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Abstract

Knowledge in knowledge bases have two categories:
complete and incomplete. In this paper, through uniformly
expressing these two kinds of knowledge, we first address
four operators on a knowledge base, which are adequate
for generating new knowledge through using known knowl-
edge. Then, we establish the relationship between knowl-
edge and knowledge granulation. These results will be very
helpful for knowledge discovery from knowledge bases and
play a significant role for establishing a framework of
granular computing in knowledge bases.

Keywords: Granular computing; rough set theory; knowl-
edge base; granulation operator.

I.Introduction

Rough set theory, proposed by Pawlak [14, 16], has
become a well-established mechanism for uncertainty man-
agement in a wide variety of applications related to ar-
tificial intelligence [1, 3, 4, 13, 25, 26, 28, 33]. In this
framework, an attribute set is viewed as a family of knowl-
edge, which partitions the universe into some knowledge
granules or elemental concepts. In other words, instead
of using external numbers or other additional parameters,
the rough set data analysis (RSDA) utilizes solely the
granularity structure of the given data, expressed as classes
of suitable equivalence relations. Partition, granulation and
approximation are the methods widely used in human’s
reasoning [17, 31, 32, 34].

Knowledge bases and indiscernibility relations are two
basic concepts in the rough set theory and assessing
the uncertainty of knowledge in a knowledge base is an
important research issue [30]. According to whether or not
there missing data (null values), knowledge bases can be
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classified into two categories: complete and incomplete [5-
7]. In the rough set theory, information entropy and knowl-
edge granulation are two main approaches for measuring
the uncertainty of a knowledge in knowledge bases [12,
24]. As follows, for our further development, we briefly
review several existing knowledge granulations. Wierman
[27] presented a well justified measure of uncertainty, the
measure of granularity, along with an axiomatic derivation.
Its strong connections to the Shannon entropy and the
Hartley measure of uncertainty [2] also lend strong support
to its correctness and applicability. Liang et al. in the
literature [8] and [9] gave the definitions of knowledge
granulation in a complete knowledge base and an incom-
plete knowledge base, respectively, and established the
relationships among information entropy, rough entropy
and knowledge granulation in knowledge bases. Qian and
Liang [20, 24] introduced a new knowledge granulation,
called combination granulation, for measuring the uncer-
tainty of a knowledge in complete/incomplete knowledge
bases.

For a given knowledge base, one of tasks in data mining
and knowledge discovery is to generate new knowledge
through using known knowledge. However, the number
of knowledge is finite in a given knowledge base, which
limits the ability of this knowledge base for approximating
an unknown concept. This leads to a task for acquiring
more knowledge from a given knowledge base. To date,
the mechanism that how to generate new knowledge based
on known knowledge in knowledge bases have not been
widely researched. Therefore, such a mechanism is de-
sirable and will be very helpful for rule extraction and
knowledge discovery from knowledge bases. Based on
these analyses, main objective of this study is to establish
a new mathematical framework of granular computing
in the context of knowledge bases. We focus mainly on
granulation operators on knowledge bases in the present
research.



The rest of the paper is organized as follows. Some
basic concepts in rough set theory are briefly reviewed in
Section 2. In Section 3, we establish four operators ([, |, ?
and —) on a knowledge base and investigate their operation
properties. Noting that (K,(),|J) is an assignment lattice
and (K,(,U,?) is a complemented lattice. Finally, Section
4 concludes this paper with some remarks and discussions.

II. Knowledge in a knowledge base

In this section, we will review several basic concepts
in rough set theory and knowledge bases. Throughout this
paper, we suppose that the universe U is a finite nonempty
set.

Let U be a finite and non-empty set called the universe
and R C U x U an equivalence relation on U, then
K = (U,R) is called an approximation space [14]. The
equivalence relation R partitions the set U into disjoint
subsets. This partition of the universe is called a quotient
set induced by R, denoted by U/R. It represents a very
special type of similarity between elements of the universe.
If two elements z,y € U(z # y) belong to the same
equivalence class, we say that = and y are indistinguishable
under the equivalence relation R, i.e., they are equal in R.
We denote the equivalence class including z by Eg(z).
K(R) is called a knowledge induced by U/R on U.
Each equivalence class Eg(z)(z € U) may be viewed
as a knowledge granule consisting of indistinguishable
elements [15, 19, 21, 22, 30]. The granulation structure
induced by an equivalence relation is a partition of the
universe.

