
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Multigranulation decision-theoretic rough sets

Yuhua Qiana, Hu Zhangb, Yanli Sangb, Jiye Lianga,∗

aKey Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan,
030006, Shanxi, China

bSchool of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China

Abstract

The Bayesian decision-theoretic rough sets propose a framework for studying rough set approximations using
probabilistic theory, which can interprete the parametersfrom existing forms of probabilistic approaches to rough
sets. Exploring rough sets in the viewpoint of multigranulation is becoming one of desirable directions in rough
set theory, in which lower/upper approximations are approximated by granular structures induced by multiple binary
relations. Through combining these two ideas, the objective of this study is to develop a new multigranulation rough
set model, called a multigranulation decision-theoretic rough set. Many existing multigranulation rough set models
can be derived from the multigranulation decision-theoretic rough set framework.

Keywords: Decision-theoretic rough sets; Granular computing; Multigranulation; Bayesian decision theory

1. Introduction

Rough set theory, originated by Pawlak [24, 25], has become awell-established theory for uncertainty management
in a wide variety of applications related to pattern recognition, image processing, feature selection, neural computing,
conflict analysis, decision support, data mining and knowledge discovery [3, 5, 10, 11, 15, 16, 28, 29, 30, 31, 34,
36, 41, 55]. In the past ten years, several extensions of the rough set model have been proposed in terms of various
requirements, such as the decision-theoretic rough set model (see [51]), the variable precision rough set (VPRS) model
(see [56, 58]), the rough set model based on tolerance relation (see [12, 13, 14]), the Bayesian rough set model (see
[37]), the Dominance-based rough set model (see [4]), game-theoretic rough set model (see [6, 7]), the fuzzy rough
set model and the rough fuzzy set model (see [2]).

Recently, the probabilistic rough sets have been paid closeattentions [8, 45, 48, 50, 52]. A special issue on
probabilistic rough sets was set up in International Journal of Approximate Reasoning, in which six relative papers
were published [48]. Yao presented a new decision making method based on the decision-theoretic rough set, which is
constructed by positive region, boundary region and negative region, respectively [52]. In the literature [50], the author
further emphasized the superiority of three-way decisionsin probabilistic rough set models. In fact, the probabilistic
rough sets are developed based on the Bayesian decision principle, in which its parameters can be learned from a given
decision table. Three-way decisions are most of superiorities of probabilistic rough set models. The decision-theoretic
rough sets can derive various existing rough set models through setting the thresholdsα andβ. Since the decision-
theoretic rough sets was proposed by Yao [49], it have attracted more and more concerns. Azam and Yao [1] proposed
a threshold configuration mechanism for reducing the overall uncertainty of probabilistic regions in the probabilistic
rough sets. Jia et al. [9] developed an optimization representation of decision-theoretic rough set model, and gave a
heuristic approach and a particle swarm optimization approach for searching an attribute reduction with a minimum
cost. Liu et al. [23] combined the logistic regression and the decision-theoretic rough set into a new classification
approach, which can effectively reduce the misclassification rate. Yu et al. [53] applied decision-theoretic rough set
model for automatically determining the number of clusterswith much smaller time cost.
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In the view of granular computing (proposed by Zadeh [54]), in existing rough set models, a general concept
described by a set is always characterized via the so-calledupper and lower approximations under a single granula-
tion, i.e., the concept is depicted by known knowledge induced from a single relation (such as equivalence relation,
tolerance relation and reflexive relation) on the universe [17, 18, 51]. Conveniently, this kind of rough set models
is called single granulation rough sets, just SGRS. In many circumstances, we often need to describe concurrently a
target concept through multi binary relations according toa user’s requirements or targets of problem solving. Based
on this consideration, Qian et al. [26, 27, 28] introduced multigranulation rough set theory (MGRS) to more widely
apply rough set theory in practical applications, in which lower/upper approximations are approximated by granular
structures induced by multi binary relations. From the viewpoint of rough set’s applications, the multigranulation
rough set theory is very desirable in many real applications, such as multi-source data analysis, knowledge discovery
from data with high dimensions and distributive information systems.

