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Set-valued ordered information systems can be classified into two categories: disjunctive
and conjunctive systems. Through introducing two new dominance relations to set-valued
information systems, we first introduce the conjunctive/disjunctive set-valued ordered
information systems, and develop an approach to queuing problems for objects in presence
of multiple attributes and criteria. Then, we present a dominance-based rough set approach
for these two types of set-valued ordered information systems, which is mainly based on
substitution of the indiscernibility relation by a dominance relation. Through the lower/
upper approximation of a decision, some certain/possible decision rules from a so-called
set-valued ordered decision table can be extracted. Finally, we present attribute reduction
(also called criteria reduction in ordered information systems) approaches to these two
types of ordered information systems and ordered decision tables, which can be used to
simplify a set-valued ordered information system and find decision rules directly from a
set-valued ordered decision table. These criteria reduction approaches can eliminate those
criteria that are not essential from the viewpoint of the ordering of objects or decision rules.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory, proposed by Pawlak [30,31], has been conceived as a tool to conceptualize and analyze various types of
data. It can be used in attribute value representation models to describe the dependencies among attributes, evaluate the
significance of attributes and derive decision rules. The theory shows important applications to intelligent decision-making
and cognitive sciences, as a tool for dealing with vagueness and uncertainty of information [4,5,7,14,20,25,46,49,51].

Originally, rough set theory is based on an assumption that every object in the universe of discourse is associated with
some information. Objects characterized by the same information are indiscernible. The indiscernibility relation generated
in this way forms the mathematical basis for the theory of rough sets. The set of all indiscernible objects is called an elemen-
tary set or equivalence class [24,41]. A rough set can be characterized by a pair of sets, called the lower and upper approx-
imations. Rough set-based data analysis starts from a data table, also called an information system, which contains data
about objects of interest that are characterized by a finite set of attributes [11,15,16,19,21,22,32–37,41]. In recent years, clas-
sical rough sets have been extended to several general models by using other binary relations, see [26,27,42–45].

However, the original rough set theory does not consider attributes with preference-ordered domains, that is, criteria. In
fact, in many real-world situations, we are often faced with the problems in which the ordering of properties of the consid-
ered attributes plays a crucial role [1,13]. One such type of problem is the ordering of objects. For this reason, Greco et al.
[8,9] proposed an extension of rough set theory, called dominance-based rough set approach (DRSA) to take into account
. All rights reserved.
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the ordering properties of criteria. This generalization is mainly based on the substitution of the indiscernibility relation by a
dominance relation. In DRSA, where condition attributes are criteria and classes are preference ordered, the knowledge
approximated is a collection of upward and downward unions of classes and the granules of knowledge are sets of objects
defined by using a dominance relation, see [2,3,39,40].

In what follows, we review several types of information systems. By an incomplete information system we mean a system
with missing data (null values) [16,17]. Incomplete information systems deal with two cases: unknown values and inappli-
cable values. In unknown values, a null value may be some value in the domain of the corresponding attribute [16–18]; for
the case that a null value means an inapplicable value, it can be handled by adding to the attribute domains a special symbol
for the inapplicable value [18,37]. If the value of each object is represented as a certain fuzzy set, we are concerned with
fuzzy information systems [12,14,42]. In the context of fuzzy information systems, fuzzy rough set approach has been devel-
oped [50,53,54]. Interval information systems are an important type of information systems, and generalized models of sin-
gle-valued information systems. Some problems of decision making in the context of interval information systems have also
been studied in [38,47,48], most of which are based on the concept of a possible degree between any two interval numbers
[47,48]. It is often interesting to discover some dependency relationships (patterns) among attributes from these kinds of
information systems [52,53].

In many practical issues, it may happen that some of the attribute values for an object are set-valued, which are always
used to characterize uncertain information and missing information in information systems [52,53]. For example, in lan-
guage-ability test information systems there may exist a group of candidates that can master several kinds of languages.
These values can be represented by the set of these languages for the attribute. To describe such situation, a set value is usu-
ally assigned to those attributes. In general, this kind of information systems are called set-valued information systems,
which are another important type of data tables and generalized models of single-valued information systems. For instance,
incomplete information systems can be regarded as a special kind of set-valued information systems, in which all missing
values can be represented by the set of all possible values of each attribute. In order to make a decision in set-valued infor-
mation systems, it is interesting and desirable to investigate dominance relations, ranking approach, rough set framework,
dominance rules and attribute reduction in this kind of information systems.

Let us introduce a formal definition of set-valued information systems. Let U be a finite set of objects, called the universe
of discourse, and AT be a finite set of attributes. With every attribute a 2 AT, a set of its values Va is associated. f : U � AT ! V
is a total function such that f ðx; aÞ# Va for every a 2 AT; x 2 U. If each attribute has a unique attribute value, then ðU;AT;V ; f Þ
with V ¼ [a2AT Va is called a single-valued information system; if a system is not a single-valued information system, it is
called a set-valued (multi-valued) information system. If we consider condition and decision attributes, then such an infor-
mation system is called a set-valued decision information system. A set-valued decision information system is always de-
noted by S ¼ ðU;C [ fdg;V ; f Þ, where C is a finite set of condition attributes, and d is a decision attribute with C \ d ¼ ;.

There are many ways to provide semantics of set-valued information systems [6,23,28,29], here we summarize two types
of them [10]:

Type I: For x 2 U and c 2 C, cðxÞ is interpreted disjunctively. For example: If c is the attribute ‘‘speaking a language”, then
cðxÞ ¼ fGerman;Polish;Frenchg can be interpreted as: x speaks German, Polish, or French, and x can speak only one of them.
Incomplete information systems with some unknown attribute values or partial known attribute values [16–18] are such
type of set-valued information systems. Under the consideration, we call it a ‘‘

W
” (disjunctive) set-valued information system

in this paper.
Type II: For x 2 U and c 2 C, cðxÞ is interpreted conjunctively. For example: If c is the attribute ‘‘speaking a language”, then

cðxÞ ¼ fGerman;Polish;Frenchg can be interpreted as: x speaks German, Polish, and French. When considering the attribute
‘‘feeding habits” of animals, if we denote the attribute value of herbivore as ‘‘0” and carnivore as ‘‘1”, then animals possessing
attribute value f0;1g are considered as possessing both herbivorous and carnivorous nature. Let us take blood origin for an-
other example, if we denote the three types of pure blood as ‘‘0”, ‘‘1” and ‘‘2”, then we can denote the mixed-blood as f0;1g
or f1;2g, etc. Under such interpretation, in this paper we call it a ‘‘

V
” (conjunctive) set-valued information system.

The main objective of this study is to introduce two new dominance relations to the two types of set-valued information
systems, and investigate the problems of criteria reductions and decision rules extracted from these two types of information
systems and decision tables.

The paper is organized as follows: Some preliminary concepts about ordered information systems are briefly reviewed in
Section 2. In Section 3, we introduce two dominance relations R^PA and R_PA to ‘‘

V
” set-valued information systems and ‘‘

W
”

set-valued information systems, respectively, and present a ranking approach to all objects under the dominance relations.
Based on these two dominance relations R^PA and R_PA , we establish a rough set approach in a set-valued ordered information
system, and some of its important properties are obtained. In Section 4, decision rules from the two types of set-valued deci-
sion tables are discussed. In Section 5, we investigate the approaches to attribution reductions in these two types of set-val-
ued ordered information systems and decision tables. Finally, conclusions are presented in Section 6.
2. Some basic concepts

An information system (IS) is an quadruple S ¼ ðU;AT;V ; f Þ, where U is a finite nonempty set of objects and AT is a finite
nonempty set of attributes, V ¼

S
a2AT Va and Va is a domain of attribute a; f : U � AT ! V is a function such that f ðx; aÞ 2 Va



Y. Qian et al. / Information Sciences 179 (2009) 2809–2832 2811
for every a 2 AT; x 2 U, called an information function. A decision table is a special case of an information system in which,
among the attributes, we distinguish one called a decision attribute. The other attributes are called condition attributes.
Therefore, S ¼ ðU;C [ d;V ; f Þ and C \ d ¼ ;, where set C contains so-called condition attributes and d, the decision attribute.

If the domain (scale) of a condition attribute is ordered according to a decreasing or increasing preference, then the attri-
bute is a criterion.1

Definition 2.1 [40]. An information system is called an ordered information system (OIS) if all condition attributes are
criteria.

It is assumed that the domain of a criterion a 2 AT is completely pre-ordered by an outranking relation <a; x <a y means
that x is at least as good as (outranks) y with respect to criterion a. In the following, without any loss of generality, we con-
sider a condition criterion having a numerical domain, that is, Va # R (R denotes the set of real numbers) and being of type
gain, that is, x <a y() f ðx; aÞP f ðy; aÞ (according to increasing preference) or x <a y() f ðx; aÞ 6 f ðy; aÞ (according to
decreasing preference), where a 2 AT; x; y 2 U. For a subset of attributes B # C, we define x <B y() 8a 2 B; f ðx; aÞP
f ðy; aÞ. In other words, x is at least as good as y with respect to all attributes in B. In general, the domain of the condition
criterion may be also discrete, but the preference order between its values has to be provided.

In what follows, we review the dominance relation that identifies granules of knowledge. In a given OIS, we say that x
dominates y with respect to B # C if x <B y, and denoted by xRP

B y. That is
1 In i
used to
RP
B ¼ fðy; xÞ 2 U � U j y <B xg:
Obviously, if ðy; xÞ 2 RP
B , then y dominates x with respect to B.

Let B1 be attributes set according to increasing preference, B2 attributes set according to decreasing preference, hence
B ¼ B1 [ B2. The granules of knowledge induced by the dominance relation RP

B are the set of objects dominating x, i.e.,
½x�PB ¼ y 2 Ujf ðy; a1ÞP f ðx; a1Þð8a1 2 B1Þ and f ðy; a2Þ 6 f ðx; a2Þð8a2 2 B2Þf g ¼ y 2 Ujðy; xÞ 2 RP
B

� �

and the set of objects dominated by x,
½x�6B ¼ y 2 Ujf ðy; a1Þ 6 f ðx; a1Þð8a1 2 B1Þ and f ðy; a2ÞP f ðx; a2Þð8a2 2 B2Þf g ¼ y 2 Ujðx; yÞ 2 RP
B

� �
;

which are called the B-dominating set and the B-dominated set with respect to x 2 U, respectively.
Let U=RP

B denote classification on the universe, which is the family set f½x�PB jx 2 Ug. Any element from U=RP
B will be called

a dominance class with respect to B. Dominance classes in U=RP
B do not constitute a partition of U in general. They constitute

a covering of U.
For simplicity and without any loss of generality, in the following we only consider condition attributes with increasing

preference.
The following property can be easily concluded [40].

Property 2.1. Let RP
B be a dominance relation, then

(1) RP
B is reflexive, transitive and unsymmetric, so it is not an equivalence relation;

(2) if A # B # C, then RP
C # RP

B # RP
A ;

(3) if A # B # C, then ½x�PC # ½x�PB # ½x�PA ;
(4) if xj 2 ½xi�PB , then ½xj�PB # ½xi�PB and ½xi�PB ¼

S
f½xj�PB : xj 2 ½xi�PB g;

(5) ½xi�PB ¼ ½xj�PB iff f ðxi; aÞ ¼ f ðxj; aÞð8a 2 BÞ;
(6) F ¼ f½x�PB jx 2 Ug constitutes a covering of U.

For any X # U and B # C, the lower and upper approximation of X with respect to the dominance relation RP
B are defined as

follows
RP
B ðXÞ ¼ fx 2 Uj½x�PB # Xg;

RP
B ðXÞ ¼ fx 2 Uj½x�PB \ X – ;g:
Unlike classical rough set theory, one can easily notice that the properties RP
B ðXÞ ¼

S
f½x�PB j½x�

P
B # Xg and

RP
B ðXÞ ¼

S
f½x�PB j½x�

P
B \ X – ;g do not hold.

Example 2.1. An OIS is presented in Table 1, where U ¼ fx1; x2; x3; x4; x5; x6g; AT ¼ fa1; a2; a3g.
The dominance classes determined by AT are
½x1�PAT ¼ fx1; x2; x5; x6g; ½x2�PAT ¼ fx2; x5; x6g; ½x3�PAT ¼ fx2; x3; x4; x5; x6g; ½x4�PAT ¼ fx4; x6g;
½x5�PAT ¼ fx5g; ½x6�PAT ¼ fx6g:
ntelligent decision-making, each of attributes in ordered information systems and ordered decision tables are always called a criterion, which is mainly
rank for all objects and to choose the best project from all projects [8,38,40].