We say K = (U,R) is a knowledge base, where
U is a finite and non-empty set and R is a family of
equivalence relations. Through using a given knowledge,
one can construct a rough set of any subset on the universe
in the following definition.

Let K = (U,R) be a knowledge base, if R(R € R) is
an equivalence relation, then we can get a cover of U by
U/R = {Eg(z) | z € U}, i.e., for Yz € U, one has that
Er(z) # @ and U,y Er(z) = U. Obviously, Vz,y €
U(z # y), if z, y are partitioned into the same equivalence
class, then Eg(z) = Eg(y), otherwise Eg(z) N Egr(y) =
@. One can define a partial relation < as follows: P < Q
(P,Q € R) if and only if, one has Ep(z;) C Eg(z;) for
any i € {1,2,---,|U|} [9-11, 18, 20, 23]. Here, we denote
that P is finer than Q by P < @. Obviously, (R, <) is a
poset [29].

Similarly, let R C U x U denote a tolerance relation
on U, the tolerance relation R classifies the universe U
into some subsets, i.e., a cover of U [5, 6]. This cover of
the universe is called a knowledge induced by R, denoted
by U/R or K(R). If y belongs to the tolerance class
determined by = with respect to R, we say two elements

x, y are indistinguishable under the tolerance relation R,
i.e., they are similar in R [5-7]. We denote the tolerance
class of z by Sgr(z) [5, 10, 11]. Each tolerance class
Sr(z)(z € R) is viewed as a knowledge granule [9,
18, 20]. The granulation structure induced by a tolerance
relation is a cover of the universe. Conveniently, we say
K = (U, R) is also a knowledge base, where U is a finite
and non-empty set and R is a family of tolerance relations.
The following definition gives a rough set of a subset of
the universe based on a tolerance relation.

Let K = (U,R) be a knowledge base, if R(R € R)
is a tolerance relation, then we can denote a cover of U
by U/R = {Sgr(z) | z € U}, ie, Vx € U, one has
Sr(z) # @ and U,y Sr(z) = U. In [9, 10], Liang et al.
defined a partial relation < as follows: P < Q(P,Q € R)
if and only if, for every ¢ € {1,2,---,|U|}, one has that
Sp(x;) € Sg(w;). Here, we also denote that P is finer
than @) by P =< Q. It is easy to see that (R, <) is also a
poset.

III. Granulation operators with properties

In this section, by uniformly representing a complete
knowledge and an incomplete knowledge, we will propose
four granulation operators on a knowledge base and discuss
their fundamental algebra properties.

In [8, 9], liang et al. established the relationship between
a complete knowledge and an incomplete knowledge in the
same knowledge base. Let K = (U, R) be a knowledge,
R a equivalence relation, U/R = {Xi1,Xs, -, Xn},
U/R = {SR(dll), SR(iIJQ), ceey SR(mlUI)} and X,’ =
{(Eﬂ,d)ig, cey, xisi}, where |Xl| = S8 and Zzl 8; = |U|,
then

Xi = SR(CL‘ﬂ) = SR(fEiz) == SR(misi)‘ (1)

Through this mechanism, one can denote U/R = { Er(z) |
z € U} by using U/R = {Sg(z) | = € U}. The
mechanism gives uniform representations of knowledge
in a knowledge base. It is illustrated by the following
example.

Example 1: LetU = {z1,x2, -+, %}, R a equivalence
relation and U/R = {{z1, 2}, {x3, 24,75}, {z6}}. Then,
U/R = {Sg(z) | ¢ € U} can be represented equivalently
as

U/R = {Sr(21), Sr(x2), Sr(z3), Sr(z4), Sr(5), Sr(zs)}
= {{z1, 22}, {71, 22}, {23, 24, 25}, {23, 24, 25},

{23, 24, x5}, {6} }. U

For convenience, we denote the knowledge induced by

R on U as K(R) in the rest of this paper, where R is an
equivalence relation or a tolerance relation.

There are two types of operators to be considered

in granular computing based on rough set theory. One



is operations among knowledge granules, the other is
operations among knowledge in a knowledge base. As
operations among knowledge granules is based on classical
sets, we still operate on them by N, U, — and ~, ie.,
a new knowledge granule can be generated by N, U, —
and ~ on known knowledge granules. However, operations
among knowledge are performed through composing and
decomposing unknown knowledge in knowledge bases in
essence. Therefore, the operators on a knowledge base
to generate new knowledge are very desirable. In the
following, we introduce four granulation operators among
knowledge in a knowledge base.

