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Abstract—Multi-granulation rough set model is an important
generalization of Pawlak’s rough set model. To enhance its
capability of dealing with noisy data, in this paper, we proposed
the variable precision multi-granulation rough set model and
the variable precision weighted multi-granulation rough set
model by loosing the requirement of accuracy on each granu-
lation. Furthermore, we gave some important properties, and
analyzed the relationships between existing multi-granulation
rough set models and the proposed models.
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I. INTRODUCTION

Rough set theory, originated by Pawlak [2], [4], [5],
has become a popular mathematical framework for pat-
tern recognition, image processing, feature selection, data
mining and knowledge discovery process. Pawlak’s rough
set model is mainly concerned with the approximation of
sets described by a single binary relation on the universe.
Qian et. al. [6], [7] extends Pawlak’s rough set model to
a multi-granulation rough set model (MGRS), where the
set approximations are defined by using multi equivalence
relations. These equivalence relations can be chosen accord-
ing to a user’s requirements or targets of problem solving.
Therefore, multi-granulation rough set model is an more
effective approach for problem solving than Pawlak’s rough
set in the context of multi granulations. And it must be
noted that fuzzy rough sets proposed by Dubois [1] is
hierarchically multigranule because an alpha-cut of fuzzy
rough set gives a partition.

Later, Xu et. al. [10] proposed a more generalized and
logical one. The multi-granulation rough set model pro-
posed in [6], [7], [8] are only special ones. Yang et. al.
[11] generalized the multi-granulation rough set into fuzzy
environment. A family of fuzzy T-similarity relations are
used to define the optimistic and pessimistic fuzzy rough
sets respectively. From a multi-granulation view, Liang et.
al.[3] given an efficient rough feature selection algorithms.
Moreover, researchers have proposed several generalized
rough set models to process data with noise. Yao et al.[12],
[13] gave the model of decision-theoretic rough sets. Ziarko
[14] proposed variable precision rough set moldel.

To generalize multi-granulation rough sets model to pro-
cess data with noise, in this paper, we proposed a new
generalization of the variable precision multi-granulation

rough set model. It allows for a controlled degree of mis-
classification in its formalism which, in turn, leads to more
general notions of set approximations.

II. PRELIMINARIES

In this section, we review some basic concepts on
Pawlak’s rough set model and multi-granulation rough set
model.

An information system is a 4-tuple S = {U,A, V, f} (for
short S = {U,A)), where U is a non-empty and finite set of
objects, called a universe, and A is a non-empty and finite
set of attributes, Va is the domain of the attribute a, V =⋃

a∈A Va and f : U × A → V is a function f(x, a) ∈ Va

for each a ∈ A.

An indiscernibility relation RB = {(x, y) ∈ U × U |
a(x) = a(y),∀a ∈ B} was determined by a non-empty
subset B ⊆ A. U/RB = {[x]B | x ∈ U} (just as U/B)
indicates the partitions of U resulted from RB , where [x]B
denotes the equivalence class determined by x with respect
to B, i.e., [x]B = {y ∈ U | (x, y) ∈ RB}.

Furthermore, for any Y ⊆ U , (B(Y ), B(Y )) is defined
as the rough set of Y with respect to B, where the lower
approximation B(Y ) and the upper approximation B(Y ) of
Y are indicated by

B(Y ) = {x|[x]B ⊆ Y },
B(Y ) = {x|[x]B ∩ Y 6= ∅}.

Multi-granulation rough set model is an expanding of
Pawlak rough set model[7], [8], [10]. A target concept is
approximated through several different equivalence relation-
ship in multi-granulation rough set model. In the following,
we review some common models.

The optimistic and pessimistic multi-granulation roughs
set model are defined as following.

Definition 1: [8] Let S = (U,A, V, f) be an information
system, X ⊆ U and P = {Pi ⊆ A|Pi∩Pj = ∅(i 6= j), i, j ≤
l}. The pessimistic lower and upper approximation sets of
X with respect to P can be defined as follows:

OM(X) = {x ∈ U | ∨ ([x]Pi
⊆ X), i ≤ l},

OM(X) = {x ∈ U | ∧ ([x]Pi
∩X 6= ∅), i ≤ l}.
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X is definable if and only if OM(X) = OM(X),
otherwise X is rough if and only if OM(X) 6= OM(X).
OM(X) and OM(X) are called,respectively, optimistic
lower and upper approximation sets.