Since the multigranulation rough set was proposed by Qian in2006 [26], the theoretical framework have been
largely enriched, and many extended multigranulation rough set models and relative properties and applications have
also been proposed and studied [27, 28, 29, 30, 31, 32]. Wu andLeung [39] proposed a formal approach to granular
computing with multi-scale data measured at different levels of granulations, and studied theory and applications of
granular labelled partitions in multi-scale decision information systems. Tripathy et al. [38] developed an incomplete
multigranulation rough sets in the context of intuitionistic fuzzy rough sets and gave some important properties of
the new rough set model. Raghavan et al. [33] first researchedthe topological properties of multigranulation rough
sets. Based on the idea of multigranulation rough sets, Xu etal. [42, 43, 44] developed a variable multigranulation
rough set model, a fuzzy multigranulation rough set model and an ordered multigranulation rough set model. Wu [40]
extended classical multigranualtion rough sets to the version based on a fuzzy relation, and proposed a new multigran-
ulation fuzzy rough set (MGFRS). Zhang et al. [57] defined a variable precision multigranulation rough set, in which
the optimistic multigranulation rough sets and the pessimistic one can be regarded as two extreme cases. Through
introducing some membership parameters, this model becomes a multigranulation rough set with dynamic adaption
according to practical acquirements. Yang et al. [46, 47] examined the fuzzy multigranulation rough set theory, and
revealed the hierarchical structure properties of the multigranulation rough sets. Liu and Miao [21, 22] established
a multigranulation rough set approach in covering contexts. Liang et al. [19] presented a kind of efficient feature
selection algorithms for large scale data with a multigranulation strategy. She et al. [35] explored the topological
structures and the properties of multigranulation rough sets. Lin et al. [20] gave a neighborhood multigranulation
rough set model for multigranulation rough data analysis inthe context of hybrid data. In the murigranulation rough
set theory, each of various binary relation determines a corresponding information granulation, which largely impacts
the commonality between each of the granulations and the fusion among all granulations. As one of very important
rough set models, the decision-theoretic rough sets (DTRS)are still not be researched in the context of multigranula-
tion, which limits its further applications in many problems, such as multi-source data analysis, knowledge discovery
from data with high dimensions and distributive information systems.

In what follows, besides those motivations mentioned in first multigranulation rough set paper (see Cases 1-3 in
the literature [29]), we further emphasize the specific interest of multigranulation rough sets, which can be illustranted
from the following three aspects.

• Multigranulation rough set theory is a kind of of information fusion strategies through single granulation rough
sets. Optimistic version and pessimistic version are only two simple methods in these information fusion approaches,
which are used to easily introduce multigranulation ideas to rough set theory.

• In fact, there are some other fusion strategies [20, 39-41, 43]. For instance, in the literature [39], Xu et al.
introduced a supporting characteristic function and a variable precision parameterβ, called an information level, to
investigate a target concept under majority granulations.

•With regard to some special information systems, such as multi-source information systems, distributive infor-
mation systems and groups of intelligent agents, the classical rough sets can not be used to data mining from these
information systems, but multigranulation rough sets can.

In this study, our objective is to develop a new multigranulation rough decision theory through combining the
multigranulation idea and the Bayesian decisoin theory, called multigranulation decision-theoretic rough sets (MG-
DTRS). We mainly give three common forms, the mean multigranulation decision-theoretic rough sets, the optimistic
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multigranulation decision-theoretic rough sets, and the pessimistic multigranulation decision-theoretic rough sets.
The study is organized as follows. Some basic concepts in classical rough sets and multigranulation rough sets

are briefly reviewed in Section 2. In Section 3, we first analyze the loss function and the entire decision risk in the
context of multigranulation. Then, we propose three multigranulation decision-theoretic rough set forms that include
the mean multigranulation decision-theoretic rough sets,the optimistic multigranulation decision-theoretic rough sets,
and the pessimistic multigranulation decision-theoreticrough sets. When the thresholds have a special constraint, the
multigranulation decision-theoretic rough sets will produce one of various variables of multigranulation rough sets.
In Section 4, we establish the relationships among multigranulation decision-theoretic rough sets (MG-DTRS), other
MGRS models, single granulation decision-theoretic roughsets (SG-DTRS) and other SGRS models. Finally, Section
5 concludes this paper by bringing some remarks and discussions.

2. Preliminary knowledge on rough sets

In this section, we review some basic concepts such as information system, Pawlak’s rough set, and optimistic
multigranulation rough set. Throughout this paper, we assume that the universeU is a finite non-empty set.

2.1. Pawlak’s rough set
Formally, an information system can be considered as a pairI =< U, AT >, where

• U is a non–empty finite set of objects, it is called the universe;

• AT is a non–empty finite set of attributes, such that∀a ∈ AT , Va is the domain of attributea.

∀x ∈ U, we denote the value ofx under the attributea (a ∈ AT ) by a(x). Given A ⊆ AT , an indiscernibility
relationIND(A) can be defined as

IND(A) = {(x, y) ∈ U × U : a(x) = a(y), a ∈ A}. (1)

The relationIND(A) is reflexive, symmetric and transitive, thenIND(A) is an equivalence relation. By the indis-
cernibility relationIND(A), one can derive the lower and upper approximations of an arbitrary subsetX of U. They
are defined as

A(X) = {x ∈ U : [x]A ⊆ X} andA(X) = {x ∈ U : [x]A ∩ X , ∅} (2)

respectively, where [x]A = {y ∈ U : (x, y) ∈ IND(A)} is theA–equivalence class containingx. The pair [A(X), A(X)] is
referred to as the Pawlak’s rough set ofX with respect to the set of attributesA.