Table 1
An ordered information system.

U a1 a2 a3

x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3
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Suppose that X ¼ fx2; x3; x5g, then
Table 2
A set-v

U

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
RP
ATðXÞ ¼ fx5g# X; RP

ATðXÞ ¼ fx1; x2; x3; x5g � X:
3. Set-valued ordered information systems

In some practical issues, it may happen that some of the attribute values of an object are set-valued. Therefore, a so-called
set-valued information system, is usually used to indicate such a situation. Let S ¼ ðU;AT;V ; f Þ be a set-valued information
system, where U is a nonempty finite set of objects, AT is a finite set of attributes, V is the set of attributes values and f is a
mapping from U � AT to V such that f : U � AT ! 2V is a set-valued mapping. In this situation, the cardinality jf ðx; aÞjP
1; 8x 2 U; a 2 AT . In this section, through introducing two dominance relations to two types of set-valued information sys-
tems, we investigate conjunctive set-valued ordered information systems and disjunctive set-valued ordered information
systems, and propose a ranking method for all objects and a rough set approach to these two particular systems.

3.1. Conjunctive set-valued ordered information systems

In this subsection, we will deal with conjunctive set-valued ordered information systems and discuss some of their
important properties. The following example presents a conjunctive set-valued information system.

Example 3.1. A set-valued information system is presented in Table 2, where U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g; AT ¼
fa1; a2; a3; a4g ¼ fAudition;Spoken language;Reading;Writingg and V ¼ fEnglish;French;Germang. For convenience, in the
sequel, E, F and G will stand for English, French and German, respectively.

From Table 2, it is easy to see that the values in arbitrary set-value f ðxi; aÞ ði 6 10; a 2 ATÞ are all discrete. Unlike for some
existing dominance relations, we can not say that E is at least as good as F or E is at most as good as F in this type of infor-
mation systems. If we regard a conjunctive type of interpretation, then Table 2 is a ‘‘

V
” set-valued information system.

In Table 2, we can know that f ðx7; a1Þ ¼ fE; F;Gg; f ðx8; a1Þ ¼ fE; Fg. Because of fE; F;Gg � fE; Fg, we can judge that the
audition ability of x7 must be better than that of x8, that is, x7 is at least as good as x8 with respect to a1. We call this type
of preference inclusion increasing preference. In addition, for instance, in a conjunctive set-valued information system about
diagnosing rheum, if the patient x has three characters fHeadache;Musclepain; feverg and the patient y has two characters
fHeadache; feverg, we may say that the patient y is better than the patient x with respect to Rheum characters. In other words,
y is at least as good as x with respect to Rheum characters. We call this type of preference inclusion decreasing preference.

If the values of some objects under a condition attribute can be ordered according to an inclusion increasing/decreasing
preference, then the attribute is a inclusion criterion.

Definition 3.1. A conjunctive set-valued information system is called a conjunctive set-valued ordered information system
(OIS) if all condition attributes are inclusion criterions.
alued information system about language ability.

Audition Spoken language Reading Writing

fEg fEg fF;Gg fF;Gg
fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg
fE;Gg fE; Fg fF;Gg fF;Gg
fE; Fg fE;Gg fF;Gg fFg
fF;Gg fF;Gg fF;Gg fFg
fFg fFg fE; Fg fE; Fg
fE; F;Gg fE; F;Gg fE;Gg fE; F;Gg
fE; Fg fF;Gg fE; F;Gg fE;Gg
fF;Gg fGg fF;Gg fF;Gg
fE; Fg fE;Gg fF;Gg fE; Fg
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It is assumed that the domain of an inclusion criterion a 2 AT is completely pre-ordered by an outranking relation <a;
x<ay means that x is at least as good as (outranks) y with respect to the inclusion criterion a. In the following, without
any loss of generality, we consider an inclusion criterion having an enumerative domain, that is, x <a y() f ðx; aÞ � f ðy; aÞ
(according to inclusion increasing preference) or x <a y() f ðx; aÞ# f ðy; aÞ (according to inclusion decreasing preference),
where a 2 AT and x; y 2 U. For a subset of attributes B # C, we define x <B y() 8a 2 B; f ðx; aÞ � f ðy; aÞ. In other words, x is
at least as good as y with respect to all attributes in B.

For a ‘‘
V

” set-valued information system S ¼ ðU;AT;V ; f Þ, the relationships among any set f ðx; aÞ; x 2 U; a 2 AT are con-
junctive. While they are disjunctive in a ‘‘

W
” set-valued information system. Hence, for convenience, let R^PA ; A # AT , denote

a binary dominance relation between objects that are possibly dominant in terms of values of attributes set A (it is denoted
by R_PA in ‘‘

W
” set-valued information systems). Under this consideration, S is a conjunctive set-valued ordered information

system. Let us define the dominance relation more precisely as follows
R^PA ¼ ðy; xÞ 2 U � Ujf ðy; aÞ � f ðx; aÞð8a 2 A1Þ and f ðy; aÞ# f ðx; aÞð8a 2 A2Þf g ¼ ðy; xÞ 2 U � Ujy <A xf g;

where A1 is attributes set according to inclusion increasing preference, A2 is attributes set according to inclusion decreasing
preference and A ¼ A1 [ A2.

By the definition of the dominance relation R^PA , it can be observed that if a pair of objects ðy; xÞ from U � U lies in R^PA ,
then they are perceived as y dominates x; in other words, y may have a better property than x with respect to A in reality.

Analogously, the relation R^6A can be defined as follows
R^6A ¼ ðy; xÞ 2 U � Ujf ðy; aÞ# f ðx; aÞð8a 2 A1Þ and f ðy; aÞ � f ðx; aÞð8a 2 A2Þf g ¼ ðy; xÞ 2 U � Ujx <A yf g;

From the definition of R^PA and R^6A , the following properties can be easily obtained.

Property 3.1. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued ordered information system and A # AT, then
R^PA ¼
\
a2A

R^Pa ; R^6A ¼
\
a2A

R^6a :
Property 3.2. Let R^PA be an inclusion dominance relation in a conjunctive set-valued information system, then

(1) R^PA is reflexive;
(2) R^PA is unsymmetric;
(3) R^PA is transitive.

Furthermore, denoted by
½x�^PA ¼ ðfy 2 Ujðy; xÞ 2 R^PA g;
½x�^6A ¼ fy 2 Ujðx; yÞ 2 R^PA g;
where ½x�^PA describes objects that may dominate x and ½x�^6A describes objects that may be dominated by x in terms of A in a con-
junctive set-valued ordered information system.

Property 3.3. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued ordered information system and A;B # AT, one has

(1) if B # A # AT, then R^PB � R^PA � R^PAT ;
(2) if B # A # AT, then ½x�^PB � ½x�^PA � ½x�^PAT ;
(3) if xj 2 ½xi�^PA , then ½xj�^PA # ½xi�^PA and ½xi�^PA ¼

S
f½xj�^PA : xj 2 ½xi�^PA g;

(4) ½xi�^PA ¼ ½xj�^PA iff f ðxi; aÞ ¼ f ðxj; aÞ (8a 2 A).
Proof. Let B # A # AT , (1) and (2) are straightforward.
(3) If xj 2 ½xi�^PA , it follows from the dominance relation R^PA that f ðxi; aÞ# f ðxj; aÞ for arbitrary a 2 A. Analogously, for

8x 2 ½xj�^PA , we have f ðxj; aÞ# f ðx; aÞ for arbitrary a 2 A. Hence, f ðxi; aÞ# f ðx; aÞ (8a 2 A). Thus we have x 2 ½xi�^PA , i.e.,
½xj�^PA # ½xi�^PA . Therefore, ½xi�^PA ¼

S
f½xj�^PA : xj 2 ½xi�^PA g holds.

(4) ‘‘)” When ½xi�^PA ¼ ½xj�^PA , it follows from (3) that ½xj�^PA # ½xi�^PA , i.e., f ðxi; aÞ# f ðxj; aÞ for arbitrary a 2 A. Analogously,
we have that f ðxj; aÞ# f ðxi; aÞ for arbitrary a 2 A. Hence, f ðxi; aÞ ¼ f ðxj; aÞð8a 2 AÞ.

‘‘(” If f ðxi; aÞ ¼ f ðxj; aÞð8a 2 AÞ, from the definition of the set of objects dominating x, it is easy to get ½xi�^PA ¼ ½xj�^PA .
This completes the proof. h

Let U=R^PA denote classification, which is the family set F ¼ f½x�^PA jx 2 Ug. Any element from U=R^PA will be called a dom-
inance class. All the dominance classes in U=R^PA do not constitute a partition of U in general. In fact, F ¼ f½x�^PA jx 2 Ug
induces a covering of U, i.e.,

S
x2U ½x�

^P
A ¼ U. This is illustrated by the following example.

Example 3.2. From Table 2, one can obtain the following
U=R^PAT ¼ ½x1�^PAT ; ½x2�^PAT ; . . . ; ½x10�^PAT

� �
;
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where ½x1�^PAT ¼ fx1; x2; x3g, ½x2�^PAT ¼ fx2g, ½x3�^PAT ¼ fx2; x3g, ½x4�^PAT ¼ fx2; x4; x10g, ½x5�^PAT ¼ fx2; x5g, ½x6�^PAT ¼ fx6g, ½x7�^PAT ¼ fx7g,
½x8�^PAT ¼ fx8g, ½x9�^PAT ¼ fx2; x9g and ½x10�^PAT ¼ fx2; x10g. And
Table 3
A set-v

U

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
U=R^6AT ¼ ½x1�^6AT ; ½x2�^6AT ; . . . ; ½x10�^6AT

� �
;

where ½x1�^6AT ¼ fx1g, ½x2�^6AT ¼ fx1; x2; x3; x4; x5; x9; x10g; ½x3�^6AT ¼ fx1; x3g, ½x4�^6AT ¼ fx4g, ½x5�^6AT ¼ fx5g, ½x6�^6AT ¼ fx6g, ½x7�^6AT ¼ fx7g,
½x8�^6AT ¼ fx8g, ½x9�^6AT ¼ fx9g and ½x10�^6AT ¼ fx4; x10g.

Obviously, one can note that x2 <AT x3 <AT x1; x2 <AT x10 <AT x4, x2 <AT x5 and x2 <AT x9.

From the above denotations and properties, one can learn that in a set-valued information system, if the value field of
each object is interpreted conjunctively, then the dominance relation R^6AT can be extracted from the set-valued information
system.

3.2. Disjunctive set-valued ordered information systems

In this subsection, through an illustrative example, we examine disjunctive set-valued ordered information systems and
obtain several their important properties. The following example presents a disjunctive set-valued information system.

Example 3.3. A set-valued information system is presented in Table 3, where U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g and
AT ¼ fa1; a2; a3; a4; a5g.

For a disjunctive set-valued information system S ¼ ðU;AT;V ; f Þ, the relationships among any set f ðx; aÞ; x 2 U; a 2 AT are
disjunctive. Hence, for convenience, let R_PA , A # AT, denote a binary dominance relation between objects that are possibly
dominant in terms of values of attributes set A. Under this consideration, we call S a disjunctive set-valued ordered information
system. Let us define the dominance relation more precisely as follows
R_PA ¼ fðy; xÞ 2 U � Uj8a 2 A;9uy 2 f ðy; aÞ; 9vx 2 f ðx; aÞ such that uy P vxg:
By the definition of the dominance relation R_PA , it can be observed that if a pair of objects ðy; xÞ from U � U lies in R_PA , then
they are perceived as y dominates x; in other words, y may have a better property than x with respect to A in reality. In fact,
this dominance relation is equivalent to the representation given below
R_PA ¼ fðy; xÞ 2 U � Uj8a 2 A;max f ðy; aÞP min f ðx; aÞg:
From the definition of R_PA , the following properties can be easily obtained.

Property 3.4. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued information system and A # AT, then
R_PA ¼
\
a2A

R_Pa :
Property 3.5. Let R_PA be a dominance relation in a disjunctive set-valued information system, then the following properties hold

(1) R_PA is reflexive;
(2) R_PA is non-symmetric;
(3) R_PA is intransitive.