Definition 1: Let K = (U, R) be a knowledge base and
K(P), K(Q) € K two knowledge. Four operators (), |,
— and ! on K are defined as

K(P)NK(Q)

= {Spnq() | Spnq(z) = Sp(z) N Sq(z), z € U},
K(P)UK(Q)

= {Spuq() | Spuq(z) = Sp(z) USq(z), T € U},
K(P) - K(Q)

= {Sp—q(2) | Sp—q(z) = zU(Sp(z) - Sq(x)),x € U},
and

K(P) ={Sp(z) | 1Sp(z) = aU ~ Sp(z),z € U},
where ~ Sp(z) = U — Sp(x).

Here, we regard (), |J — and ? as four atomic formulas
and finite connection on them are all formulas. Through
using these operators, one can obtain new knowledge via
some known knowledge on U. Let K(U) denote the set
of all knowledge on U, then these four operators (), U, —
and ! on K(U) are close. As follows, we investigate several
fundamental algebra properties of these four operators.

Theorem 1: Let (), |J be two operators on K, then
(1) K(P)K(P) = K(P),

K(P)UK(P) = K(P);
(@ K(P)NK(Q) =K(@Q NK(P),

K(P)UK(Q) = K(QUK(P);
() K(P)N(K(P)UK(Q)) = K(P),
@ K(P)U(K(P)K(Q)) = K(P); and
(K(P)YNK(Q)NK(R) = K(P)N(K(Q)NK(R)),
(K(P)UK(Q)UK(R) = K(P)U(K(Q)UK(R)).
Proof. They arc straightforward from definition 3. O

Theorem 2: Let (), |J and ! be three operators on K.
Then,

(1) K (P)) = K(P),

(2) K(P)MMK(P) = {z; | z; €U},

() AK(P)NK(Q)) =K (P) JIK(Q), and

4 UK (P)UK(Q)) =K (P)MMK(Q).

Proof. Let K(P), K(Q) € K. For any z; € U, Sp(z;)
is the tolerance class induced by z; in K(P) and Sg(z;)
is the tolerance class induced by z; in K(Q).

(1) From Decfinition 13, onc can ecasily sce that
Z(SP(IE@)) =z;U ~ Sp(x;) and Z(Z(SP(CILL))) =z;U(z; U
Sp(z;)) = Sp(z;). Therefore, \K (P)) = K(P).

(2) From Definition 1, it follows that Sp(z;) N
(Sp(x;)) = z;, Yz; € U. Then, K(P)() ~ K(P) =
{z;|z; €U}.

(3) According to Definition 1, for Vz; € U, it follows
that
WSp(z;) N Sq(xi)) = zU ~ (Sp(z:) N Sg(xi))

=x; U (~ Sp(z;)U ~ So(z;))
= (23U ~ Sp(zi))U(ziU ~ Sq(z:))
=15p(x;) USo(xs).
Therefore, one can get that
(K(P)NK(Q)) = K (P)UIK(Q).

(4) According to Definition 1, for Vz; € U, one has
that
WSp(xi) U Sq(zi)) = ziU ~ (Sp(zi) U Sq(z:))

= 2; U (~ Sp(z:)N ~ Sq(z:))
= (z;U ~ Sp(zi))N(2:U ~ Sq(=:))
=1Sp(z;) NS (;).
Hence, one can obtain that

(K(P)UK(Q)) =K (P)ME(Q). 0

Theorem 2 shows that (1) is reflexive, (2) is comple-
mentary, and (3) and (4) are two dual principles.

Theorem 3: Let (), |J, — and ! be operators on K.
Then,

(1) K(P) - K(Q) = K(P)(IK(Q),

(@) K(P) - K(Q) = K(P) - (K(P)NK(Q)),

() K(P)NK(Q) - K(R)) = (K(P)NK(Q)) -
(K(P)() K(R)), and

@) (K(P) - K(Q)UK(Q) = K(P).

Proof. They are straightforward from Definition 1. O

The above three theorems are illustrated by the follow-
ing example.

Example 2: Let U = {z1,22,z3,24}, K(P) =
{{z1, z2}, {21, 22}, {23, 74}, {23, 24}} and K(Q) =
{{=z1, 24}, {z2, 23}, {x2, 23,74}, {z4}}, One can acquire
some new knowledge through using K (P) and K(Q).

By computing, some new knowledge constructed are
listed as follows.