2.2. Multigranulation rough sets
The multigranulation rough set (MGRS) is different from Pawlak’s rough set model because the former is con-

structed on the basis of a family of indiscernibility relations instead of single indiscernibility relation.
In optimistic multigranulation rough set approach, the word “optimistic” is used to express the idea that in multi

independent granular structures, we need only at least one granular structure to satisfy with the inclusion condition
between equivalence class and the approximated target. Theupper approximation of optimistic multigranulation
rough set is defined by the complement of the lower approximation.

Definition 1. [32] Let I be an information system in which A1, A2, · · · , Am ⊆ AT, then ∀X ⊆ U, the optimistic

multigranulation lower and upper approximations are denoted by
m
∑

i=1

Ai

O

(X) and
m
∑

i=1

Ai

O

(X), respectively,

m
∑

i=1

Ai

O

(X) = {x ∈ U : [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X}; (3)

m
∑

i=1

Ai

O

(X) = ∼















m
∑

i=1

Ai

O

(∼ X)















; (4)

where [x]Ai (1 ≤ i ≤ m) is the equivalence class of x in terms of set of attributes Ai, and ∼ X is the complement of X.
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By the lower approximation
m
∑

i=1

Ai

O

(X) and upper approximation
m
∑

i=1

Ai

O

(X), the optimistic multigranulation

boundary region ofX is

BNO
∑m

i=1 Ai
(X) =

m
∑

i=1

Ai

O

(X) −
m
∑

i=1

Ai

O

(X). (5)

Proposition 1. Let I be an information system in which A1, A2, · · · , Am ⊆ AT, then ∀X ⊆ U, we have

m
∑

i=1

Ai

O

(X) = {x ∈ U : [x]A1 ∩ X , ∅ ∧ [x]A2 ∩ X , ∅ ∧ · · · ∧ [x]Am ∩ X , ∅}. (6)

Proof. By Definition 1, we have

x ∈
m
∑

i=1

Ai

O

(X) ⇔ x <
m
∑

i=1

Ai

O

(∼ X)

⇔ [x]A1 * (∼ X) ∧ [x]A2 * (∼ X) ∧ · · · ∧ [x]Am * (∼ X)

⇔ [x]A1 ∩ X , ∅ ∧ [x]A2 ∩ X , ∅ ∧ · · · ∧ [x]Am ∩ X , ∅.

�

From Proposition 1, it can be seen that though the optimisticmultigranulation upper approximation is defined by
the complement of the optimistic multigranulation lower approximation, it can also be considered as a set in which
objects have non–empty intersection with the target in terms of each granular structure.

Based on the SCED strategy, the following definition gives the formal representation of lower/upper approximation
in the context of multi granular structures.

Definition 2. Let I be an information system in which A1, A2, · · · , Am ⊆ AT, then ∀X ⊆ U, the pessimistic multigran-

ulation lower and upper approximations are denoted by
m
∑

i=1

Ai

P

(X) and
m
∑

i=1

Ai

P

(X), respectively,

m
∑

i=1

Ai

P

(X) = {x ∈ U : [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X}; (7)

m
∑

i=1

Ai

P

(X) = ∼















m
∑

i=1

Ai

P

(∼ X)















. (8)

By the lower approximation
m
∑

i=1

Ai

P

(X) and upper approximation
m
∑

i=1

Ai

P

(X), the pessimistic multigranulation

boundary region ofX is

BNP
∑m

i=1 Ai
(X) =

m
∑

i=1

Ai

P

(X) −
m
∑

i=1

Ai

P

(X). (9)

Proposition 2. Let I be an information system in which A1, A2, · · · , Am ⊆ AT, then ∀X ⊆ U, we have

m
∑

i=1

Ai

P

(X) = {x ∈ U : [x]A1 ∩ X , ∅ ∨ [x]A2 ∩ X , ∅ ∨ · · · ∨ [x]Am ∩ X , ∅}. (10)
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Proof. By Definition 2, we have

x ∈
m
∑

i=1

Ai

P

(X) ⇔ x <
m
∑

i=1

Ai

P

(∼ X)

⇔ [x]A1 * (∼ X) ∨ [x]A2 * (∼ X) ∨ · · · ∨ [x]Am * (∼ X)

⇔ [x]A1 ∩ X , ∅ ∨ [x]A2 ∩ X , ∅ ∨ · · · ∨ [x]Am ∩ X , ∅.

�

Different from the upper approximation of optimistic multigranulation rough set, the upper approximation of
pessimistic multigranulation rough set is represented as aset in which objects have non–empty intersection with the
target in terms of at least one granular structure.