Definition 2: [9] Let S = (U,A, V, f) be an information
system, X ⊆ U and P = {Pi ⊆ A|Pi∩Pj = ∅(i 6= j), i, j ≤
l}. The pessimistic lower and upper approximation sets of
X with respect to P can be defined as follows:

PM(X) = {x ∈ U | ∧ ([x]Pi
⊆ X), i ≤ l},

PM(X) = {x ∈ U | ∨ ([x]Pi
∩X 6= ∅), i ≤ l}.

X is definable if and only if PM(X) = PM(X),
otherwise X is rough if and only if PM(X) 6= PM(X).
PM(X) and PM(X) are called,respectively, pessimistic
lower and upper approximation sets.

Definition 3: [10] Let S = (U,A) be an information sys-
tem, X ⊆ U and P = Pi ⊆ A|Pi ∩ Pj = (i 6= j), i, j ≤ l.
Characteristic function SX

Pi
(x), describing the inclusion re-

lation between the class [x]Pi
and the concept X , is defined

as follows:

SX
Pi

(x) =
{

1, [x]Pi
⊆ X , (1)

0, else. (1′)

Based on the definition, Xu et. al. proposed a new multi-
granulation rough set model with a parameter β ∈ (0.5, 1]. In
this model, the parameter determines how many granulations
support a target concept included and the ones possibly
describing the concept below the corresponding level are
ignored. This model is presented in the definition below.

Definition 4: [10] Let S = (U,A) be an information
system, X ⊆ U P = {Pi ∈ A|Pi ∩ Pj = (i 6= j), i, j ≤ l}.
SX

Pi
(x) is supporting characteristic function of x. For any

β ∈ (0.5, 1], the lower and upper approximation sets of X
with respect to P are defined as follows.

P (X)Xu
β = {x ∈ U |

Pl
i=1 SX

Pi
(x)

l ≥ β},
P (X)Xu

β = {x ∈ U |
Pl

i=1(1−SX
Pi

(x))

l > 1− β}.

III. VARIABLE PRECISION MULTI-GRANULATION ROUGH
SET

In this section, the variable precision multi-granulation
rough set model will be given by using the idea of partial
including into rough approximation operators.

Definition 5: Let S = (U,A) be information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l},
then the lower and upper approximations of X with respect
to P are defined as follows:

V P (X)α
β = {x ∈ U |∑l

i=1 wα
i × µX

Pi
(x) ≥ β},

V P (X)α
β =∼ P (∼ X)α

β ,

where ∼ is means the complementary operation of a set,

ωα
i =





1
l
, α ≤ µX

Pi
(x) ≤ 1, (2)

0, µX
Pi

(x) < α. (2′)

In this definition, the parameter α determines the precision
of every granulation which are used to approximate the
target concept.

Proposition 1: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l}. If
α = 1, then

V P (X)1β = P (X)Xu
β ,

V P (X)1β = P (X)Xu
β .

Proof: By the existing condition, we have that

V P (X)1β = {x ∈ U |∑l
i=1 w1

i × µX
Pi

(x) ≥ β}
= {x ∈ U |∑l

i=1,µX
Pi

(x)=1
1
l ≥ β}

= P (X)Xu
β ,

V P (X)1β =∼ P (∼ X)1β
=∼ {x ∈ U |∑l

i=1 w1
i × µ∼X

Pi
(x) ≥ β}

=∼ {x ∈ U |∑l
i=1,µ∼X

Pi
(x)=1

1
l ≥ β}

=∼ {x ∈ U |∑l
i=1,µX

Pi
(x)=0

1
l ≥ β}

= {x ∈ U |∑l
i=1,µX

Pi
(x)6=0

1
l ≥ β}

= P (X)Xu
β .

Proposition 1 states that variable precision multi-
granulation rough approximation is degraded as Xu’s multi-
granulation rough approximation, when the parameter α =
1. That is to say, the proposed model is a more general
multi-granulation rough set model.

