, u4), (u3, u4)},

RB0.7

= {(u1, u1), (u2, u2), (u3, u3), (u4, u4), (u1, u4)(u2, u4), (u3, u4), },
RB0.95

= {(u1, u1), (u2, u2), (u3, u3), (u4, u4)}.

And it is easy to see that the three relations RB0.5

,RB0.7

,RB0.95

are all partial
relations, their respective partial granular structure are as follows:

GRB0.5 (U) = {[u1]
�

RB0.5 , [u2]
�

RB0.5 , [u3]
�

RB0.5 , [u4]
�

RB0.5 }
= {{u1}, {u1, u2}, {u1, u2, u3}, {u1, u2, u3, u4}},

GRB0.7 (U) = {[u1]
�

RB0.7 , [u2]
�

RB0.7 , [u3]
�

RB0.7 , [u4]
�

RB0.7 }
= {{u1}, {u2}, {u3}, {u1, u2, u3, u4}},

GRB0.95 (U) = {[u1]
�

RB0.95 , [u2]
�

RB0.95 , [u3]
�

RB0.95 , [u4]
�

RB0.95 }
= {{u1}, {u2}, {u3}, {u4}}.

From this example, we can see the smaller value of α ≥ 0.5, the more preference
information can draw from the corresponding granular structure. So we can get
the finest preference order is:

u1 � u2 � u3 � u4.

4 Conclusions

To recapitulate, weight acquiring method is very important in multiple criteria
decision making, and constructing granular structure of the set of alternatives is
also helpful to comprehend the judgment of a decision maker. In this paper, we
have proposed a weights acquisition method based on information granularity,
and it can be combined with subjective weighting method to decide the final
weights of the criteria. Moreover, we have proved that the partial structure is
implied in the two preference relations. And a partial granular structure can be
induced by the special partial relation implied in the two preference relation.
The interesting topics for further study would be to construct suitable granules
to solve decision making problems.
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