3. MG-DTRS: Multigranulation decision-theoretic rough sets

Probabilistic approaches to rough sets have many forms, such as the decision-theoretic rough set model (DTRS)
[49, 52, 50], the variable precision rough set model [58], the Bayesian rough set model [37], and other related studies.
Specially, the decision-theoretic rough sets proposed by Yao [49, 50, 52] has very strong theoretical basis and sound
semantic interpretation. Through giving special thresholds, the decision-theoretic rough set model can degenerate
into the classical Pawlak rough sets, the variable precision rough set, the 0.5-probabilistic rough set, and so on. In
many real applications such as multi-source data analysis,knowledge discovery from data with high dimensions and
distributive information systems, if one applies the decision-theoretic rough sets in these cases, the multigranulation
version of DTRS will be very desirable. In this section, we will establish a multigranulation decision-theoretic rough
set framework.

3.1. Decision-theoretic rough sets

In this subsection, we briefly review some basic concepts in decision-theoretic rough sets.
In the Bayesian decision procedure, a finite set of states canbe written asΩ = {ω1, ω2, · · · , ωs}, and a finite set of

m possible actions can be denoted byA = {a1, a2, · · · , ar}. Let P(ω j|x) be the conditional probability of an objectx
being in stateω j given that the object is described byx. Letλ(ai|ω j) denote the loss, or cost, for taking actionai when
the state isω j, the expected loss associated with taking actionai is given by

R(ai|x) =
s
∑

j=1
λ(ai|ω j)P(ω j|x).

In classical rough set theory, the approximation operatorspartition the universe into three disjoint classesPOS (A),
NEG(A), and BND(A). Through using the conditional probabilityP(X|[x]), the Bayesian decision precedure can
decide how to assignx into these three disjoint regions [50, 52]. The expected loss R(ai|[x]) associated with taking
the individual actions can be expressed as

R(a1|[x]) = λ11P(X|[x]) + λ12P(Xc|[x]),
R(a2|[x]) = λ21P(X|[x]) + λ22P(Xc|[x]),
R(a3|[x]) = λ31P(X|[x]) + λ32P(Xc|[x]),

whereλi1 = λ(ai|X), λi2 = λ(ai|Xc), andi = 1, 2, 3. Whenλ11 ≤ λ31 < λ21 andλ22 ≤ λ32 < λ12, the Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) If P(X|[x]) ≥ γ andP(X|[x]) ≥ α, decisionPOS (X);
(N) If P(X|[x]) ≤ β andP(X|[x]) ≤ γ, decisionNEG(X);
(B) If β ≤ P(X|[x]) ≤ α, decideBND(X);

where

α =
λ12−λ32

(λ31−λ32)−(λ11−λ12)
,
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γ =
λ12−λ22

(λ21−λ22)−(λ11−λ12)
,

β =
λ32−λ22

(λ21−λ22)−(λ31−λ32)
.

If a loss function withλ11 ≤ λ31 < λ21 andλ22 ≤ λ32 < λ12 further satisfies the condition:

(λ12− λ32)(λ21− λ31) ≥ (λ31− λ11)(λ32− λ22),

thenα ≥ γ ≥ β.
Whenα > β, we haveα > γ > β. The decision-theoretic rough set has the decision rules:

(P1) If P(X|[x]) ≥ α, decidePOS (X);
(N1) If P(X|[x]) ≤ β, decideNEG(X);
(B1) If β < P(X|[x]) < α, decideBND(X).

Using these three decision rules, we get the probabilistic approximation:

apr
α
(X) = {x : P(X|[x]) ≥ α, x ∈ U},

aprβ(X) = {x : P(X|[x]) > β, x ∈ U}.

Whenα = β, we haveα = γ = β. The decision-theoretic rough set has the following decision rules:

(P2) If P(X|[x]) > α, decidePOS (X);
(N2) If P(X|[x]) < α, decideNEG(X);
(B2) If P(X|[x]) = α, decideBND(X).

Using the above three decision rules, we get the probabilistic approximation:

apr
α
(X) = {x : P(X|[x]) > α, x ∈ U},

aprα(X) = {x : P(X|[x]) ≥ α, x ∈ U}.

In the framework of decision-theoretic rough sets, the Pawlak rough set model, the variable precision rough set
model, the Bayesian rough set model and the 0.5-probabilisitc rough set model can be pooled together and studied
based on the notions of conditional functions.

3.2. Theoretical foundation in multigranulation decision-theoretic rough sets

The multigranulation rough set (MGRS) is different from Pawlak’s rough set model because the former is con-
structed on the basis of a family of indiscernibility relations instead of single indiscernibility relation.

GivenR1,R2, · · · ,Rm ⊆ R m granular structures and∀X ⊆ U, the lower/upper approximation in a multigranulation
rough set can be formally represented as two fusion functions, respectively,

m
∑

i=1

Ri(X) = fl(R1,R2, · · · ,Rm),

m
∑

i=1

Ri(X) = fu(R1,R2, · · · ,Rm),

where fl is called a lower fusion function, andfu is called an upper fusion function. These two functions are used to
compute the lower/upper approximation of a multigranulation rough set through fusingm granular structures.