Example 1: Let S = (U,C), U =
{x1, x2, x3, x4, x5, x6, x7, x8}, X = {x1, x2, x6, x8},
U/P1 = {{x1, x7}, {x2, x3, x4, x6, x8}, {x5}},
U/P2 = {{x1}, {x2, x3, x6, x8}, {x4, x5}, {x7}}.

By computing, we have that
µX

P1
(x1) = 0.5, µX

P2
(x1) = 1,

µX
P1

(x2) = 0.6, µX
P2

(x2) = 0.75,
µX

P1
(x3) = 0.6, µX

P2
(x3) = 0,

µX
P1

(x4) = 0.6, µX
P2

(x4) = 0,
µX

P1
(x5) = 0, µX

P2
(x5) = 0,

µX
P1

(x6) = 0.6, µX
P2

(x6) = 0.75,
µX

P1
(x7) = 0.5, µX

P2
(x7) = 0,

µX
P1

(x8) = 0.6, µX
P2

(x8) = 0.75.

Thus,
V P (X)0.3

0.3 = {x1, x2, x3, x4, x6, x8},
V P (X)0.7

0.3 = {x1, x2, x3, x6, x8},
V P (X)10.3 = {x1}.
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Furthermore, by computing, we have
P (X)Xu

0.3 = {x1}.
It is obvious that V P (X)10.3 = P (X)Xu

0.3 .
In the similar way, we easily obtain that
V P (X)10.3 = P (X)Xu

0.3 .

The following propositions will give some important
properties of variable precision multi-granulation rough set
model.

Proposition 2: For every 0.5 ≤ α ≤ 1, 0 < β ≤ 1, the
following relationship are true:

(1)V P (X)α
β ⊇ V P (X)1β ,

(2)V P (X)α
β ⊆ V P (X)1β ,

(3)BNDV P (X)α
β ⊆ BNRV P (X)1β ,

(4)NEGV P (X)α
β ⊆ NEGV P (X)1β .

Proposition 3: For every 0.5 ≤ α ≤ 1, 0 < β ≤ 1, the
following relationship are true:

(1a)X ⊇α V P (X)β
α;

(1b)V P (X)α
β ⊆ V P (X)α

β ;
(2a)V P (∅)α

β = V P (∅)α
β = ∅;

(2b)V P (U)α
β = V P (U)α

β = U ;
(3a)X ⊆ Y ⇔ V P (X)α

β ⊆ V P (Y )α
β ;

(3b)X ⊆ Y ⇔ V P (X)α
β ⊆ V P (Y )α

β ;
(4a)V P (X ∩ Y )α

β ⊆ V P (X)α
β ∩ V P (Y )α

β ;
(4b)V P (X ∪ Y )α

β ⊆ V P (X)α
β ∪ V P (Y )α

β ;
(5a)V P (X ∪ Y )α

β ⊇ V P (X)α
β ∪ V P (Y )α

β ;
(5b)V P (X ∩ Y )α

β ⊇ V P (X)α
β ∩ V P (Y )α

β .

Proof: (1a) To demonstrate that X ⊇α V Pα
β(X) it

suffices to show that for any two elementary sets E1, E2 if
µE1

Pi
(x) ≥ α and µE2

Pi
(x) ≥ α then µE1∪E2

Pi
(x) ≥ α.

We suppose that µE1
Pi

(x) = |[x]Pi
∩E1|

|[x]Pi
| ≥ α and µE2

Pi
(x) =

|[x]Pi
∩E2|

|[x]Pi
| ≥ α. Thus

µE1∪E2
Pi

(x) = |[x]Pi
∩(E1∪E2)|
|[x]Pi

| ≥ µE1
Pi

(x) ≥ α

(2a) From the definition of lower and upper approxima-
tions

V P (∅)α
β = {x ∈ U |∑l

i=1 wα
i (∅) × µ∅Pi

(x) = 0 ≥ β} =
∅,

V P (U)α
β = {x ∈ U |∑l

i=1 wα
i (U)× µU

Pi
(x) = 1 ≥ β} =

U.

In the similar way, we can prove V P (∅)α
β = ∅ and

V P (U)α
β = U .

(3a) For any x ∈ V P (X)α
β , we have

∑l
i=1 wi(X)α ×

µX
Pi

(x) ≥ β. Since X ⊆ Y , one can have µX
Pi

(x) ≤ µY
Pi

(x).
Then,

∑l
i=1 wα

i (Y )×µY
Pi

(x) ≥ ∑l
i=1 wα

i (X)×µX
Pi

(x) ≥ β.