Furthermore, denoted by
½x�_PA ¼ y 2 Ujðy; xÞ 2 R_PA

� �
;

½x�_6A ¼ y 2 Ujðx; yÞ 2 R_PA

� �
;

where ½x�_PA describes objects that may dominate x and ½x�_6A describes objects that may be dominated by x in terms of A in a dis-
junctive set-valued information system.
alued information system.

a1 a2 a3 a4 a5

f1g f0;1g f0g f1;2g f2g
f0;1g f2g f1;2g f0g f0g
f0g f1;2g f1g f0;1g f0g
f0g f1g f1g f1g f0;2g
f2g f1g f0;1g f0g f1g
f0;2g f1g f0;1g f0g f1g
f1g f0;2g f0;1g f1g f2g
f0g f2g f1g f0g f0;1g
f1g f0;1g f0;2g f1g f2g
f1g f1g f2g f0;1g f2g
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Property 3.6. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued ordered information system and A;B # AT, one has

(1) if B # A # AT, then R_PB � R_PA � R_PAT ;
(2) if B # A # AT, then ½x�_PB � ½x�_PA � ½x�_PAT ;
(3) if min f ðxi; aÞ ¼min f ðxj; aÞð8a 2 AÞ, then ½xi�_PA ¼ ½xj�_PA .
Proof. Let B # A # AT , (1) and (2) are straightforward.
(3) For 8x 2 U, if x 2 ½xi�_PA , it follows from the definition of the dominance relation R_PA that max f ðx; aÞP min f ðxi; aÞ

(8a 2 A). Since the assumption min f ðxi; aÞ ¼min f ðxj; aÞð8a 2 AÞ, thus max f ðx; aÞP min f ðxj; aÞ (8a 2 A), i.e., x 2 ½xj�_PA . Hence,
½xi�_PA # ½xj�_PA holds. Analogously, we can prove ½xj�_PA # ½xi�_PA . Therefore, we have ½xi�_PA ¼ ½xj�_PA . This completes the proof. h

Let U=R_PA denote classification, which is the family set F ¼ f½x�_PA jx 2 Ug. Any element from U=R_PA will be called a dom-
inance class. All the dominance classes in U=R_PA do not constitute a partition of U in general. In fact, F ¼ f½x�_PA jx 2 Ug
induces a covering of U, i.e.,

S
x2U ½x�

_P
A ¼ U. This is illustrated in Example 3.4.

Example 3.4. From Table 3, one has
U=R_PAT ¼ ½x1�_PAT ; ½x2�_PAT ; . . . ; ½x10�_PAT

� �
;

where ½x1�_PAT ¼ ½x7�_PAT ¼ ½x9�_PAT ¼ fx1; x7; x9; x10g, ½x2�_PAT ¼ ½x8�_PAT ¼ fx2; x3; x7; x8g; ½x3�_PAT ¼ fx2; x3; x4; x5; x6; x7; x8; x9; x10g,
½x4�_PAT ¼ fx3; x4; x7; x8; x9; x10g; ½x5�_PAT ¼ fx5; x6g, ½x6�_PAT ¼ fx1; x4; x5; x6; x7; x8; x9; x10g ½x10�_PAT ¼ fx9; x10g.

From Example 3.4, one can easily notice that unlike an OIS, the property ‘‘if xj 2 ½xi�_PA , then ½xj�_PA # ½xi�_PA and ½xi�_PA ¼S
f½xj�_PA : xj 2 ½xi�_PA g” does not hold.

Similarly, one also can see that if the value field of each object is interpreted disjunctively in a set-valued information
system, then the dominance relation R_6AT can be extracted from the set-valued information system.

3.3. Ranking for all objects in set-valued ordered information systems

First, we present how to rank all objects in a conjunctive set-valued ordered information system. Unlike some existing
ordered information systems, it is very difficult to give the ordering of all objects through using the dominance relation
R^PA in conjunctive set-valued ordered information systems in general. In particular, when there is an inclusion relation be-
tween the values of any two objects, i.e., f ðxi; aÞ# f ðxj; aÞ or f ðxi; aÞ � f ðxj; aÞ (i; j 2 U; a 2 A), this type of information systems
will have the same ordering properties as classical ordered information systems. In this situation, through using the dom-
inance relation R^PA , one gives the ordering of all objects. We call the type of information systems conjunctive set-valued whole
ordered information systems.

Definition 3.2. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued whole OIS and A # AT. Dominance degree between two objects
with respect to A is defined as
DAðxi; xjÞ ¼
j � ½xi�^PA [ ½xj�^PA j

jUj ;
where j � j denotes the cardinality of a set and xi; xj 2 U.

Obviously, 1
jUj 6 DAðxi; xjÞ 6 1. From Definition 3.2, one can construct a dominance relation matrix with respect to A. From

this matrix, the dominance degree of each object can be calculated according to the following formula
DAðxiÞ ¼
1

jUj � 1

X
j–i

DAðxi; xjÞ; xi; xj 2 U:
Given the dominance degree of each object on the universe, one can rank all objects according to the number of DAðxiÞ.
Higher value implies more suitable object.

Example 3.5. Table 4 is a conjunctive set-valued whole OIS. Rank all objects in U according to the dominance relation R^PAT .
By computing, we have
½x1�^PAT ¼ fx1; x3g; ½x2�^PAT ¼ fx1; x2; x3g; ½x3�^PAT ¼ fx3g; ½x4�^PAT ¼ fx3; x4g;
½x5�^PAT ¼ fx1; x2; x3; x4; x5; x6g; ½x6�^PAT ¼ fx1; x3; x6g:
Hence, from Definition 3.2, we can get the following dominance relation
DAT ¼

1 1 0:83 0:83 1 1
0:83 1 0:67 0:67 1 0:83

1 1 1 1 1 1
0:83 0:83 0:83 1 1 0:83
0:33 0:50 0:17 0:33 1 0:50
0:83 0:83 0:67 0:67 1 1

0
BBBBBB@

1
CCCCCCA
:



Table 4
A ‘‘
V

” set-valued whole ordered information system.

U a1 a2 a3

x1 fE; F;Gg fF;Gg fE;Gg
x2 fE; Fg fF;Gg fE;Gg
x3 fE; F;Gg fE; F;Gg fE; F;Gg
x4 fE; Fg fFg fE; F;Gg
x5 fEg fFg fGg
x6 fE; F;Gg fF;Gg fGg
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Therefore, we have
DATðx1Þ ¼ 0:93; DATðx2Þ ¼ 0:80; DATðx3Þ ¼ 1:00; DATðx4Þ ¼ 0:86; DATðx5Þ ¼ 0:37; DATðx6Þ ¼ 0:80:
In the following, ranking objects according to the number of DATðxiÞ, a object with larger number may imply a more suit-
able object.
x3 < x1 < x4 <
x2

x6

� �
< x5:
Then, we discuss how to make a decision in a disjunctive set-valued ordered information system.

Definition 3.3. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS, A # AT , the dominance degree between two objects with
respect to A is defined as
DAðxi; xjÞ ¼
j � ½xi�_PA [ ½xj�_PA j

jUj ;
where j � j denotes the cardinality of a set, xi; xj 2 U.

Obviously, 1
jUj 6 DAðxi; xjÞ 6 1. From Definition 3.3, we can construct a dominance relation matrix with respect to A. From

this matrix, the dominance degree of each object can be calculated as follows
DAðxiÞ ¼
1

jUj � 1

X
j–i

DAðxi; xjÞ; xi; xj 2 U:
Next we can rank all objects according to the number of DAðxiÞ.

Example 3.6. Continuing Example 3.4, let us rank objects in U according to the dominance relation R_PAT . The obtained
dominance relation comes with the entries
DAT ¼

1 0:7 0:9 0:9 0:6 1 1 0:7 1 0:8
0:7 1 1 0:9 0:6 0:8 0:7 1 0:7 0:6
0:4 0:5 1 0:7 0:3 0:8 0:4 0:5 0:4 0:3
0:7 0:7 1 1 0:4 0:9 0:7 0:7 0:7 0:6
0:8 0:8 1 0:8 1 1 0:8 0:8 0:8 0:8
0:6 0:4 0:9 0:7 0:4 1 0:6 0:4 0:6 0:4
1 0:7 0:9 0:9 0:6 1 1 0:7 1 0:8

0:7 1 1 0:9 0:6 0:8 0:7 1 0:7 0:6
1 0:7 0:9 0:9 0:6 1 1 0:7 1 0:8
1 0:8 1 1 0:8 1 1 0:8 1 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

Therefore, we have
DATðx1Þ ¼ 0:84; DATðx2Þ ¼ 0:78; DATðx3Þ ¼ 0:48; DATðx4Þ ¼ 0:71;
DATðx5Þ ¼ 0:84; DATðx6Þ ¼ 0:56; DATðx7Þ ¼ 0:84; DATðx8Þ ¼ 0:78;
DATðx9Þ ¼ 0:84; DATðx10Þ ¼ 0:93:
The ranking produced in this way comes in the form
x10 <

x1

x5

x7

x9

0
BBB@

1
CCCA < x2

x8

� �
< x4 < x6 < x3:
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3.4. Rough set approach to set-valued ordered information systems

In this subsection, a rough set approach to set-valued ordered information systems will be introduced and its several
important properties are investigated.

The following definition deals with the approximations of a set in a conjunctive set-valued OIS.

Definition 3.4. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS. For any X # U and A # AT , the lower and upper
approximations of X with respect to the dominance relation R^PA are defined as follows
R^PA ðXÞ ¼ fx 2 Uj½x�^PA # Xg;

R^PA ðXÞ ¼ fx 2 Uj½x�^PA \ X – ;g:
From Definition 3.4, one can easily notice that R^PA ðXÞ is a set of objects that belong to X with certainty, whereas R^PA ðXÞ is
a set of objects that possibly belong to X. BnAðXÞ ¼ R^PA ðXÞ � R^PA ðXÞ denotes the boundary of the rough set.

Example 3.7. We continue Example 3.2. Let X ¼ fx2; x5; x6g, then one has
R^PA ðXÞ ¼ fx2; x5; x6g# X; R^PA ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x9; x10g � X:
From Definition 3.4, the following properties are derived.

Property 3.7. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS, X # U and A # AT, then

(1) R^PA ð;Þ ¼ R^PA ð;Þ ¼ ;;R
^P
A ðUÞ ¼ R^PA ðUÞ ¼ U;

(2) R^PA ðXÞ# X # R^PA ðXÞ;
(3) R^PA ðR

^P
A ðXÞÞ ¼ R^PA ðXÞ;R

^P
A ðR

^P
A ðXÞÞ ¼ R^PA ðXÞ;

(4) R^PA ðXÞ ¼� R^PA ð� XÞ;R^PA ðXÞ ¼� R^PA ð� XÞ;
(5) R^PA ðXÞ# R^PAT ðXÞ;R

^P
A ðXÞ � R^PAT ðXÞ;BnATðXÞ# BnAðXÞ.
Proof. This proof is similar to that of Property 4.1 in [38] and that of Property 2 in [40]. h

Property 3.8. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS, X;Y # U and A # AT, then

(1) if X # Y, then R^PA ðXÞ# R^PA ðYÞ, R^PA ðXÞ# R^PA ðYÞ;

(2) R^PA ðX \ YÞ ¼ R^PA ðXÞ \ R^PA ðYÞ;

(3) R^PA ðX [ YÞ ¼ R^PA ðXÞ [ R^PA ðYÞ;
(4) R^PA ðX \ YÞ# R^PA ðXÞ \ R^PA ðYÞ;
(5) R^PA ðX [ YÞ � R^PA ðXÞ [ R^PA ðYÞ.
Proof. This proof is similar to that of Property 4.2 in [38] and that of Property 2 in [40]. h

The lower and upper approximations of X expressed with respect to the dominance relation R^PA can be used to extract
decision rules, where R^PA ðXÞ can extract decision rules with certainty, while BnAðXÞ ¼ R^PA ðXÞ � R^PA ðXÞ can extract possible
decision rules.

Now we investigate the problem of set approximation in disjunctive set-valued ordered information systems.

Definition 3.5. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS. For any X # U and A # AT , the lower and upper
approximations of X with respect to the dominance relation R_PA are defined as follows
R_PA ðXÞ ¼ fx 2 Uj½x�_PA # Xg;

R_PA ðXÞ ¼ fx 2 Uj½x�_PA \ X – ;g:
From Definition 3.5, one can easily notice that R_PA ðXÞ is a set of objects that belong to X with certainty, whereas R_PA ðXÞ is
a set of objects that possibly belong to X. BnAðXÞ ¼ R_PA ðXÞ � R_PA ðXÞ denotes the boundary of the rough set.