In practical applications of multigranulation rough sets,the fusion function has many forms according to various
semantics and requirements. Conveniently, letλk(ai|ω j) denote the loss, or cost, for taking actionai when the state is
ω j by k-th granular structures. LetP(ω j|xk) be the conditional probability of an objectx being in stateω j given that
the object is described byxk underk-th granular structures. The expected loss associated withtaking actionai is given
by

R(ai|x1, x2, · · · , xm) =
m
∑

k=1

s
∑

j=1

λk(ai|ω j)P(ω j|xk). (11)
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The expected lossR(ai|x1, x2, · · · , xm) is a conditional risk.τ(x1, x2, · · · , xm) specifies which action to take, and
its value is one of the actionsa1, a2, · · · , ar. The overall riskR is the expected loss associated with the decision rule
τ(x1, x2, · · · , xm), the overall risk is defined by

R =
∑

x1,x2,···,xm

R(τ(x1, x2, · · · , xm)|x1, x2, · · · , xm)P(x1, x2, · · · , xm), (12)

whereP(x1, x2, · · · , xm) is a joint probability, which is calculated through fusing(P(x1), P(x2), · · · , P(xm)) induced by
m granular structures induced by the same universe.

Given multiple granular structuresR1,R2, · · · ,Rm ⊆ R, the multigranulation decision-theoretic rough sets aim
to select a series of actions for which the overall risk is as small as possible, in which the actions include deciding
positive region, deciding negative region and deciding boundary region.

In the multigranulation decision-theoretic rough sets, there are two kinds of assumptions. One assumes that the
values ofλk(ai|ω j), k ≤ m, are all equal each other, and the other assumes that they arenot equivalent, in which each
granular structure has its independent loss( or cost) functions itself. In order to introduce the idea of multigranulation
decision-theoretic rough sets, this paper only deals with the first assumption. Hence, the determined procedure of the
parametersα, β andγ is consistent with that of classical decision-theoretic rough sets, and the value of each parameter
in every granular structure is also equal each other. The multigranulation decision-theoretic rough sets for the second
assumption will be established in future work.

3.3. Three cases of multigranulation decision-theoretic rough sets

Givenm granular structuresR1,R2, · · · ,Rm ⊆ R, whenλk(ai|ω j) = λl(ai|ω j), k, l ∈ {1, 2, · · · ,m}, the expected loss
associated with taking actionai can be given by

R(ai|x1, x2, · · · , xm) =
m
∑

k=1

s
∑

j=1

λ(ai|ω j)P(ω j|xk). (13)

In this case, the information fusion in multigranulation decision-theoretic rough sets can be simplified as the fusion
of a set of probabilities under the same universe. In this subsection, we give three multigranulation decision-theoretic
rough set models, which are a mean multigranulation decision-theoretic rough set (MMG-DTRS), an optimistic multi-
granulation decision-theoretic rough set (OMG-DTRS) and apessimistic multigranulation decision-theoretic rough
set (PMG-DTRS), respectively.

3.3.1. Mean multigranulation decision-theoretic rough sets
In multigranulation decision-theoretic rough sets, when the loss function is fixed, judging the conditional proba-

bility of an objectx within a target concept inm granular structures can be computed by its mathematic expectation.
That is to say,

E(P(X|x)) = P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m. (14)

The joint probability is estimated by the mean value ofm conditional probabilities. Based on this idea, hence we
give a kind of multigranulation decision-theoretic rough set, called mean multigranulation decision-theoretic rough
sets. Its formal definition is as follows.

Definition 3. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U, the mean multigranulation lower and

upper approximations are denoted by
m
∑

i=1

Ri

M, α

(X) and
m
∑

i=1

Ri

M, β

(X), respectively,

m
∑

i=1

Ri

M, α

(X) = {x : (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≥ α, x ∈ U}; (15)
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m
∑

i=1

Ri

M, β

(X) = U − {x : (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≤ β, x ∈ U}; (16)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the
equivalent class [x]Ri with respect to X, and α, β are two probability constraints.

By the lower approximation
m
∑

i=1

Ri

M, α

(X) and upper approximation
m
∑

i=1

Ri

M, β

(X), the mean multigranulation

boundary region ofX is

BNM
∑m

i=1 Ri
(X) =

m
∑

i=1

Ri

M, β

(X) −
m
∑

i=1

Ri

M, α

(X). (17)

Similar to the classical decision-theoretic rough sets, when the thresholdsα > β, we can obtain the decision rules
tie-broke:

(MP1) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≥ α, decidePOS (X);
(MN1) If ( P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≤ β, decideNEG(X);
(MB1) If β < (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m < α, decideBND(X).

Whenα = β, we haveα = γ = β. The mean multigranulation decision-theoretic rough set has the following
decision rules:

(MP2) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m > α, decidePOS (X);
(MN2) If ( P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m < α, decideNEG(X);
(MB2) If ( P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m = α, decideBND(X).

