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1 Introduction

The main idea of recommender system is how to learn ac-
curate users’ embeddings from behavior data [1]. Each di-
mension of users’ embeddings can reflect the interests of
users in different potential aspects. In real-world scenarios,
users’ interests are drifting over time, which brings a chal-
lenge to learn accurate dynamic users’ embeddings. Recent-
ly, various time-aware recommendation methods have been
proposed to tackle this problem by modeling the evolution
process of users’ interests [2–4]. However, they usually as-
sume that users’ embeddings drift with the same range on all
dimensions. In practice, users’ embeddings should change
diversely on different dimensions over time. Specifically, for
the rapidly changing interests of the users, the corresponding
dimensions should change significantly. On the contrary, the
dimensions representing stable interests may change slightly.

To address the above issue, we design a Bayesian Matrix
Factorization model for Dynamic user Embedding (BMFDE)
in recommender system. Specifically, BMFDE extends the
probabilistic matrix factorization model (PMF) to capture the
drifting regularities of users’ embeddings over time. By in-
troducing the dynamic covariance prior, BMFDE regularizes
the users’ embeddings at adjacent time intervals to be simi-
lar to some extent. In particular, to capture the personalized
drifting range for each dimension of users’ embeddings, we
adaptively learn the precision matrix in dynamic covariance
prior from the users’ dynamic behavior data. Moreover, a
variational expectation maximization algorithm is designed
to infer all unknown parameters of the proposed model. The
experimental results demonstrate that BMFDE achieves bet-
ter performance than other comparison methods.
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2 Proposed model
With the consideration of temporal information, at time inter-
val t, we use the inner product of U t

i and V t
j to fit the observed

rating Rt
i j, where U t

i ∈ R
d and V t

j ∈ R
d denote the embeddings

of user i and item j, respectively. And d is the number of la-
tent features. The conditional distribution over the observed
ratings is defined as:

p(R|U,V, σ2
R) =

s∏
t=1

m∏
i=1

n∏
j=1

N(Rt
i j|(U

t
i )

T(V t
j), σ

2
R)It

i j , (1)

where It
i j is the indicator function that is equal to 1 if user i

rated item j at time t and equal to 0 otherwise. m and n repre-
sent the number of users and items, respectively. Generally,
the items are usually described with some fixed attributes [4].
So we assume that items’ embeddings are time-invariant, i.e.,
V1

j = V2
j = ... = V s

j = V j.
To model dynamic users’ embeddings at different time in-

tervals, we propose a series of dynamic covariance priors to
regularize the relevances of users’ embeddings between adja-
cent time intervals. Formally,

p(U |T, σ2
U) ∝ p(U |σ2

U) × p(U |T )

=

s∏
t=1

m∏
i=1

N(U t
i |0, σ

2
UI) × N(U t

i |U
t−1
i , (T t

Ui
)−1), (2)

where T = {T 1
U , ...,T

s
U} and T t

U = {T t
U1
, ...,T t

Um
}. These priors

reflect the drifting process of users’ embeddings over time.
Specifically, we want to learn T t

Ui
to capture the drifting rates

for each dimension of Ui from time t − 1 to t. Since we as-
sume all latent features are independent of each other, T t

Ui

is designed as a d × d diagonal matrix. Besides, a zero-
mean Gaussian prior is chosen to avoid over-fitting. Note
that at time t = 1, we ignore the second term only use zero-
mean Gaussian prior. Moreover, we choose a conjugate prior
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Wishart distributionW for T t
Ui

,

p(T |νU ,ΛU) =

s∏
t=1

m∏
i=1

W(T t
Ui
|νU ,ΛU), (3)

where νU denotes the degree of freedom and ΛU is the scale
matrix. We fix νU = d and learn ΛU from data.

Following Eqs.(1)-(3), the posterior distribution needed to
be optimized in our model is:

arg max
U,V,T

s∏
t=1

m∏
i=1

n∏
j=1

N(Rt
i j|(U

t
i )

TV j, σ
2
R)It

i j

s∏
t=1

m∏
i=1

[N(U t
i |U

t−1
i , (T t

Ui
)−1)W(T t

Ui
|νU ,ΛU)

N(U t
i |0, σ

2
UI)]

n∏
j=1

N(V j|0, σ2
VI). (4)

Approximate Inference. In order to infer the unknown pa-
rameters in Eq. (4), we adopt mean-field variational expecta-
tion maximization algorithm to optimize the hidden variables
Z = {U,V,T } and model parameters θ = {σ2

R, σ
2
U , σ

2
V ,ΛU} it-

eratively. Concretely, we apply a tractable auxiliary probabil-
ity q(Z|θ′) to approximate the posterior distribution p(Z|R, θ),
where θ′ = {λt

Ui
, γt

Ui
, νt

Ui
,Λt

Ui
, λV j , γV j }. Then, we adopt vari-

ational expectation maximization to iteratively update model
parameters θ and variational parameters θ′.