Example 3.8. This is a continuation of Example 3.4.
Let X ¼ fx2; x5; x6g, then we have
R_PA ðXÞ ¼ fx5g# X; R_PA ðXÞ ¼ fx2; x3; x5; x6; x8g � X:
From Definition 3.5, one can easily obtain the following properties.
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Property 3.9. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS, X # U and A # AT, then

(1) R_PA ð;Þ ¼ R_PA ð;Þ ¼ ;, R_PA ðUÞ ¼ R_PA ðUÞ ¼ U;

(2) R_PA ðXÞ# X # R_PA ðXÞ;
(3) R_PA ðR

_P
A ðXÞÞ ¼ R_PA ðXÞ, R_PA ðR

_P
A ðXÞÞ ¼ R_PA ðXÞ;

(4) R_PA ðXÞ ¼� R_PA ð� XÞ, R_PA ðXÞ ¼� R_PA ð� XÞ;

(5) R_PA ðXÞ# R_PAT ðXÞ, R_PA ðXÞ � R_PAT ðXÞ;BnATðXÞ# BnAðXÞ.

Proof. This proof is similar to that of Property 4.1 in [38] and that of Property 2 in [40]. h

Property 3.10. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS, X;Y # U and A # AT, then

(1) if X # Y, then R_PA ðXÞ# R_PA ðYÞ, R_PA ðXÞ# R_PA ðYÞ;
(2) R_PA ðX \ YÞ ¼ R_PA ðXÞ \ R_PA ðYÞ;

(3) R_PA ðX [ YÞ ¼ R_PA ðXÞ [ R_PA ðYÞ;
(4) R_PA ðX \ YÞ# R_PA ðXÞ \ R_PA ðYÞ;
(5) R_PA ðX [ YÞ � R_PA ðXÞ [ R_PA ðYÞ.

Proof. Refer to [38,40]. h

The lower and upper approximations of X completed with respect to the dominance relation R_PA can also be used to ex-
tract decision rules, where R_PA ðXÞ can extract decision rules with certainty, while BnAðXÞ ¼ R_PA ðXÞ � R_PA ðXÞ can extract pos-
sible decision rules.

4. Set-valued ordered decision tables and their decision rules

In this section, we investigate two types of set-valued ordered decision tables and decision rules from these two types of
decision tables.

4.1. Set-valued ordered decision tables

A set-valued ordered decision table (ODT) is a set-valued ordered information system S ¼ ðU;C [ d;V ; f Þ, where dðd R C and
f ðx; dÞðx 2 UÞ is single-valued) is an overall preference called the decision, and all the elements of C are criteria, and
f : U � C ! 2V is a set-valued mapping.

Furthermore, let us assume that the decision attribute d makes a partition of U into a finite number of classes; let
D ¼ fD1;D2; . . . ;Drg be a set of these classes that are ordered, that is, for all i; j 6 r if i P j, then the objects from Di are pre-
ferred to the objects from Dj.

The sets to be approximated are an upward union and a downward union of classes, which are defined as follows
DP
i ¼

[
j6i

Dj; D6i ¼
[
jPi

Dj; ði 6 rÞ:
The statement x 2 DP
i means ‘‘x belongs to at least class Di”, whereas x 2 D6i means ‘‘x belongs to at most class Di”.

Analogous to the idea of decision approximation in [36], in the following, we give the definitions of the lower and upper
approximations of DP

i ði 6 rÞ with respect to the dominance relation RDP
A (D ¼ ^;_) in a set-valued ODT.

Definition 4.1. Let S ¼ ðU;C [ d;V ; f Þ be a set-valued ODT, A # C and D ¼ fD1;D2; . . . ;Drg is the decision induced by d, the
lower and upper approximations of DP

i ði 6 rÞ with respect to the dominance relation RDP
A (D ¼ ^;_) are defined as
RDP
A ðD

P
i Þ ¼ fx 2 Uj½x�DP

A # DP
i g;

RDP
A ðD

P
i Þ ¼

[
x2DP

i

½x�DP
A :
Similarly, we define the lower and upper approximations of D6i (i 6 rÞ with respect to the dominance relation RDP
A

(D ¼ ^;_) in a set-valued ODT.

Definition 4.2. Let S ¼ ðU;C [ d;V ; f Þ be a set-valued ODT, A # C and D ¼ fD1;D2; . . . ;Drg is the decision induced by d, the
lower and upper approximations of D6i ði 6 rÞ with respect to the dominance relation RDP

A ðD ¼ ^;_Þ are defined as
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RDP
A ðD

6

i Þ ¼ fx 2 Uj½x�D6A # D6i g;

RDP
A ðD

6

i Þ ¼
[

x2D6
i

½x�D6A :
Naturally, the A-boundaries of DP
i ði 6 rÞ and D6i ði 6 rÞ can be defined as
BnAðDP
i Þ ¼ RDP

A ðD
P
i Þ � RDP

A ðD
P
i Þ;

BnAðD6i Þ ¼ RDP
A ðD

6

i Þ � RDP
A ðD

6

i Þ:
The lower approximations RDP
A ðD

P
i Þ and RDP

A ðD
6

i Þ can be used to extract certain decision rules, while the boundaries
BnAðDP

i Þ and BnAðD6i Þ can be used to induce possible decision rules from a set-valued ordered decision table.

4.2. Decision rules from conjunctive set-valued ordered decision tables

In [39], an atomic expression over a single attribute a is defined as either ða;PÞ (according to increasing preference) or
ða;6Þ (according to decreasing preference) in an ordered information system. For any A # AT , an expression over A in ordered
information systems is defined by

V
a2AeðaÞ, where eðaÞ is an atomic expression over a. The set of all expression over A in an

OIS is denoted by EðAÞ. For instance, in Table 1, AT ¼ fa1; a2; a3g, the set of EðATÞ is
Eðfa1; a2; a3gÞ ¼ fða1;PÞ ^ ða2;PÞ ^ ða3;PÞ; ða1;PÞ ^ ða2;PÞ ^ ða3;6Þ; . . . ; ða1;6Þ ^ ða2;6Þ ^ ða3;6Þg:
In an OIS, a 2 AT;v1 2 Va, an atomic formula over a single attribute a ia defined as either ða;P;v1Þ (according to increasing
preference) or ða;6; v1Þ (according to decreasing preference). For any A # AT, a formula over A in OIS is defined by

V
a2AmðaÞ,

where mðaÞ is an atomic formula over a. The set of all formulas over A in an OIS is denoted by MðAÞ. Let the formula
/ 2 MðAÞ; k/k denotes the set of objects satisfying formula /. For example, ða;P;v1Þ and ða;6;v1Þ are atomic formulas, then
kða;P;v1Þk ¼ fx 2 Ujf ðx; aÞP v1g;
kða;6;v1Þk ¼ fx 2 Ujf ðx; aÞ 6 v1g:
However, in a conjunctive set-valued ordered information system, the mapping f : U � A! V is not single-valued but set-
valued. Hence, we modify the definition of a formula over a according to the dominance relation R^PA
kða;�;v1Þk ¼ fx 2 Ujf ðx; aÞ � v1g;
kða; # ; v1Þk ¼ fx 2 Ujf ðx; aÞ# v1g:
Now we consider a conjunctive set-valued ODT S ¼ ðU;C [ fdg;V ; f Þ, a subset of attributes A # C. For two formulas
/ 2 MðAÞ and u 2 MðdÞ, a decision rule, denoted by /! u, is read ‘‘if / then u”. The formula / is called the rule’s antecedent,
and the formula u is called the rule’s consequent. We say that an object supports a decision rule if it matches both the con-
dition and the decision parts of the rule. On the other hand, an object is covered by a decision rule if it matches the condition
parts of the rule. A decision rule states how ‘‘evaluation of objects on attributes A is at least as good as a given level” or ‘‘eval-
uation of objects on attributes A is at most as good as a given level” determines ‘‘objects belong (or possibly belong) to at
least a given class” or ‘‘objects belong (or possibly belong) to at most a given class.”

Like decision rules shown in [40], there are four types of decision rules to be considered

(1) certain �-decision rules with the following syntax:
if ðf ðx; a1Þ � va1 Þ ^ ðf ðx; a2Þ � va2 Þ ^ � � � ^ ðf ðx; akÞ � vak

Þ ^ ðf ðx; akþ1Þ# vakþ1
Þ ^ � � � ^ ðf ðx; apÞ# vap Þ, then x 2 DP

i ;
(2) possible �-decision rules with the following syntax:

if ðf ðx; a1Þ � va1 Þ ^ ðf ðx; a2Þ � va2 Þ ^ � � � ^ ðf ðx; akÞ � vak
Þ ^ ðf ðx; akþ1Þ# vakþ1

Þ ^ � � � ^ ðf ðx; apÞ# vap Þ, then x could belong
to DP

i ;
(3) certain # -decision rules with the following syntax:

if ðf ðx; a1Þ# va1 Þ ^ ðf ðx; a2Þ# va2 Þ ^ � � � ^ ðf ðx; akÞ# vak
Þ ^ ðf ðx; akþ1Þ � vakþ1

Þ ^ � � � ^ ðf ðx; apÞ � vap Þ, then x 2 D6i ;
(4) possible # -decision rules with the following syntax:

if ðf ðx; a1Þ# va1 Þ ^ ðf ðx; a2Þ# va2 Þ ^ � � � ^ ðf ðx; akÞ# vak
Þ ^ ðf ðx; akþ1Þ � vakþ1

Þ ^ � � � ^ ðf ðx; apÞ � vap Þ, then x could belong
to D6i ;

where O1 ¼ fa1; a2; . . . ; akg# C;O2 ¼ fakþ1; akþ2; . . . ; apg# C, C ¼ O1 [ O2;O1 with inclusion increasing preference and O2 with
inclusion decreasing preference, ðva1 ;va2 ; . . . ;vap Þ 2 Va1 � Va2 � � � � � Vap ; i 6 r.

Therefore, in a ‘‘
V

” set-valued ODT, for a given upward or downward union DP
i or D6j ; i; j 6 r, the rules induced under a

hypothesis that objects belonging to R^PA ðD
P
i Þ or to R^6A ðD

6

i Þ are positive and all the others negative suggest the assignment of
an object to ‘‘at least class Di” or to ‘‘at most class Dj”, respectively. Similarly, the rules induced under a hypothesis that ob-
jects belonging to R^PA ðD

P
i Þ or to R^6A ðD

6

i Þ are positive and all the others negative suggest the assignment of an object could
belongs to ‘‘at least class Di” or to ‘‘at most class Dj”, respectively.
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Now we employ an example to illustrate conjunctive set-valued ODT and decision rules extracted from this type of ODT in
the following.

Example 4.1. Let us consider a conjunctive set-valued ODT, constructed from a conjunctive set-valued OIS in Table 2 and
extended by decision attributes d as shown in Table 5.

From Table 5, it is easy to see that D ¼ fD1;D2g, where
Table 5
A ‘‘
V

” s

U

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
D1 ¼ fx2; x3; x7; x8; x10g; D2 ¼ fx1; x4; x5; x6; x9g:
In this conjunctive ordered decision table, because only two decision classes are considered, we have DP
1 ¼ D1 and

D62 ¼ D2.
From Definition 4.1, we have
R^PC ðD
P
1 Þ ¼ fx2; x3; x7; x8; x10g;

R^PC ðD
P
1 Þ ¼ fx2; x3; x7; x8; x10g;

BnCðDP
1 Þ ¼ ;:
And, it is easily follows from Definition 4.2 that
R^PC ðD
6

2 Þ ¼ fx1; x4; x5; x6; x9g;

R^PC ðD
6

2 Þ ¼ fx1; x4; x5; x6; x9g;

BnCðD62 Þ ¼ ;:
One can obtain the following set of decision rules from the considered conjunctive ordered decision table:

r1 : ðAudition;�;fE;GgÞ^ ðSpoken language;�;fE;FgÞ^ ðReading;�;fF;GgÞ^ ðWriting;�;fF;GgÞ! ðd;P;GoodÞ//supported
by objects x2; x3;
r2 : ðAudition; �; fE; F;GgÞ ^ ðSpoken language; �; fE; F;GgÞ ^ ðReading; �; fE;GgÞ ^ ðWriting; �; fE; F;GgÞ ! ðd;P;GoodÞ//
supported by objects x7;
r3 : ðAudition; �; fE; FgÞ ^ ðSpoken language; �; fF;GgÞ ^ ðReading; �; fE; F;GgÞ ^ ðWriting; �; fE;GgÞ ! ðd;P;GoodÞ//sup-
ported by objects x8;
r4 : ðAudition;�;fE;FgÞ^ðSpoken language;�;fE;GgÞ^ðReading;�;fF;GgÞ^ðWriting;�;fE;FgÞ!ðd;P;GoodÞ//supported by
objects x2;x10;
r5 : ðAudition;# ;fEgÞ ^ ðSpoken language;# ;fEgÞ ^ ðReading;# ;fF;GgÞ ^ ðWriting;# ;fF;GgÞ ! ðd;6;PoorÞ//supported by
objects x1;
r6 : ðAudition;# ;fE;FgÞ^ ðSpoken language;# ;fE;GgÞ^ ðReading;# ;fF;GgÞ^ ðWriting;# ;fFgÞ! ðd;6;PoorÞ//supported by
objects x4;
r7 : ðAudition;# ;fF;GgÞ^ðSpoken language;# ;fF;GgÞ^ ðReading;# ;fF;GgÞ^ ðWriting;# ;fFgÞ! ðd;6;PoorÞ//supported by
objects x5;
r8 : ðAudition;# ;fFgÞ ^ ðSpoken language;# ;fFgÞ ^ ðReading;# ;fE;FgÞ ^ ðWriting;# ;fE;FgÞ ! ðd;6;PoorÞ//supported by
objects x6;
r9 : ðAudition;# ;fF;GgÞ^ðSpoken language;# ;fGgÞ^ðReading;# ;fF;GgÞ^ðWriting;# ;fF;GgÞ! ðd;6;PoorÞ//supported by
objects x9.

where r1; r2; r3; r4 are certain �-decision rules, r5; r6; r7; r8; r9 are certain # -decision rules.