3.3.2. Optimistic multigranulation decision-theoretic rough sets
In existing optimistic multigranulation rough set approaches, the word “optimistic” is used to express the idea that

in multi independent granular structures, its multigranulation lower approximation only needs at least one granular
structure to satisfy with the inclusion condition between an equivalence class and the approximated target. While
the upper approximation of an optimistic multigranulationrough set is defined by the complement of the lower ap-
proximation. Based on this idea, in this part, we develop an optimistic multigranulation decision-theoretic rough
set.

In this optimistic multigranulation decision-theoretic rough set, its lower approximation collects those objects in
which each object has at least one granular structure satisfying the probability constraint (≥ α) between its equivalence
class and the approximate target, while its upper approximation collects those objects in which each object has all
granular structures satisfying the probability constraint (≤ β) between its equivalence class and the approximate
target.

Definition 4. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U, the optimistic multigranulation lower

and upper approximations are denoted by
m
∑

i=1

Ri

O, α

(X) and
m
∑

i=1

Ri

O, β

(X), respectively,

m
∑

i=1

Ri

O, α

(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U}; (18)

m
∑

i=1

Ri

O, β

(X) = U − {x : P(X|[x]R1) ≤ β ∧ P(X|[x]R2) ≤ β ∧ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U}; (19)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the
equivalent class [x]Ri with respect to X, and α, β are two probability constraints.
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By the lower approximation
m
∑

i=1

Ri

O, α

(X) and upper approximation
m
∑

i=1

Ri

O, β

(X), the optimistic multigranulation

boundary region ofX is

BNO
∑m

i=1 Ri
(X) =

m
∑

i=1

Ri

O, β

(X) −
m
∑

i=1

Ri

O, α

(X). (20)

From the definition of optimistic multigranulation decision-theoretic rough sets, one can obtain the following three
propositions.

Proposition 3. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

1)
∑m

i=1 Ri
O, α(X) ⊇ Ri

α
(X), i ≤ m;

2)
∑m

i=1 Ri
O, β

(X) ⊆ Riβ(X), i ≤ m;

where Ri
α
(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.

Proposition 4. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

1)
∑m

i=1 Ri
O, α(X) =

⋃m
i=1 Ri

α
(X);

2)
∑m

i=1 Ri
O, β

(X) =
⋂m

i=1 Riβ(X);

where Ri
α
(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.

Proposition 5. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X1 ⊆ X2 ⊆ U. Then, the following properties
hold

1)
∑m

i=1 Ri
O, α(X1) ⊆

∑m
i=1 Ri

O, α(X2);

2)
∑m

i=1 Ri
O, β

(X1) ⊆
∑m

i=1 Ri
O, β

(X2).

Similar to the classical decision-theoretic rough sets, when the thresholdsα > β, we can obtain the decision rules
tie-broke:

(OP1) If∃i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) ≥ α, decidePOS (X);
(ON1) If ∀i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) ≤ β, decideNEG(X);
(OB1) Otherwise, decideBND(X).

Whenα = β, we haveα = γ = β. The optimisitc multigranulation decision-theoretic rough set has the following
decision rules:

(OP2) If∃i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) > α, decidePOS (X);
(ON2) If ∀i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) < α, decideNEG(X);
(OB2) Otherwise, decideBND(X).

3.3.3. Pessimistic multigranulation decision-theoretic rough sets
In decision making analysis, “Seeking common ground while eliminating differences” (SCED) is one of usual

decision strategies. This strategy argues that one reserves common decisions while deleting inconsistent decisions,
which can be seen as a conservative decision strategy. Basedon this consideration, Qian et al. [31] proposed a so-
called pessimistic multigranulation rough set. In this subsection, we will combine pessimistic multigranulation rough
set and decision-theoretic rough set into an entire decision framework together.

In the pessimistic multigranulation decision-theoretic rough sets, its lower approximation collects those objects
in which its equivalence class from all granular structuressatisfying the probability constraint (≥ α) between its
equivalence class and the approximate target, while its upper approximation collects those objects in which each
object has at least one granular structure satisfying the probability constraint (≤ β) between its equivalence class and
the approximate target.
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Definition 5. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U, the pessimistic multigranulation lower

and upper approximations are denoted by
m
∑

i=1

Ri

P, α

(X) and
m
∑

i=1

Ri

P, β

(X), respectively,

m
∑

i=1

Ri

P, α

(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U}; (21)

m
∑

i=1

Ri

P, β

(X) = U − {x : P(X|[x]R1) ≤ β ∨ P(X|[x]R2) ≤ β ∨ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U}; (22)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the
equivalent class [x]Ri with respect to X, and α, β are two probability constraints.

By the lower approximation
m
∑

i=1

Ai

P, α

(X) and upper approximation
m
∑

i=1

Ai

P, β

(X), the pessimistic multigranulation

boundary region ofX is

BNP
∑m

i=1 Ri
(X) =

m
∑

i=1

Ri

P, β

(X) −
m
∑

i=1

Ri

P, α

(X). (23)

From the definition of pessimistic multigranulation decision-theoretic rough set, the following three propositions
can be easily induced.