WK (P) = {{z1, 23,24}, {x2, x3, 24}, {21, T2, 23}, {21, T2,
za}},
K(Q) = {{ﬂil}, T2, 23}, {1, T2, T4}, {71, 23}, {21, T2, 23,
K(P)(K(Q) = {{z:}. {ws}, {wa, 24}, {20} ),
K(P)UK(Q) = E{ml’@},}%}, {$1,$2,$3},{$2,$3,CE4},
K(P)IK(Q) = {ES?}Z;}, 2,24}, {o1,2}, fo1,22,
zs}},
2'K'(P)LJZI{(Q) = {{4131,172,373,1?4},{$1,$2,.’L'3, l‘4},{ml,



T, x3}, {1, T2, T3,T4}},
K(P)-K(Q) = {{z1, 22}, {1, 22}, {z3}, {3, 24} } and
WK (P) —1K(Q) = {{x1, 4}, {z2, x3}, {x2, 3}, {904}}'-:]

Suppose K = (U, R) be a knowledge base, P,Q € R,
and K(P), K(Q) € K be two knowledge induced by P,
Q, respectively. To investigate properties of the operations
among knowledge on a knowledge base, we will write
K(P)=XK(Q) iff P Q.

Theorem 4: Let [, |J and ! be three operators on K.
The following properties hold:

(1) If K(P) =X K(Q), then 1K (Q) XK (P);

52) K(P)NK(Q) 2 K(P), K(P)NK(Q) = K(Q);
an

) K(P)XK(P)UK@Q), K(Q) 2 K(P)UK(Q).

Proof. The terms (2) and (3) can be easily proved from
Definition 1, respectively.

From Definition 1, one can obtain that

K(P) X K(Q)

= for Vz; € U, Sp(:v,-) - SQ(J?,)

= for Vz; € U, ~ Sg(z;) C~ Sp(z;)

= for Vz; € U, ;U ~ SQ(.’L’i) Cx,Un~ Sp(:l:z)

= 1K(Q) 2K (P).
Hence, the term (1) in this theorem holds. |

Definition 2: [35] Let (L, <) be a poset. If there exist
two operators A,V on L : L2 — L such that

(1) anb=bAa,aVb=>bVa,

2) (anb)Ac=aAn(bAc), (aVb)Vec=aV (bVec),
and

(3) aAnb=b<=b<a,aVb=b<=a <},
then we call L is a lattice.

Furthermore, if

4) an(dVe)=(aAb)V(aAc)and aV (bAc) =
(aVb)A(aVec),
then we call L is an assignment lattice.

We call L a complemented lattice, if for any a € L,
there exists @ such that (a')l —ganda<be=b <d.
If there exist 0,1 € L such that 0 < a <1 forany a € L,
then we call 0 and 1 its minimal element and maximal
element, respectively.

Theorem 5: (K,|J,() is an assignment lattice.

Proof. At first, we prove (K, <) is a lattice.

From (2) and (4) in Theorem 1, the terms (1) and (2)
in Definition 2 are obvious.

Let K(P),K(Q),K(R) € K be three knowledge,
where K(P) = {Sp(z) | z €U}, K(Q) = {So(z) |
2z €U} and K(R) = {Sgr(x) | z € U}. one can obtain
that

K(P)K(Q) = K(P)

= for V; € U, Spno(z;:) = Sp(x;), 1 < |U|

<= Sp(z;) N Sq(zi) = Sp(zi)

55 Sp(wi) - SQ(:ci), for Va; e U

— K(P) 2 K(Q).
According to the dual principle in a lattice, one can easily
get that K(P)|J K(Q) = K(P) < K(Q) < K(P).
Thus, the term (3) in Definition 2 holds.

In addition, for K(P),K(Q),K(R) € K, we know
that

Sp(zi) N (Sq(w:) U Sr(x:))
= (Sp(z;) N (Sq(xi)) U (Sp(z;) N Sr(x;:)), Ya; € U.
Hence,

K(P)N(K(Q)UK(R))
= (K(P)NK(@) UK (P)NK(R)).

From the dual principle in a lattice, one can get that

K(P)U(K(Q)NK(R))
= (K(P)UK(@)NK(P)UK(R)).

Therefore, (K,|J,() is an assignment lattice. O

Theorem 6: Let K(U) be the set of all knowledge on
U. Then, (K(U),U,N,?) is a complemented lattice.