For any ordering decision rule r : /! u, the certainty factor, support factor and coverage factor can be defined as follows
et-valued ordered decision table about language ability.

Audition Spoken language Reading Writing d

fEg fEg fF;Gg fF;Gg Poor
fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg Good
fE;Gg fE; Fg fF;Gg fF;Gg Good
fE; Fg fE;Gg fF;Gg fFg Poor
fF;Gg fF;Gg fF;Gg fFg Poor
fFg fFg fE; Fg fE; Fg Poor
fE; F;Gg fE; F;Gg fE;Gg fE; F;Gg Good
fE; Fg fF;Gg fE; F;Gg fE;Gg Good
fF;Gg fGg fF;Gg fF;Gg Poor
fE; Fg fE;Gg fF;Gg fE; Fg Good
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cerð/! uÞ ¼ cardðk/ ^ukÞ
cardðk/kÞ ;

supð/! uÞ ¼ cardðk/ ^ukÞ
cardðjUjÞ ;
and
covð/! uÞ ¼ cardðk/ ^ukÞ
cardðkukÞ :
The certainty factor can be interpreted as the frequency of objects having the property u in the set of objects having the
property / and the coverage factor as the frequency of objects having the property / in the set of objects having the property
u. While the support factor denotes the probability of objects having both the property / and the property u within the uni-
verse U.

Example 4.2. Compute three factors of the decision rule r1 in Example 4.1.

r1 : ðAudition; �; fE;GgÞ ^ ðSpoken language; �; fE; FgÞ ^ ðReading; �; fF;GgÞ ^ ðWriting; �; fF;GgÞ ! ðd;P;GoodÞ.

We have cardðk/kÞ ¼ 2, cardðk/ ^ukÞ ¼ 2; cardðkukÞ ¼ 5 and jUj ¼ 10; hence cerðr1Þ ¼ 1; supðr1Þ ¼ 0:2 and covðr1Þ ¼ 0:4.
4.3. Decision rules from disjunctive set-valued ordered decision tables

In a disjunctive set-valued ordered information system, the mapping f : U � A! V is not single-valued but set-valued.
Hence, we modify the definition of a formula over a according to the dominance relation R_PA as follows
kða;P;v1Þk ¼ fx 2 Ujmax f ðx; aÞP v1g;
kða;6;v1Þk ¼ fx 2 Ujmin f ðx; aÞ 6 v1g:
For convenience, we continue to use f ðx; aÞP v1 (meaning that max f ðx; aÞP v1) and f ðx; aÞ 6 v1 (meaning that
min f ðx; aÞ 6 v1) to express the relationships among set values in disjunctive set-valued OIS. Like decision rules in [40], there
are four types of decision rules to be considered:

(1) certain P-decision rules with the following syntax:
if ðf ðx; a1ÞP va1 Þ ^ ðf ðx; a2ÞP va2 Þ ^ � � � ^ ðf ðx; akÞP vak

Þ ^ ðf ðx; akþ1Þ 6 vakþ1
Þ ^ � � � ^ ðf ðx; apÞ 6 vap Þ, then x 2 DP

i ;
(2) possible P-decision rules with the following syntax:

if ðf ðx; a1ÞP va1 Þ ^ ðf ðx; a2ÞP va2 Þ ^ � � � ^ ðf ðx; akÞP vak
Þ ^ ðf ðx; akþ1Þ 6 vakþ1

Þ ^ � � � ^ ðf ðx; apÞ 6 vap Þ, then x could belong
to DP

i ;
(3) certain 6-decision rules with the following syntax:

if ðf ðx; a1Þ 6 va1 Þ ^ ðf ðx; a2Þ 6 va2 Þ ^ � � � ^ ðf ðx; akÞ 6 vak
Þ ^ ðf ðx; akþ1ÞP vakþ1

Þ ^ � � � ^ ðf ðx; apÞP vap Þ, then x 2 D6i ;
(4) possible 6-decision rules with the following syntax:

if ðf ðx; a1Þ 6 va1 Þ ^ ðf ðx; a2Þ 6 va2 Þ ^ � � � ^ ðf ðx; akÞ 6 vak
Þ ^ ðf ðx; akþ1ÞP vakþ1

Þ ^ � � � ^ ðf ðx; apÞP vap Þ, then x could belong
to D6i ;

where O1 ¼ fa1; a2; . . . ; akg# C;O2 ¼ fakþ1; akþ2; . . . ; apg# C, C ¼ O1 [ O2;O1 with increasing preference and O2 with decreas-
ing preference, ðva1 ;va2 ; . . . ;vap Þ 2 Va1 � Va2 � � � � � Vap ; i 6 r.

Therefore, in a disjunctive set-valued ODT, for a given upward or downward union DP
i or D6j ; i; j 6 r, the rules induced

under a hypothesis that objects belonging to R_PA ðD
P
i Þ or to R_6A ðD

6

i Þ are positive and all the others negative suggest the
assignment of an object to ‘‘at least class Di” or to ‘‘at most class Dj”, respectively. Similarly, the rules induced under a
hypothesis that objects belonging to R_PA ðD

P
i Þ or to R_6A ðD

6

i Þ are positive and all the others negative suggest the assignment
of an object could belongs to ‘‘at least class Di” or to ‘‘at most class Dj”, respectively.

Now we employ an example to illustrate disjunctive set-valued ODT and decision rules extracted from this type of ODT in
the following.

Example 4.3. Let us consider a disjunctive set-valued ODT, constructed from the disjunctive set-valued OIS in Table 3 and
extended by decision attributes d as shown in Table 6.

From Table 6, it is easy to see that D ¼ fD1;D2g, where
D1 ¼ fx1; x5; x7; x9; x10g; D2 ¼ fx2; x3; x4; x6; x8g:
In this disjunctive ordered decision table, because only two decision classes are considered, we have DP
1 ¼ D1 and

D62 ¼ D2.



Table 6
A ‘‘
W

” set-valued ordered decision table.

U a1 a2 a3 a4 a5 d

x1 f1g f0;1g f0g f1;2g f2g 2
x2 f0;1g f2g f1;2g f0g f0g 1
x3 f0g f1;2g f1g f0;1g f0g 1
x4 f0g f1g f1g f1g f0;2g 1
x5 f2g f1g f0;1g f0g f1g 2
x6 f0;2g f1g f0;1g f0g f1g 1
x7 f1g f0;2g f0;1g f1g f2g 2
x8 f0g f2g f1g f0g f0;1g 1
x9 f1g f0;1g f0;2g f1g f2g 2
x10 f1g f1g f2g f0;1g f2g 2
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From Definition 4.1, we obtain
R_PC ðD
P
1 Þ ¼ fx1; x7; x9; x10g;

R_PC ðD
P
1 Þ ¼ fx1; x5; x6; x7; x9; x10g;

BnCðDP
1 Þ ¼ fx5; x6g:
Now we compute the dominated class of each object with respect to C in this decision table.
½x1�_6C ¼ fx1; x6; x7; x9g; ½x2�_6C ¼ fx2; x3; x8g; ½x3�_6C ¼ fx2; x3; x4; x8g;
½x4�_6C ¼ fx3; x4; x6g; ½x5�_6C ¼ ½x6�_6C ¼ fx3; x5; x6g;
½x7�_6C ¼ fx1; x2; x3; x4; x6; x7; x8; x9g; ½x8�_6C ¼ fx2; x3; x6; x8g;
½x9�_6C ¼ ½x10�_6C ¼ fx1; x3; x4; x6; x7; x9; x10g:
From Definition 4.2 we easily infer that
R_PC ðD
6

2 Þ ¼ fx2; x3; x4; x8g;

R_PC ðD
6

2 Þ ¼ fx2; x3; x4; x5; x6; x8g;
BnCðD62 Þ ¼ fx5; x6g:
One can obtain the following set of decision rules from the considered disjunctive ordered decision table:

r1 : ða1;P;1Þ ^ ða2;P;0Þ ^ ða3;P;0Þ ^ ða4;P;0Þ ^ ða5;P;2Þ ! ðd;P;2Þ//supported by objects x1; x7; x9;
r2 : ða1;P;1Þ ^ ða2;P;1Þ ^ ða3;P;2Þ ^ ða4;P;0Þ ^ ða5;P;2Þ ! ðd;P;2Þ//supported by objects x10;
r3 : ða1;6;1Þ ^ ða2;6;2Þ ^ ða3;6;2Þ ^ ða4;6;0Þ ^ ða5;6;0Þ ! ðd;6;1Þ//supported by objects x2;
r4 : ða1;6;0Þ ^ ða2;6;2Þ ^ ða3;6;1Þ ^ ða4;6;1Þ ^ ða5;6;0Þ ! ðd;6;1Þ//supported by objects x3;
r5 : ða1;6;0Þ ^ ða2;6;1Þ ^ ða3;6;1Þ ^ ða4;6;1Þ ^ ða5;6;1Þ ! ðd;6;1Þ//supported by objects x4;
r6 : ða1;6;0Þ ^ ða2;6;2Þ ^ ða3;6;1Þ ^ ða4;6;0Þ ^ ða5;6;1Þ ! ðd;6;1Þ//supported by objects x8;
r7 : ða1;¼;2Þ ^ ða2;¼;1Þ ^ ða3;¼; f0;1gÞ ^ ða4;¼;0Þ ^ ða5;¼;1Þ ! ðd;6;1Þ _ ðd;P;2Þ//supported by objects x5;
r8 : ða1;¼; f0;2gÞ ^ ða2;¼;1Þ ^ ða3;¼; f0;1gÞ ^ ða4;¼;0Þ ^ ða5;¼;1Þ ! ðd;6;1Þ _ ðd;P;2Þ//supported by objects x6.

where r1; r2 are certain P-decision rules, r3; r4; r5; r6 are certain6-decision rules, while r7; r8 are not only possible P-decision
rules but also possible 6-decision rules. One can obtain three factors of the decision rule r1
r1 : ða1;P;1Þ ^ ða2;P;0Þ ^ ða3;P;0Þ ^ ða4;P; 0Þ ^ ða5;P;2Þ ! ðd;P;2Þ:

Here cardðk/kÞ ¼ 3; cardðk/ ^ukÞ ¼ 3, cardðkukÞ ¼ 5 and jUj ¼ 10; hence cerðr1Þ ¼ 1, supðr1Þ ¼ 0:3 and covðr1Þ ¼ 0:6.

For any decision rule from a set-valued ODT, it should be minimal. Because a decision rule is an implication, by a minimal
decision rule we understand such an implication to be that there is no other implication with an antecedent of at most the
same weakness (in other words, a rule using a subset of elementary condition or/and weaker elementary conditions) and a
consequent of at least the same strength (in other words, a rule assigning objects to the same union or sub-union of class).
Hence, it is necessary to reduce some dispensable criterions in the condition part of a given set-valued ODT. In next section,
we introduce criterion reduction approaches to a set-valued OIS and a set-valued ODT, respectively.