In variational E-step, we focus on the optimization of pa-
rameters θ′, where θ are fixed. We consult the formula of the
logarithmic form of multivariate normal distribution and then
obtain the updating rules of γt

Ui
and λt

Ui
:

γt
Ui

=[
1
σ2

R

n∑
j=1

It
i j(λV jλ

T
V j

+ γV j ) + (d + 1)Λt
Ui

+ (d + 1)Λt+1
Ui

+ σ−2
U I]−1,

λt
Ui

=γt
Ui

[
1
σ2

R

n∑
j=1

It
i jR

t
i jλV j + (d + 1)Λt

Ui
λt−1

Ui

+ (d + 1)Λt+1
Ui
λt

Ui
]. (5)

In the similar way, the updating formulas of γV j , λV j , ν
t
Ui

and Λt
Ui

can be obtained:

γV j = [
1
σ2

R

s∑
t=1

m∑
i=1

It
i j(λ

t
Ui

(λt
Ui

)T
+ γt

Ui
) + σ−2

V I]−1,

λV j = γV j [
1
σ2

R

s∑
t=1

m∑
i=1

It
i jR

t
i jλ

t
Ui

],

νt
Ui

= νU + 1,

Λt
Ui

= [(λt
Ui
− λt−1

Ui
)(λt

Ui
− λt−1

Ui
)T + γt

Ui
+ γt−1

Ui
+ Λ−1

U ]−1. (6)

In variational M-step, variational parameters θ′ are fixed
and model parameters θ need to be updated. Concretely, the
optimal values of parameters θ can be written as a closed-
form solution. For example, we use L to denote the lower

bound of the log p(R|θ), and the closed-form solution of σ2
R

can be computed by letting ∂L
∂σ2

R
= 0:

σ2
R =

1
|R|

s∑
t=1

m∑
i=1

n∑
j=1

It
i j[(R

t
i j)

2 − 2Rt
i j(λ

t
Ui

)T
λV j + tr(γt

Ui
γV j )

+ ((λt
Ui

)T
λV j )

2
+ (λt

Ui
)T
γV jλ

t
Ui

+ λT
V j
γt

Ui
λV j ]. (7)

Similarly, through the derivation we can obtain the solu-
tions of σ2

U , σ
2
V and ΛU :

σ2
U =

1
smd

s∑
t=1

m∑
i=1

(‖λt
Ui
‖22 + tr(γt

Ui
)),

σ2
V =

1
nd

n∑
j=1

(‖λV j‖
2
2 + tr(γV j )),

ΛU =
1

(s − 1)md

s∑
t=2

m∑
i=1

(d + 1)Λt
Ui
. (8)

Rating Prediction. After obtaining the learned parameters by
Eqs. (5)-(8), the prediction of the unobserved rating Rt

i j is
computed by letting ∂L

∂Rt
i j

= 0. The solution can be obtained in
a closed form as follows:

R̂t
i j = (λt

Ui
)T
λV j .

3 Experiments
Three real-world datasets from MovieLens and Dianping are
used in our experiments: 100k, 10m, and dianping. The s-
tatistics of these datasets are described in Table 1. Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE)
are used to measure the performance of all methods. These
metrics are widely used in the recommender system.

Table 1 Statistics of datasets

Features 100k 10m dianping

#users 943 69,878 37,081
#items 1,682 10,677 28,520

#ratings 100,000 10,000,054 1,077,845
density 6.3047% 1.3403% 0.1019%

To evaluate the proposed model, we compare it with ma-
trix factorization-based models PMF, timeSVD++ [2], TM-
F [3], PCCF [4], and neural network-based model LightGC-
N [5]. Tables 2-3 report the MAE and RMSE results on three
datasets. Fig. 1 shows the training time of these model-
s. We can find that BMFDE achieves the best results than
matrix factorization-based methods. Compared with neural
network-based model LightGCN, though the performance of
BMFDE is a little worse in most cases, the training time of
BMFDE is significantly superior to LightGCN.

We investigate the influence of the number of time inter-
vals s and the number of latent features d. We tune s from 1
to 10 by step 1 and search d in {1, 3, 5, 10, 15, 20, 25, 30}. Fig.
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Fig. 1 Training time (seconds) of the comparison methods on three datasets

Table 2 The results compared with matrix factorization-based models

100k 10m dianping
MAE RMSE MAE RMSE MAE RMSE

PMF 0.7414 0.9500 0.6125 0.7991 0.6531 0.8777
timeSVD++ 0.7318 0.9516 0.6163 0.8147 0.5999 0.7901

TMF 0.7676 0.9852 0.6118 0.8000 0.5599 0.7608
PCCF 0.7361 0.9351 0.6116 0.7970 0.5892 0.7740

BMFDE 0.7182 0.9177 0.6055 0.7904 0.5427 0.7225

Table 3 The results compared with neural network-based model

100k 10m dianping
MAE RMSE MAE RMSE MAE RMSE

LightGCN 0.7234 0.9270 0.5993 0.7890 0.5312 0.7039
BMFDE 0.7182 0.9177 0.6055 0.7904 0.5427 0.7225
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Fig. 2 The influence of parameters s and d on MAE on three datasets

2 reports the results on MAE. We can observe that too larg-
er s and d may cause the overfitting problem and the model

performance is adversely affected. The proper s and d have
enough ability to capture the drifting regularities of users’ in-
terests. Therefore, we set s for 100k, 10m, and dianping to
3, 5, and 2, respectively. And we set d for 100k, 10m, and
dianping to 5, 20, and 10, respectively.

4 Conclusion

A Bayesian matrix factorization model for dynamic user em-
bedding has been proposed in this paper. By introducing
the dynamic covariance prior, BMFDE can learn the person-
alized drifting regularities of users’ interests from behavior
data. Besides, we design an efficient Bayesian inference al-
gorithm to infer unknown parameters of BMFDE. Extensive
experiments on real-world datasets demonstrate the effective-
ness of our proposed method.
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