Proof. From the above Theorem 35, it is obvious that
(K(U),U,N,1) is an assignment lattice. Furthermore,
from (1) in Theorem 2, one can get that (K (P)) =
K(P). In addition, from (3) in Definition 1, one has that

K(P) < K(Q)

<= for Vz; € U, Sp(z;) C Sg(x;)

<= for Va; € U, ~ Sp(z;) D~ So(x;)

<= for Vr; € U, z;U ~ Sp(x;) 2 x;U ~ Sg(x;)

<~ for Vz; € U, ZSp(ilii) D) ZSQ(:L'Z')

— K(Q) < K(P).

Hence, (K(U),J,(N,?) is a complemented lattice. O

In a complemented lattice (K(U),J,[,?), the knowl-
edge K(w) = {x; | @ € U} and the knowledge
K@) = {Sp(z;) | Sp(z;) = U,z; € U} are two
special knowledge, where K(w) is the discrete classifi-
cation and K (§) is the indiscrete classification. For any
K(P) € K(U), one has that K(w) =< K(P) = K(4).
Then, we can call K(w) and K(4) the minimal element
and the maximal element on the lattice (K(U),UJ,N,?),
respectively.

In the following, we establish the relationship between
knowledge and knowledge granulation. The following def-
inition of knowledge granulation was proposed for mea-
suring the uncertainty of knowledge in the context of
incomplete knowledge bases.

Definition 3: [9] Let K = (U, R) be a knowledge base,
P € R and K(P) = {Sp(:l,'l), SP(.’L‘Q),- sy SP(mlUl)}-
Knowledge granulation of the knowledge K (P) is defined
as

1 L[Sk ()]
G(P) = i ; ——TUI : )

where L%’—((le;)' is the probability of tolerance class Sp(x;)
within the universe U.



If K(P) = K(w), G(P) achieves its minimum value
G(P) = s if K(P) = K(5), G(P) achieves its maxi-
mum value G(P) = 1. It is obvious that ﬁ <GP)<1.

Theorem 7: Let K = (U,R) be a knowledge base, P €
R, K(P) = {Sp(:l:l), Sp(l‘z), .- ',Sp(.’l)[m)} and (P the
relation induced by (K (P). Then, G(P)+G(1P) = 1+
Proof. From Definition 3, it follows that

G(P) + G(iP)
U] 1
_ 1 ISp ()] 1 RSP (i)
oL T T
] |
_ 1 [Sp(z:)| | 1 |ziU~Sp(zi)|
R0 it P Py
|
— 1 [Ul+1
=L T
=1+ |—l1I[
That is, G(P) + GQP) =1 + . a

Theorem 8: Let K(U) be the set of all knowledge on U
and K (P), K(Q) € K(U) two knowledge. Then, G(P) —
G(Q) = GQ(Q) - GQp).

Proof. Obviously, we have that
GQP) - G(Q)
_ 1 Sursiseen 1 W anivisise)
B R U B 71 = S [/ B

|l
- |Sq(z:)|—|Sp(z:)]
_1%' ; %&

- —(G(P) - G(Q)),
ie., G(P) - G(Q) = G(Q) — G(P). O

Remark. One of the strengths of rough set theory is the
fact that an unknown target concept can be characterized
approximately by existing knowledge in a knowledge base.
From the above analyses, it is shown that these four
operators (| J, (), ¢ and —) can be applied to generate new
knowledge on a knowledge base. That is to say, one can use
these new knowledge to approximate an unknown target.
Therefore, this mechanism may be used to rule extraction
and knowledge discovery from knowledge bases.

IV. Conclusions

One of the strengths of rough set theory is the fact
that an unknown target concept can be characterized ap-
proximately by existing knowledge in a knowledge base.
However, the number of knowledge is very finite in a given
knowledge base, which limits the ability of this knowledge
base for approximating an unknown concept or decision.
In other words, it is very desirable that one acquire
more knowledge from a given knowledge base. In this
paper, by uniformly representing a complete knowledge
and an incomplete knowledge, we have proposed four
granulation operators ({J, (), 2 and —) on a knowledge

base, which can be applied to generate a new knowledge or
a granulation space. For these four operators, some of their
important properties have also been obtained. In particular,
(K,,U) is an assignment lattice and (K,(),|J,?) is a
complemented lattice. Moreover, we have established the
relationship between knowledge and knowledge granula-
tion in a given knowledge base. These results have been
shown to be very helpful for knowledge discovery from
knowledge bases and play a significant role for establishing
a framework of granular computing in knowledge bases.
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