5. Criteria reductions in set-valued ordered information systems and set-valued ordered decision tables

To extract concise decision rules, it is necessary to reduce some criteria in the condition part of a given set-valued ODT. In
this section, the approaches to the criterion reductions in a \

V
"=\

W
" (conjunctive or disjunctive) set-valued ordered

information system and a conjunctive/disjunctive set-valued ordered decision table are established, and several illustrative
examples are employed to show their mechanisms as well.
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5.1. Criteria reduction to conjunctive set-valued OIS and ODT

In the process of decision-making, sometimes there are some criteria that are redundant for ranking all objects
according to a given dominance relation in ordered information systems. In other words, these criteria can be reduced
from original criterion set on the basis of keeping the ordering of objects in ordered information systems. In this paper,
we will introduce criterion reduction to describe the smallest criterion (attribute) subset that preserves the ordering of
all objects in terms of a given dominance relation in set-valued ordered information systems and set-valued ordered
decision tables.

Firstly, we investigate criteria reduction approach to a conjunctive set-valued ordered information system.

Definition 5.1. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS and A # AT. If R^PA ¼ R^PAT and R^PB – R^PAT for any B � A,
then we call A is a criterion reduction of S.

It is obvious that a criterion reduction of a conjunctive set-valued OIS is a minimal attribute subset satisfying R^PA ¼ R^PAT .
An attribute a 2 AT is called dispensable with respect to R^PAT if R^PAT ¼ R^PðAT�fagÞ; otherwise a is called indispensable. The set of
all indispensable attributes ia called the core with respect to the dominance relation R^PAT and is denoted by coreðATÞ. An attri-
bute in the core must be in every criterion reduction (like the case in complete/incomplete OIS, an OIS may have many reduc-
tions, denoted by redðATÞ). Thus coreðATÞ ¼

T
redðATÞ. The core may be an empty set.

From the above definition, it is easy to see that the criterion reduction is different from the classical attribute reduction
from information systems in rough set theory. The attribute reduction is the smallest attribute subset that preserves the par-
tition induced by original attributes in information systems, but the criterion reduction can preserve the ordering of all ob-
jects in terms of a given dominance relation in ordered information systems. Note that there must exist at least one criterion
reduction in any set-valued ordered information systems.

Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS, A # AT . For convenient representation, let us use the notation
Dis^ðx; yÞ ¼ a 2 Ajðx; yÞ R R^Pa

� �
:

Then we call Dis^ðx; yÞ the discernibility attribute set between x and y, and
Dis^ ¼ ðDis^ðx; yÞ : x; y 2 UÞ

the discernibility matrix of conjunctive set-valued OIS.

Clearly, for 8x; y 2 U we have Dis^ðx; xÞ ¼ ; and Dis^ðx; yÞ \ Dis^ðy; xÞ ¼ ;. The discernibility matrix gives the description of
all of the criterion subsets, in which any two objects can be distinguished by a corresponding subset of criteria. Through
using the discernibility matrix, one will be helpful for constructing and designing the approach to the criteria reduction
in a conjunctive set-valued ordered information systems. It is deserved to point out that one can compute all criterion re-
ducts of a conjunctive set-valued OIS by the discernibility matrix.

The following property provides a way in which reduction of criteria can be completed in conjunctive set-valued OIS.

Property 5.1. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS, A # AT, and Dis^ðx; yÞ the discernibility attributes set of S with
respect to R^PAT , then R^PAT ¼ R^PA iff A \ Dis^ðx; yÞ– ; (Dis^ðx; yÞ – ;).

Proof. ‘‘)” Let R^PAT ¼ R^PA , from the definition of this dominance relation, we obtain for arbitrary x 2 U, ½x�^PAT ¼ ½x�
^P
A holds. If

some y R ½x�^PAT , then y R ½x�^PA . Therefore, there exists a 2 A such that ðx; yÞ R ½x�^Pfag . So one has a 2 Dis^ðx; yÞ. Hence, when
Dis^ðx; yÞ – ; we have A \ Dis^ðx; yÞ – ;.

‘‘(” From the definition of the discernibility attribute set, we know that if ðx; yÞ R ½x�^PAT for any ðx; yÞ 2 U � U, then
Dis^ðx; yÞ– ;. And since A \ Dis^ðx; yÞ – ;, there exists a 2 A such that a 2 Dis^ðx; yÞ, i.e., ðx; yÞ R ½x�^Pfag . So ðx; yÞ R ½x�^PA . Hence
R^PAT � R^PA . On the other hand, from A # AT it follows that R^PAT # R^PA . Hence, one has R^PAT ¼ R^PA .

This completes the proof. h

Definition 5.2. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS, A # AT and Dis^ðx; yÞ the discernibility attributes set of S
with respect to R^PAT . Denoted by
M^ ¼
^ _

fa : a 2 Dis^ðx; yÞg : x; y 2 U
n o

;

then M^ is referred to as the discernibility function.

Through using the discernibility function, one can design the approach to the criterion reduction in a conjunctive set-val-
ued OIS as follows.

Property 5.2. Let S ¼ ðU;AT;V ; f Þ be a conjunctive set-valued OIS. The minimal disjunctive normal form of discernibility function
M is
M^ ¼
_t

k¼1

q̂k

s¼1

ais

 !
:

Denoted by Bk ¼ fais : s ¼ 1;2; . . . ; qkg, then fBk : k ¼ 1;2; . . . ; tg are the set of all criterion reductions of this system.
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Proof. It follows directly from Property 5.1 and the definition of minimal disjunctive normal form of the discernibility
function. h

Property 5.2 provides a practical approach to criterion reduction in a conjunctive set-valued OIS.
In the following, an illustrative example is employed to illustrate the mechanism of this approach.

Example 5.1. Continuation of Example 3.1. Compute all criteria reductions in Table 2.

Briefly, A, S, R and W will stand for Audition, Spoken language, Reading and Writing, respectively. One obtains the discern-
ibility matrix of this system (see Table 7).

Hence, we have
Table 7
The dis

xi=xj

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
M^ ¼ ðA _ S _WÞ ^ ðA _ SÞ ^ ðA _ S _ R _WÞ ^ R ^ ðA _ R _WÞ ^ S ^W ^ ðS _ R _WÞ ^ ðA _WÞ ^ ðR _WÞ ^ ðA _ S _ RÞ
^ ðA _ RÞ ^ ðS _WÞ ^ ðS _ RÞ ¼ S ^ R ^W :
Therefore, fS;R;Wg is a unique criterion reduction for this system, that is, the attribute Audition can be eliminated from
Table 2.

As follows, we research on criterion reduction of conjunctive set-valued ODT for mining more briefer decision rules.
Let S ¼ ðU;C [ fdg;V ; f Þ be a conjunctive set-valued ODT and d is an overall preference of objects. Denoted by
RP
fdg ¼ fðx; yÞ : f ðx;dÞP f ðy;dÞ;
where RP
fdg is a dominance relation of decision attribute d. If R^PC # RP

fdg, then S is called consistent; otherwise it is inconsis-
tent. For example, Table 5 is a consistent conjunctive set-valued ODT in fact. In this paper, we only deal with criterion reduc-
tion of a consistent conjunctive set-valued ODT.

Definition 5.3. Let S ¼ ðU;C [ fdg;V ; f Þ be a consistent conjunctive set-valued ODT, A # C. If R^PA # RP
fdg and R^PB � RP

fdg for
any B � A, then we call A is a relative criterion reduction of S.

Similarly to the idea of reducts of incomplete ODT in [36], we denote by D	 ¼ fðx; yÞ : f ðx; dÞ < f ðy; dÞg, and denote by
Dis	^ðx; yÞ ¼
fa 2 C : ðx; yÞ R R^Pfag g; ðx; yÞ R D	;

;; ðx; yÞ 2 D	:

(

Then Dis	^ðx; yÞ is called a discernibility set for objects x and y, and Dis	^ ¼ ðDis	^ðx; yÞ : x; y 2 UÞ is called a discernibility matrix
for the conjunctive set-valued ODT S.

Similar to the conjunctive set-valued OIS, one can show the following property.

Property 5.3. Let S ¼ ðU;C [ fdg;V ; f Þ be a conjunctive set-valued ODT, A # C and Dis	^ðx; yÞ the discernibility attributes set of S
with respect to RP

fdg, then R^PA # RP
fdg iff A \ Dis	^ðx; yÞ – ; (Dis	^ðx; yÞ– ;).

Proof. The proof is similar to the proof of Property 5.1. h

Definition 5.4. Let S ¼ ðU;C [ fdg;V ; f Þ be a conjunctive set-valued ODT, A # C and Dis	^ðx; yÞ the discernibility attributes set
of S with respect to RP

fdg. Denoted by
M	
^ ¼

^ _
fa : a 2 Dis	^ðx; yÞg : x; y 2 U

n o
;

then M	
^ is referred to as the discernibility function.

By using the discernibility function, one can design the approach to the relative criterion reduction in a conjunctive set-
valued ODT as follows.
cernibility matrix of Table 2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

; A, S, W A, S A, S A, S A, S, R, W A, S, R, W A, S, R, W A, S A, S, W
; ; ; ; ; R R R ; ;
; A, S, W ; A, S A, S A, R, W A, S, R, W A, S, R, W A, S A, S, W
W A, S, W A, S, W ; A, S S, R, W A, S, R, W S, R, W A, W W
A, S, W A, S, W A, S, W A, S ; R, W A, S, R, W A, R, W W A, S, W
A, S, R, W A, S, R, W A, S, R, W A, S, R A, R ; A, S, R, W A, S, R, W A, S, R, W A, S, R
R R R R R R ; R R R
S, W A, S, W A, S, W S, W A, W W A, S, W ; A, W S, W
A, S A, S, W A, S A, S S S, R, W A, S, R, W A, S, R, W ; A, S, W
W A, S, W A, S, W ; A, S S, R A, S, R, W S, R, W A, W ;
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Property 5.4. Let S ¼ ðU;C [ fdg;V ; f Þ be a conjunctive set-valued ODT. The minimal disjunctive normal form of discernibility
function M	^ is
Table 8
The dis

xi=xj

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
M	
^ ¼

_t

k¼1

q̂k

s¼1

ais

 !
:

Denoted by Bk ¼ fais : s ¼ 1;2; . . . ; qkg, then fBk : k ¼ 1;2; . . . ; tg are the set of all relative criterion reductions of this system.

Proof. It follows directly from Property 5.3 and the definition of minimal disjunctive normal form of the discernibility
function. h

Property 5.4 provides a practical approach to relative criterion reduction in a conjunctive set-valued ODT.

Example 5.2. Compute all relative criterion reductions in Table 5.

Table 8 is a discernibility matrix of this consistent decision table, where values of Dis	^ðxi; xjÞ for any pair ðxi; xjÞ of objects
from U are placed.

From Table 8, we have
M	
^ ¼ ðA _ SÞ ^ ðA _ S _ R _WÞ ^ R ^ ðA _ S _WÞ ^ ðA _ R _WÞ ^ S ^W ^ ðS _ R _WÞ ^ ðA _WÞ ^ ðR _WÞ ^ ðS _WÞ
^ ðA _ S _ RÞ ^ ðS _ RÞ ¼ S ^ R ^W :
Hence, there is a unique relative criterion reduction fS;R;Wg in the consistent conjunctive set-valued ordered decision
table. From this example, we know that the condition attributes Spoken language, Reading and Writing are all indispensable
for this decision table. Through the relative criterion reduction, one can obtain more briefer decision rules as follows:

r1 : ðSpoken language; �; fE; FgÞ ^ ðReading; �; fF;GgÞ ^ ðWriting; �; fF;GgÞ ! ðd;P;GoodÞ//supported by objects x2; x3;
r2 : ðSpoken language; �; fE; F;GgÞ ^ ðReading; �; fE;GgÞ ^ ðWriting; �; fE; F;GgÞ ! ðd;P;GoodÞ//supported by objects x7;
r3 : ðSpoken language; �; fF;GgÞ ^ ðReading; �; fE; F;GgÞ ^ ðWriting; �; fE;GgÞ ! ðd;P;GoodÞ//supported by objects x8;
r4 : ðSpoken language; �; fE;GgÞ ^ ðReading; �; fF;GgÞ ^ ðWriting; �; fE; FgÞ ! ðd;P;GoodÞ//supported by objects x2; x10;
r5 : ðSpoken language;# ; fEgÞ ^ ðReading;# ; fF;GgÞ ^ ðWriting;# ; fF;GgÞ ! ðd;6; PoorÞ//supported by objects x1;
r6 : ðSpoken language;# ; fE;GgÞ ^ ðReading;# ; fF;GgÞ ^ ðWriting;# ; fFgÞ ! ðd;6; PoorÞ//supported by objects x4;
r7 : ðSpoken language;# ; fF;GgÞ ^ ðReading;# ; fF;GgÞ ^ ðWriting;# ; fFgÞ ! ðd;6; PoorÞ//supported by objects x5;
r8 : ðSpoken language;# ; fFgÞ ^ ðReading;# ; fE; FgÞ ^ ðWriting; # ; fE; FgÞ ! ðd;6; PoorÞ//supported by objects x6;
r9 : ðSpoken language;# ; fGgÞ ^ ðReading;# ; fF;GgÞ ^ ðWriting;# ; fF;GgÞ ! ðd;6; PoorÞ//supported by objects x9.

where r1; r2; r3; r4 are certain �-decision rules, r5; r6; r7; r8; r9 are certain # -decision rules.