Proposition 6. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

1)
∑m

i=1 Ri
P, α(X) ⊆ Ri

α
(X), i ≤ m;

2)
∑m

i=1 Ri
P, β

(X) ⊇ Riβ(X), i ≤ m;

where Ri
α
(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.

Proposition 7. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

1)
∑m

i=1 Ri
P, α(X) =

⋂m
i=1 Ri

α
(X);

2)
∑m

i=1 Ri
P, β

(X) =
⋃m

i=1 Riβ(X);

where Ri
α
(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.

Proposition 8. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X1 ⊆ X2 ⊆ U. Then, the following properties
hold

1)
∑m

i=1 Ri
P, α(X1) ⊆

∑m
i=1 Ri

P, α(X2);

2)
∑m

i=1 Ri
P, β

(X1) ⊆
∑m

i=1 Ri
P, β

(X2).

Similar to the classical decision-theoretic rough sets, when the thresholdsα > β, we can obtain the decision rules
tie-broke:

(PP1) If∀i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) ≥ α, decidePOS (X);
(PN1) If ∃i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) ≤ β, decideNEG(X);
(PB1) Otherwise, decideBND(X).

Whenα = β, we haveα = γ = β. The pessimistic multigranulation decision-theoretic rough set has the following
decision rules:

(PP2) If∀i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) > α, decidePOS (X);
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(PN2) If ∃i ∈ {1, 2, · · · ,m} such thatP(X|[x]Ri) < α, decideNEG(X);
(PB2) Otherwise, decideBND(X).

The following proposition establishes the relationships among the mean multigranulation decision-theoretic rough
sets, the optimistic multigranulation decision-theoretic rough sets, and the pessimistic multigranulation decision-
theoretic rough sets.

Proposition 9. Given R1,R2, · · · ,Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

1)
∑m

i=1 Ri
P, α(X) ⊆

∑m
i=1 Ri

M, α(X) ⊆
∑m

i=1 Ri
O, α(X);

2)
∑m

i=1 Ri
P, β

(X) ⊇
∑m

i=1 Ri
M, β

(X) ⊇
∑m

i=1 Ri
O, β

(X).

4. Relationships between MG-DTRS and other MGRS models

4.1. Classical multigranulation rough sets

In the decision-theoretic rough sets, the probability value, the thresholdsα andβ decide its detailed form of rough
sets. From Yao’s work [50, 52], it follows that whenα = 1 andβ = 0, the decision-theoretic rough sets will degenerate
into the standard rough sets. In this case, we have that

P(X|[x]R) = |[x]R∩X |
|[x]R |

= 1⇔ [x]R ⊆ X,

P(X|[x]R) = |[x]R∩X |
|[x]R |

= 0⇔ [x]R ∩ X = Ø.

Hence,
∑m

i=1 Ri
O, α(X) = {x : P(X|[x]R1) ≥ 1∨ P(X|[x]R2) ≥ 1∨ · · · ∨ P(X|[x]Rm) ≥ 1, x ∈ U}

⇒
∑m

i=1 Ri
O, α(X) = {x : [x]R1 ⊆ X ∨ [x]R2 ⊆ X ∨ · · · ∨ [x]Rm ⊆ X, x ∈ U},

and
∑m

i=1 Ri
O, β

(X) = U − {x : P(X|[x]R1) ≤ 0∧ P(X|[x]R2) ≤ 0∧ · · · ∧ P(X|[x]Rm) ≤ 0, x ∈ U}

⇒
∑m

i=1 Ri
O, β

(X) = {x : [x]R1 ∩ X , Ø∧ [x]R2 ∩ X , Ø∧ · · · ∧ [x]Rm ∩ X , Ø, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are consistent with those
in classical optimistic multigranulation rough sets (OMGRS) [32]. Hence, whenα = 1 andβ = 0, the optimistic
multigranulation decision-theoretic rough sets (OMG-DTRS) will degenerate into the optimistic multigranulation
rough sets (OMGRS).

Similarly, one has that
∑m

i=1 Ri
P, α(X) = {x : P(X|[x]R1) ≥ 1∧ P(X|[x]R2) ≥ 1∧ · · · ∧ P(X|[x]Rm) ≥ 1, x ∈ U}

⇒
∑m

i=1 Ri
P, α(X) = {x : [x]R1 ⊆ X ∧ [x]R2 ⊆ X ∧ · · · ∧ [x]Rm ⊆ X, x ∈ U},

and
∑m

i=1 Ri
P, β

(X) = U − {x : P(X|[x]R1) ≤ 0∨ P(X|[x]R2) ≤ 0∨ · · · ∨ P(X|[x]Rm) ≤ 0, x ∈ U}

⇒
∑m

i=1 Ri
P, β

(X) = {x : [x]R1 ∩ X , Ø∨ [x]R2 ∩ X , Ø∨ · · · ∨ [x]Rm ∩ X , Ø, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are equivalent to those
in classical pessimistic multigranulation rough sets (PMGRS) [31]. Thus, pessimistic multigranulation decision-
theoretic rough sets (PMG-DTRS) will degenerate into the pessimistic multigranulation rough sets (PMGRS).