So, x ∈ V P (Y )α
β . Therefore, this item is proved and

item(3b) can be proved similarly.
(4a) From the existing conditions, we have
x ∈ P (X ∩ Y )α

β

⇔ ∑l
i=1 wα

i (X ∩ Y ) × µX∩Y
Pi

(x) =
∑l

i=1 wα
i (X ∩ Y ) ×

|[x]pi
∩(X∩Y )|
|[x]pi

| ≥ β

⇔ ∑l
i=1 wα

i (X) × µX
Pi

(x) ≥ β and
∑l

i=1 wα
i (X) ×

µY
Pi

(x) ≥ β
⇔ x ∈ V P (X) and x ∈ V P (Y )
⇔ x ∈ V P (X) ∩ V P (Y )

(4b) From the duality property, the item can be proved by
(4a).

Furthermore, by properties (3a) and (3b), (5a) and (5b)
can be easily proved.

IV. VARIABLE PRECISION WEIGHTED
MULTI-GRANULATION ROUGH SET

In this section, a weighed multi-granulation rough approx-
imations is first proposed, and its variable precision edition
is introduced. Several important properties of the variable
precision edition are given finally.

Definition 6: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l},
then variable precision weighted lower and upper approxi-
mations of X with respect to P are defined as follows:

WP (X)β = {x ∈ U |∑l
i=1 ηi × µX

Pi
(x) ≥ β},

WP (X)β =∼ WP (∼ X)β ,

where, ∼ is means the complementary operation of a set,

ηi =





|[x]pi |∑l
i=1 |[x]pi |

, µX
Pi

(x) = 1, (3a)

0, µX
Pi

(x) < 1. (3b)

In this definition, the parameter α determines the accuracy
of every granulation which are used to approximate the
target concept.

Proposition 4: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l}. If
α = 1, β = ξ, then

WP (X)ξ = OM(X),
WP (X)ξ =∼ OM(∼ X),

where WP (X)ξ = {x ∈ U |∑l
i=1 ηi×µX

Pi
(x) ≥ 0}−{x ∈

U |∑l
i=1 ηi × µX

Pi
(x) = 0}.

Proof: By the existing condition, we have that

WP (X)ξ = {x ∈ U |∑l
i=1 ηi × µX

Pi
(x) ≥ ξ}

= {x ∈ U |∑l
i=1,µX

Pi
(x)=1

|[x]pi
|Pl

i=1 |[x]pi
| ≥ ξ > 0}

= {x ∈ U | ∨ ([x]Pi
⊆ X), i ≤ l}

= OM(X),

WP (X)ξ =∼ P (∼ X)β

=∼ {x ∈ U |∑l
i=1 ηi × µ∼X

Pi
(x) ≥ ξ > 0}

=∼ {x ∈ U |∑l
i=1,µ∼X

Pi
(x)=1

|[x]pi
|Pl

i=1 |[x]pi
| > 0}
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=∼ {x ∈ U |∑l
i=1,µX

Pi
(x)=0

|[x]pi
|Pl

i=1 |[x]pi
| > 0}

= {x ∈ U |∑l
i=1,µX

Pi
(x)=0

|[x]pi
|Pl

i=1 |[x]pi
| = 0}

= {x ∈ U | ∧ ([x]Pi ∩X 6= ∅), i ≤ l}
= OM(X).

Proposition 5: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l}. If
α = 1, β = ξ, then

WP (X)1 = PM(X),
WP (X)1 =∼ PM(∼ X).

Proof: By the existing condition, we have that

WP (X)1 = {x ∈ U |∑l
i=1 ηi × µX

Pi
(x) ≥ 1}

= {x ∈ U |∑l
i=1,µX

Pi
(x)=1

|[x]pi
|Pl

i=1 |[x]pi
| ≥ 1}

= {x ∈ U | ∧ ([x]Pi ⊆ X), i ≤ l}
= PM(X),

WP (X)β =∼ WP (∼ X)1
=∼ {x ∈ U |∑l

i=1 η1
i × µ∼X

Pi
(x) ≥ 1}

=∼ {x ∈ U |∑l
i=1,µ∼X

Pi
(x)=1

|[x]pi
|Pl

i=1 |[x]pi
| ≥ 1}

=∼ {x ∈ U |∑l
i=1,µX

Pi
(x)=0

|[x]pi
|Pl

i=1 |[x]pi
| ≥ 1}

= {x ∈ U |0 <
∑l

i=1,µX
Pi

(x)6=0
|[x]pi

|Pl
i=1 |[x]pi

| < 1}
= {x ∈ U | ∨ ([x]Pi

∩X 6= ∅), i ≤ l}
= PM(X).