5.2. Criterion reduction to disjunctive set-valued OIS and ODT

First, we give the definition of a criterion reduction of a disjunctive set-valued ordered information system.

Definition 5.5. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS and A # AT. If R_PA ¼ R_PAT and R_PB – R_PAT for any B � A,
then we call A is a criterion reduction of S.

It is clear that a criterion reduction of a disjunctive set-valued OIS is a minimal attribute subset satisfying R_PA ¼ R_PAT . An
attribute a 2 AT is called dispensable with respect to R_PAT if R_PAT ¼ R_PðAT�fagÞ; otherwise a is called indispensable. The set of all
indispensable attributes ia called the core with respect to the dominance relation R_PAT and is denoted by coreðATÞ. An attri-
bute in the core must be in every criterion reduction (like the case in complete/incomplete OIS, an OIS may have many reduc-
tions, denoted by redðATÞ). Thus coreðATÞ ¼

T
redðATÞ. The core may be an empty set.
cernibility matrix of Table 5.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

; ; ; A, S A, S A, S, R, W ; ; A, S ;
; ; ; ; ; R R R ; ;
; A, S, W ; A, S A, S A, R, W A, S, R, W A, S, R, W A, S A, S, W
W ; ; ; A, S S, R, W ; ; A, W ;
A, S, W ; ; A, S ; R, W ; ; W ;
A, S, R, W ; ; A, S, R A, R ; ; ; A,S,R,W ;
R R R R R R ; R R R
S, W A, S, W A, S, W S, W A, W W A, S, W ; A, W S, W
A, S ; ; A, S S S, R, W ; ; ; ;
W A, S, W A, S, W ; A, S S, R A, S, R, W S, R, W A, W ;
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Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS and A # AT. For convenient representation, denoted by
Table 9
The dis

xi=xj

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
Dis_ðx; yÞ ¼ fa 2 Ajðx; yÞ R R_Pa g;
then we call Dis_ðx; yÞ the discernibility attribute set between x and y, and
Dis_ ¼ ðDis_ðx; yÞ : x; y 2 UÞ
the discernibility matrix of disjunctive set-valued OIS. Clearly, for 8x; y 2 U we have Dis_ðx; yÞ \ Dis_ðy; xÞ ¼ ;.
The following property provides a judgement method of a criterion reduction of disjunctive set-valued OIS.

Property 5.5. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS, A # AT and Dis_ðx; yÞ the discernibility attributes set of S with
respect to R_PAT , then R_PAT ¼ R_PA iff A \ Dis_ðx; yÞ– ; (Dis_ðx; yÞ – ;).

Proof. ‘‘)” Let R_PAT ¼ R_PA , from the definition of the dominance relation, we have for arbitrary x 2 U, ½x�_PAT ¼ ½x�
_P
A holds. If

some y R ½x�_PAT , then y R ½x�_PA . Therefore, there exists a 2 A such that ðx; yÞ R ½x�_Pfag . So one has a 2 Dis_ðx; yÞ. Hence, when
Dis_ðx; yÞ– ; we have A \ Dis_ðx; yÞ – ;.

‘‘(” From the definition of the discernibility attribute set, we know that if ðx; yÞ R ½x�_PAT for any ðx; yÞ 2 U � U, then
Dis_ðx; yÞ– ;. And since A \ Dis_ðx; yÞ – ;, there exists a 2 A such that a 2 Dis_ðx; yÞ, i.e., ðx; yÞ R ½x�_Pfag . So ðx; yÞ R ½x�_PA . Hence
R_PAT � R_PA . On the other hand, it follows from A # AT that R_PAT # R_PA . Hence, one has R_PAT ¼ R_PA .

This completes the proof. h

Definition 5.6. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS, A # AT and Dis_ðx; yÞ the discernibility attributes set of S
with respect to R_PAT . Denoted by
M_ ¼
^ _

fa : a 2 Dis_ðx; yÞg : x; y 2 U
n o

;

then M is referred to as the discernibility function.

By using the discernibility function, one can give the approach to the criterion reduction in a disjunctive set-valued OIS as
follows.

Property 5.6. Let S ¼ ðU;AT;V ; f Þ be a disjunctive set-valued OIS. The minimal disjunctive normal form of discernibility function
M_ is
M_ ¼
_t

k¼1

^qk

s¼1
ais

� �
:

Denoted by Bk ¼ fais : s ¼ 1;2; . . . ; qkg, then fBk : k ¼ 1;2; . . . ; tg are the set of all criterion reductions of this system.

Proof. It follows directly from Property 5.5 and the definition of minimal disjunctive normal form of the discernibility
function. h

Property 5.6 provides a practical approach to criterion reduction in a disjunctive set-valued OIS.
In the following, an illustrative example is employed to analyze the mechanism of this approach.

Example 5.3. Here we continue Example 3.3. Compute all criterion reductions in Table 3.
By computing, one can obtain the discernibility matrix of this system (see Table 9).
Hence, we have
M_ ¼ ða2 _ a3Þ ^ a3 ^ a1 ^ ða4 _ a5Þ ^ a4 ^ ða1 _ a5Þ ^ a5 ^ ða1 _ a3 _ a5Þ ^ ða1 _ a3Þ ^ ða3 _ a5Þ ^ ða1 _ a4 ^ a5Þ ^ a2

¼ a1 ^ a2 ^ a3 ^ a4 ^ a5:
cernibility matrix of Table 3.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

; fa2; a3g fa3g fa3g fa1g ; ; fa2; a3g ; fa3g
fa4; a5g ; f;g fa4g fa1; a5g fa5g fa4; a5g ; fa4; a5g fa5g
fa1; a5g ; ; ; fa1; a5g fa5g fa1; a5g ; fa1; a5g fa1; a3; a5g
fa1g fa2g ; ; fa1g ; fa1g fa2g fa1g fa1; a3g
fa4; a5g fa2g ; fa4g ; ; fa4; a5g fa2g fa4; a5g fa3; a5g
fa4; a5g fa2g ; fa4g ; ; fa4; a5g fa2g fa4; a5g fa3; a5g
; ; ; ; fa1g ; ; ; ; fa3g
fa1; a4; a5g ; ; fa4g fa1g ; fa1; a4; a5g ; fa1; a4; a5g fa1; a3; a5g
; fa2g ; ; fa1g ; ; fa2g ; ;
; fa2g ; ; fa1g ; ; fa2g ; ;
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Therefore, fa1; a2; a3; a4; a5g is a unique criterion reduction for this system, that is, any attribute cannot be eliminated from
Table 2.

As follows, we examine how to find a criterion reduction from a given disjunctive set-valued ordered decision table. Let
S ¼ ðU;C [ fdg;V ; f Þ be a disjunctive set-valued ODT, d is an overall preference of objects. Denoted by
Table 1
A consi

U

x1

x2

x3

x4

x5

x6
RP
fdg ¼ fðx; yÞ : f ðx; dÞP f ðy;dÞ;
RP
fdg is a dominance relation of decision attribute d. If R_PC # RP

fdg, then S is called consistent; otherwise it is inconsistent. For
example, Table 10 is a consistent disjunctive set-valued ODT. Next, we deal with criterion reduction of a consistent disjunc-
tive set-valued ODT.

Definition 5.7. Let S ¼ ðU;C [ fdg;V ; f Þ be a consistent disjunctive set-valued ODT and A # C. If R_PA # RP
fdg and R_PB � RP

fdg for
any B � A, then we call A is a relative criterion reduction of S.

Similarly to the idea of reducts of incomplete ODT in [36], we denote by D	 ¼ fðx; yÞ : f ðx; dÞ < f ðy; dÞg, and denote it by
Dis	_ðx; yÞ ¼
fa 2 C : ðx; yÞ R R_Pfag g; ðx; yÞ R D	;

;; ðx; yÞ 2 D	:

(

Then Dis	ðx; yÞ is called a discernibility set for objects x and y, and Dis	_ ¼ ðDis	_ðx; yÞ : x; y 2 UÞ is called a discernibility matrix
for the disjunctive set-valued ODT S.

Similarly to the disjunctive set-valued OIS, we can show the following property.

Property 5.7. Let S ¼ ðU;C [ fdg;V ; f Þ be a disjunctive set-valued ODT, A # C and Dis	_ðx; yÞ the discernibility attributes set of S
with respect to RP

fdg, then R_PA # RP
fdg iff A \ Dis	_ðx; yÞ– ; (Dis	_ðx; yÞ – ;).

Proof. The proof is similar to the proof of Property 5.5. h

Definition 5.8. Let S ¼ ðU;C [ fdg;V ; f Þ be a disjunctive set-valued ODT, A # C and Dis	ðx; yÞ the discernibility attributes set
of S with respect to RP

fdg. Denoted by
M	
_ ¼

^ _
fa : a 2 Dis	_ðx; yÞg : x; y 2 U

n o
;

then M	
_ is referred to as the discernibility function.

By using the discernibility function, one can design the relative criteria reduction in a disjunctive set-valued ODT.

Property 5.8. Let S ¼ ðU;C [ fdg;V ; f Þ be a disjunctive set-valued ODT. The minimal disjunctive normal form of discernibility
function M	_ is
M	
_ ¼

_t

k¼1

q̂k

s¼1

ais

 !
:

Denote by Bk ¼ fais : s ¼ 1;2; . . . ; qkg. Then fBk : k ¼ 1;2; . . . ; tg is the set of all relative criteria reductions of this system.

Proof. It follows directly from Property 5.7 and the definition of minimal disjunctive normal form of the discernibility
function. h

Property 5.8 leads to the method of relative criteria reductions in a disjunctive set-valued ODT.

Example 5.4. Compute all relative criteria reductions in Table 10.
Table 11 is a discernibility matrix of this consistent decision table, where values of Dis	ðxi; xjÞ for any pair ðxi; xjÞ of objects

from U are placed. From Table 11, we have
M	
_ ¼ a1 ^ ða2 _ a3Þ ¼ ða1 ^ a2Þ _ ða1 ^ a3Þ:
0
stent ‘‘

W
” set-valued ordered decision table.

a1 a2 a3 a4 d

f0;1g f0g f0g f0;1g 1
f0g f3g f2g f0g 1
f1g f3g f2g f0;1g 1
f2g f1;2g f1g f1g 2
f2;3g f1g f1g f0;1g 2
f3g f0g f0g f1g 2



Table 11
The discernibility matrix of Table 10.

U x1 x2 x3 x4 x5 x6

x1 ; fa2; a3g fa2; a3g ; ; ;
x2 ; ; a1 ; ; ;
x3 ; ; ; ; ; ;
x4 ; fa2; a3g fa2; a3g ; ; fa1g
x5 ; fa2; a3g fa2; a3g ; ; ;
x6 ; fa2; a3g fa2; a3g fa2; a3g fa2; a3g ;

Table 12
A practical conjunctive set-valued information system from the test for foreign language ability in Shanxi University.