4.2. Variable multigranulation rough sets

Whenα + β = 1 and 0≤ β ≤ 0.5 < α ≤ 1, the decision-theoretic rough sets become the variable precision rough
sets. The condition 0≤ β ≤ 0.5 < α ≤ 1 follows that the lower approximation is a subset of the upper approximation.
Hence,

∑m
i=1 Ri

O, α(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U},
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MG�DTRSMG	PRS MG�VRS MG�0.5PRSSG�PRS SG#VRS SG(0.5PRS
(a) Relationship between MG-DTRS and other
MGRS models

MG0DTRSSG7DTRSSG=PRS SGBVRS SGG0.5PRS
(b) Relationship between MG-DTRS and SG-
DTRS

Figure 1: Relationships among MG-DTRS, other MGRS models, SG-DTRS and other SGRS models

∑m
i=1 Ri

O, β
(X) = U − {x : P(X|[x]R1) ≤ β ∧ P(X|[x]R2) ≤ β ∧ · · · ∧ P(X|[x]Rm) ≤ β, x ∈ U},

⇒
∑m

i=1 Ri
O, α(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U},

∑m
i=1 Ri

O, β
(X) = {x : P(X|[x]R1) > 1− α ∧ P(X|[x]R2) > 1− α ∧ · · · ∧ P(X|[x]Rm) > 1− α, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are consistent with those in
the optimistic variable precision multigranulation roughsets (OVMGRS) proposed by [57]. Hence, whenα + β = 1
and 0≤ β ≤ 0.5 < α ≤ 1, OMG-DTRS will degenerate into the optimistic variable precision multigranulation rough
sets (OVMGRS).

Similarly, the pessimistic multigranulation decision-theoretic rough sets have the following properties.
∑m

i=1 Ri
P, α(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U},

∑m
i=1 Ri

P, β
(X) = U − {x : P(X|[x]R1) ≤ β ∨ P(X|[x]R2) ≤ β ∨ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U},

⇒
∑m

i=1 Ri
P, α(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U},

∑m
i=1 Ri

P, β
(X) = {x : P(X|[x]R1) > 1− α ∨ P(X|[x]R2) > 1− α ∨ · · · ∨ P(X|[x]Rm) > 1− α, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are equivalent to those in
the pessimistic variable precision multigranulation rough sets (PVMGRS) developed by Zhang et al. [57]. Thus,
PMG-DTRS will degenerate into the pessimistic variable precision multigranulation rough sets (PVMGRS).

When the thresholdsα andβ have other constrain relationships, the multigranulationdecision-theoretic rough sets
will produce various variables of multigranulation rough sets, which can be applied in many practical applications.

Based on the above discussions, we can obtain the relationships among MG-DTRS, other MGRS models, SG-
DTRS and other SGRS models, which is shown as Figure 1. In thisfigure, MG-PRS means a multigranulation
probabilistic rough set, MG-VRS is a multigranulation variable precision rough set, and MG-0.5PRS means a multi-
granulation 0.5-probabilistic rough set, while SG-PRS means a MG-PRS means a multigranulation probabilistic rough
set, probabilistic rough set, SG-VRS is a single granulation variable precision rough set, and MG-0.5PRS means a
single granulation 0.5-probabilistic rough set, respectively.

5. Conclusions

Multigranulation rough set theory (MGRS) is one of desirable directions in rough set theory, in which lower/upper
approximations are approximated by granular structures induced by multiple binary relations. It provides a new
perspective for decision making analysis based on the roughset theory. In this paper, we have first proposed a new
multigranulation rough set model through combining MGRS and the decision-theoretic rough sets together, called a
multigranulation decision-theoretic rough set model. In this framework, we have given three forms of MG-DTRS,
which are mean multigranulation decision-theoretic roughsets, optimistic multigranulation decision-theoretic rough
sets, and pessimistic multigranulation decision-theoretic rough sets. These forms of MG-DTRS can derive many
existing multigranulation rough set models when the parameters satisfy special constraints. Finally, we have also
established the relationships among multigranulation decision-theoretic rough sets, multigranulation rough sets and
single granulation rough sets.
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This study only develops a framework of multigranulation decision-theoretic rough sets, in which there are still
many interesting issues to be explored. Its future direction has four aspects: (1) model extension of multigranulation
decision-theoretic rough sets in other types of data sets; (2) information fusion based on multiple granular structures;
(3) information granule selection and granulation selection; and (4) applications of multigranulation decision-theoretic
rough sets. It is deserved to point out that the multigranulation decision-theoretic rough set and standard decision-
theoretic rough set can be combined to data mining and decision making in real applications, such as multi-source
information systems, data with high dimensions, distributive information systems.
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