Propositions 4 and 5 state that optimistic and pessimistic
multi-granulation rough set models are special case of
weighted multi-granulation rough set model. In the follow-
ing, we further introduce the variable precision edition of
the weighted multi-granulation rough set.

Example 2: (Continued from Example 1) By means of
Example 1, we have that

WP (X)0.3
0.3 = {x1, x2, x3, x4, x6, x7, x8},

WP (X)0.7
0.3 = {x1, x2, x3, x6, x8},

WP (X)10.3 = {x1}.

Furthermore, by computing, we have

WP (X) = {x1}.

It is obvious that OM(X) = WP (X)10.3.
In a similar way, we have that OM(X) = WP (X)10.3.

Definition 7: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l},
then variable precision weighted lower and upper approxi-
mations of X with respect to P are defined as follows:

V WP (X)α
β = {x ∈ U |∑l

i=1 ηα
i × µX

Pi
(x) ≥ β},

V WP (X)α
β =∼ V WP (∼ X)α

β ,

where

ηα
i =





|[x]pi |∑l
i=1 |[x]pi

|
, α ≤ µX

Pi
(x) ≤ 1, (4)

0, µX
Pi

(x) < α. (4′)

Proposition 6: Let S = (U,A) be an information system,
X ⊆ U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i 6= j), i, j ≤ l}. If
α = 1, then

V WP (X)1β = WP (X)β ,

V WP (X)1β = WP (X)β .

In the following, some properties of variable precision
weighted multi-granulation rough set model will be intro-
duced.

Proposition 7: For every 0.5 ≤ α ≤ 1, 0 < β ≤ 1, the
following relationship are true:

(1)V WP (X)α
β ⊇ V WP (X)1β ,

(2)V WP (X)α
β ⊆ V WP (X)1β ,

(3)BNDV WP (X)α
β ⊆ BNRV WP (X)1β ,

(4)NEGV WP (X)α
β ⊆ NEGV WP (X)1β .

Proposition 8: For every 0.5 ≤ α ≤ 1, 0 < β ≤ 1, the
following relationship are true:

(1a)X ⊇α V WP (X)α
β ;

(1b)V WP (X)α
β ⊆ V WP (X)α

β ;
(2a)V WP (∅)α

β = V WP (∅)α
β = ∅;

(2b)V WP (U)α
β = V WP (U)α

β = U ;
(3a)X ⊆ Y ⇔ V WP (X)α

β ⊆ V WP (Y )α
β ;

(3b)X ⊆ Y ⇔ V WP (X)α
β ⊆ V WP (Y )α

β ;
(4a)V WP (X ∩ Y )α

β ⊆ V WP (X)α
β ∩ V WP (Y )α

β ;
(4b)V WP (X ∪ Y )α

β ⊆ V WP (X)α
β ∪ V WP (Y )α

β ;
(5a)V WP (X ∪ Y )α

β ⊇ V WP (X)α
β ∪ V WP (Y )α

β ;
(5b)V WP (X ∩ Y )α

β ⊇ V WP (X)α
β ∩ V WP (Y )α

β .

In similar with Proposition 3, we easily prove this propo-
sition.

V. CONCLUSION

In this paper, we proposed the variable precision multi-
granulation rough set model based on the generalized multi-
granulation rough set in [10]. Then we gave a weighted
multi-granulation rough set model by weighted the accuracy
of objects on each granulation, and introduced its vari-
able precision edition through loosing the requirement of
accuracy on each granulation. Finally, we analyzed some
important properties, and studied the relationships between
existing multi-granulation rough set models and the pro-
posed models. These proposed models generalize the multi-
granulation rough set approach, and are helpful to enhance
its capability of dealing with noisy data.
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