Students Audition Spoken language Reading Writing

x1 fEg fEg fF;Gg fF;Gg
x2 fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg
x3 fF;Gg fFg fF;Gg fF;Gg
x4 fE; Fg fE;Gg fF;Gg fFg
x5 fF;Gg fF;Gg fF;Gg fFg
x6 fFg fFg fE; Fg fE; Fg
x7 fE; F;Gg fE; F;Gg fE;Gg fE; F;Gg
x8 fF;Gg fFg fF;Gg fF;Gg
x9 fE;Gg fGg fF;Gg fF;Gg
x10 fE; Fg fE;Gg fF;Gg fE; Fg
x11 fFg fE; Fg fFg fGg
x12 fE; F;Gg fE;Gg fE; F;Gg fE;Gg
x13 fE; F;Gg fGg fE;Gg fFg
x14 fF;Gg fF;Gg fF;Gg fFg
x15 fE; F;Gg fE; F;Gg fF;Gg fE; Fg
x16 fE;Gg fF;Gg fF;Gg fE;Gg
x17 fE;Gg fFg fE; F;Gg fE;Gg
x18 fE; F;Gg fF;Gg fFg fE; F;Gg
x19 fFg fE; Fg fF;Gg fE; Fg
x20 fEg fEg fF;Gg fF;Gg
x21 fF;Gg fFg fF;Gg fF;Gg
x22 fFg fE; Fg fFg fGg
x23 fE; Fg fE;Gg fF;Gg fFg
x24 fFg fE; Fg fFg fGg
x25 fE; F;Gg fE;Gg fE; F;Gg fE;Gg
x26 fF;Gg fF;Gg fF;Gg fFg
x27 fF;Gg fFg fF;Gg fF;Gg
x28 fE; Fg fE;Gg fF;Gg fFg
x29 fE; F;Gg fF;Gg fFg fE; F;Gg
x30 fE;Gg fFg fFg fE; F;Gg
x31 fF;Gg fF;Gg fE;Gg fF;Gg
x32 fE; F;Gg fE;Gg fE;Gg fF;Gg
x33 fE; F;Gg fF;Gg fF;Gg fF;Gg
x34 fE; F;Gg fF;Gg fE; F;Gg fE;Gg
x35 fFg fE; Fg fFg fGg
x36 fE; F;Gg fF;Gg fFg fE; F;Gg
x37 fF;Gg fFg fF;Gg fF;Gg
x38 fF;Gg fF;Gg fF;Gg fFg
x39 fE; Fg fFg fE; F;Gg fFg
x40 fFg fE; Fg fFg fGg
x41 fE; F;Gg fF;Gg fFg fE; F;Gg
x42 fE; F;Gg fE; F;Gg fE; F;Gg fE;Gg
x43 fE; Fg fFg fE; F;Gg fFg
x44 fFg fFg fF;Gg fE; Fg
x45 fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg
x46 fE;Gg fE;Gg fGFg fF;Gg
x47 fE; F;Gg fE; F;Gg fE; F;Gg fE;Gg
x48 fE; Fg fE;Gg fF;Gg fFg
x49 fE; F;Gg fF;Gg fE; F;Gg fE;Gg
x50 fF;Gg fFg fF;Gg fF;Gg
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Hence, there are two relative criterion reductions fa1; a2g and fa1; a3g in the consistent disjunctive set-valued ordered
decision table. From this example, we know that a1 is indispensable for this decision table because of fa1; a2g \ fa1; a3g ¼
fa1g, and the attribute a4 can be eliminated from the decision table. Obviously, from the relative criterion reductions, we
can extract concise decision rules from this type of decision tables.



Table 13
The discernibility matrix of Table 12.

xi=xj x1 x2 x3 x4 x5 � � � � � � � � � x48 x49 x50

x1 ; A, S, W A,S A, S A, S � � � � � � � � � A, S A, S, W, R A, S
x2 ; ; ; ; ; � � � � � � � � � ; R ;
x3 A, S A, S, W ; A, S S � � � � � � � � � S A, S, R, W ;
x4 W A, S, R A, S, W ; A, S � � � � � � � � � S, W A, R, S, W A, S, W
x5 A, S, W A, S, W W A, S ; � � � � � � � � � S, W A, R, W W
..
. . .

.

..

. . .
.

..

. . .
.

x48 W A, S, R A, S, W ; A, S � � � � � � � � � S, W A, S, R, W A, S, W
x49 S, W S, W W S, W W � � � � � � � � � S ; W
x50 A, S A, S, W ; A, S S � � � � � � � � � S A, S, R, W ;

Table 14
A practical conjunctive set-valued decision table from the test for foreign language ability in Shanxi University.

Students Audition Spoken language Reading Writing Evaluation

x1 fEg fEg fF;Gg fF;Gg Poor
x2 fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg Good
x3 fF;Gg fFg fF;Gg fF;Gg Good
x4 fE; Fg fE;Gg fF;Gg fFg Poor
x5 fF;Gg fF;Gg fF;Gg fFg Poor
x6 fFg fFg fE; Fg fE; Fg Poor
x7 fE; F;Gg fE; F;Gg fE;Gg fE; F;Gg Good
x8 fF;Gg fFg fF;Gg fF;Gg Good
x9 fE;Gg fGg fF;Gg fF;Gg Poor
x10 fE; Fg fE;Gg fF;Gg fE; Fg Good
x11 fFg fE; Fg fFg fGg Good
x12 fE; F;Gg fE;Gg fE; F;Gg fE;Gg Poor
x13 fE; F;Gg fGg fE;Gg fFg Poor
x14 fF;Gg fF;Gg fF;Gg fFg Poor
x15 fE; F;Gg fE; F;Gg fF;Gg fE; Fg Good
x16 fE;Gg fF;Gg fF;Gg fE;Gg Good
x17 fE;Gg fFg fE; F;Gg fE;Gg Poor
x18 fE; F;Gg fF;Gg fFg fE; F;Gg Poor
x19 fFg fE; Fg fF;Gg fE; Fg Poor
x20 fEg fEg fF;Gg fF;Gg Good
x21 fF;Gg fFg fF;Gg fF;Gg Good
x22 fFg fE; Fg fFg fGg Good
x23 fE; Fg fE;Gg fF;Gg fFg Poor
x24 fFg fE; Fg fFg fGg Good
x25 fE; F;Gg fE;Gg fE; F;Gg fE;Gg Poor
x26 fF;Gg fF;Gg fF;Gg fFg Poor
x27 fF;Gg fFg fF;Gg fF;Gg Good
x28 fE; Fg fE;Gg fF;Gg fFg Poor
x29 fE; F;Gg fF;Gg fFg fE; F;Gg Poor
x30 fE;Gg fFg fFg fE; F;Gg Good
x31 fF;Gg fF;Gg fE;Gg fF;Gg Good
x32 fE; F;Gg fE;Gg fE;Gg fF;Gg Good
x33 fE; F;Gg fF;Gg fF;Gg fF;Gg Poor
x34 fE; F;Gg fF;Gg fE; F;Gg fE;Gg Poor
x35 fFg fE; Fg fFg fGg Good
x36 fE; F;Gg fF;Gg fFg fE; F;Gg Poor
x37 fF;Gg fFg fF;Gg fF;Gg Good
x38 fF;Gg fF;Gg fF;Gg fFg Poor
x39 fE; Fg fFg fE; F;Gg fFg Poor
x40 fFg fE; Fg fFg fGg Good
x41 fE; F;Gg fF;Gg fFg fE; F;Gg Poor
x42 fE; F;Gg fE; F;Gg fE; F;Gg fE;Gg Poor
x43 fE; Fg fFg fE; F;Gg fFg Poor
x44 fFg fFg fF;Gg fE; Fg Good
x45 fE; F;Gg fE; F;Gg fF;Gg fE; F;Gg Good
x46 fE;Gg fE;Gg fGFg fF;Gg Good
x47 fE; F;Gg fE; F;Gg fE; F;Gg fE;Gg Poor
x48 fE; Fg fE;Gg fF;Gg fFg Poor
x49 fE; F;Gg fF;Gg fE; F;Gg fE;Gg Poor
x50 fF;Gg fFg fF;Gg fF;Gg Good
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Table 15
The discernibility matrix of Table 14.

xi=xj x1 x2 x3 x4 x5 � � � � � � � � � x48 x49 x50

x1 ; A, S, W A, S ; ; � � � � � � � � � ; ; A, S
x2 ; ; ; ; ; � � � � � � � � � ; R ;
x3 A, S ; ; A, S S � � � � � � � � � S A, S, R, W ;
x4 ; A, S, R A, S, W ; ; � � � � � � � � � S, W A, R, S, W A, S, W
x5 ; A, S, W W ; ; � � � � � � � � � S, W A, R, W W
..
. . .

.

..

. . .
.

..

. . .
.

x48 ; A, S, R A, S, W ; ; � � � � � � � � � ; ; A, S, W
x49 ; S, W W ; ; � � � � � � � � � ; ; W
x50 A, S ; ; A, S S � � � � � � � � � S A, S, R, W ;
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5.3. Experimental analysis

In many practical decision-making issues, set-valued information systems and set-valued decision tables have very wide
applications, which can be used in intelligent decision-making and knowledge discovery from information systems with
uncertain information and set-valued information [53,54]. A decision-maker may need to adopt a better one from some pos-
sible projects or find some directions from existing successful projects before making a decision. The purpose of this section
is to illustrate how to obtain criteria reducts from set-valued ordered information systems and set-valued ordered decision
tables by using the approaches proposed in this paper.

Simply, we only deal with a real-world conjunctive set-valued ordered information system for this target. We omit the
criteria reduction from disjunctive set-valued ordered information systems in this section.

Let us consider a practical decision issue from the test for foreign language ability in Shanxi University. The test results
can be expressed as a conjunctive set-valued information system. Test factors are classified into four factors, which are Audi-
tion, Spoken language, Reading and Writing. These four factors are all inclusion increasing preferences and the value of each
student under each factor is given by an evaluation expert through a set-value. The test results is shown as Table 12, which
can be downloaded in [55], where U ¼ fx1; x2; x3; . . . ; x49; x50g. For convenience, in the sequel, A, S, R, W will stand for Audi-
tion, Spoken language, Reading and Writing, respectively.

From Table 12, through using criteria reduction to conjunctive set-valued OIS in Section 5.1, one can obtain its discern-
ibility matrix, which is shown in Table 13 (its detailed description is put in [55]). Hence, from this discernibility matrix of
Table 13, one can obtain
M^ ¼ ðA _ S _WÞ ^ ðA _ SÞ ^ ðA _ S _ R _WÞ ^ R ^ ðA _ R _WÞ ^ S ^W ^ ðS _ R _WÞ ^ ðA _WÞ ^ ðR _WÞ ^ ðA _ S _ RÞ
^ ðA _ RÞ ^ ðS _WÞ ^ ðS _ RÞ ¼ S ^ R ^W :
Therefore, fS;R;Wg is a unique criteria reduct for this conjunctive set-valued ordered information system. In other words,
the attribute Audition can be reduced from Table 12.

To extract concise dominance rules, we need to compute relative criteria reduction of an ordered decision tables. In what
follows, we analyze the relative criteria reduction from a conjunctive set-valued ordered decision table. Table 14 is one of
this kind of decision tables, which denotes test results about language ability and also can be downloaded in [55], where
U ¼ fx1; x2; x3; . . . ; x49; x50g. For convenience, in the sequel, A, S, R, W and E will stand for the condition attributes Audition,
Spoken language, Reading, Writing and the decision attribute Evaluation, respectively.

Through using the relative criteria reduction to conjunctive set-valued ODT in Section 5.1, one can derive its discernibility
matrix from Table 14, which is shown in Table 15. Hence, from this discernibility matrix of Table 15, it can be calculated that
M	
^ ¼ ðA _ SÞ ^ ðA _ S _ R _WÞ ^ R ^ ðA _ S _WÞ ^ ðA _ R _WÞ ^ S ^W ^ ðS _ R _WÞ ^ ðA _WÞ ^ ðR _WÞ ^ ðA _ S _ RÞ
^ ðA _ RÞ ^ ðS _WÞ ^ ðS _ RÞ ¼ S ^ R ^W :
Thus, there is a relative criteria reduct in this ordered decision table, which is {Spoken language,Reading,Writing}. From
this result, we learn that the test factor Audition is indispensable for this decision problem. In other words, these three fac-
tors Spoken language, Reading and Writing are three important factors for evaluating the language ability of each student.
Through this relative criteria reduct, one can obtain a set of more briefer dominance rules from the original ordered decision
table.

6. Conclusions

Set-valued information systems are generalized models of single-valued information systems, and can be classified into
two categories: disjunctive and conjunctive. We deal with two types of set-valued information systems and decision tables
in present research. Based on the relation between set-values, in this paper, we have introduced dominance relations R^PA
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and R_PA to conjunctive set-valued information systems and disjunctive set-valued information systems, respectively, and
have given a ranking method for all objects through using dominance degree of each object. Based on these two dominance
relations, we have established a rough set approach in these types of OIS, which is mainly based on the substitution of the
indiscernibility relation by the dominance relations. In addition, we have also discussed conjunctive set-valued ordered deci-
sion tables, disjunctive set-valued ordered decision tables, and decision rules extracted from these two types of ordered deci-
sion tables. In order to extract concise decision rules, through using discernibility matrices, we have proposed criteria
reductions to these two types of set-valued ordered information systems and decision tables, which eliminate those infor-
mation that are not essential from the view of the ordering of objects or decision rules. The approaches show how to simplify
a conjunctive/disjunctive set-valued ordered information system and find decision rules directly from a conjunctive/disjunc-
tive set-valued ordered decision table.
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