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Abstract

The Bayesian decision-theoretic rough sets propose a Wwarkefor studying rough set approximations using
probabilistic theory, which can interprete the paramebemn existing forms of probabilistic approaches to rough
sets. Exploring rough sets in the viewpoint of multigratiolais becoming one of desirable directions in rough
set theory, in which loweguapper approximations are approximated by granular strestmduced by multiple binary
relations. Through combining these two ideas, the objedihis study is to develop a new multigranulation rough
set model, called a multigranulation decision-theoreadiogh set. Many existing multigranulation rough set models
can be derived from the multigranulation decision-thdometugh set framework.
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1. Introduction

Rough set theory, originated by Pawlak [24, 25], has beconadlaestablished theory for uncertainty management
in a wide variety of applications related to pattern rectignj image processing, feature selection, neural comguti
conflict analysis, decision support, data mining and kndgtediscovery [3, 5, 10, 11, 15, 16, 28, 29, 30, 31, 34,
36, 41, 55]. In the past ten years, several extensions ofilnghrset model have been proposed in terms of various
requirements, such as the decision-theoretic rough se¢iteek [51]), the variable precision rough set (VPRS) model
(see [56, 58]), the rough set model based on tolerancearlédee [12, 13, 14]), the Bayesian rough set model (see
[37]), the Dominance-based rough set model (see [4]), gdmmeretic rough set model (see [6, 7]), the fuzzy rough
set model and the rough fuzzy set model (see [2]).

Recently, the probabilistic rough sets have been paid cttemtions [8, 45, 48, 50, 52]. A special issue on
probabilistic rough sets was set up in International JdushApproximate Reasoning, in which six relative papers
were published [48]. Yao presented a new decision makinoadiased on the decision-theoretic rough set, which is
constructed by positive region, boundary region and negatigion, respectively [52]. In the literature [50], theraar
further emphasized the superiority of three-way decisinnsobabilistic rough set models. In fact, the probakist
rough sets are developed based on the Bayesian decisiaipiginn which its parameters can be learned from a given
decision table. Three-way decisions are most of supegeritf probabilistic rough set models. The decision-théore
rough sets can derive various existing rough set modelsi¢iirgetting the thresholdsandpg. Since the decision-
theoretic rough sets was proposed by Yao [49], it have adidamore and more concerns. Azam and Yao [1] proposed
a threshold configuration mechanism for reducing the olaralertainty of probabilistic regions in the probabilisti
rough sets. Jia et al. [9] developed an optimization repriasien of decision-theoretic rough set model, and gave a
heuristic approach and a particle swarm optimization agghdor searching an attribute reduction with a minimum
cost. Liu et al. [23] combined the logistic regression angl diecision-theoretic rough set into a new classification
approach, which canfiectively reduce the misclassification rate. Yu et al. [53}lagul decision-theoretic rough set
model for automatically determining the number of clusteitt much smaller time cost.
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In the view of granular computing (proposed by Zadeh [54])existing rough set models, a general concept
described by a set is always characterized via the so-caflpdr and lower approximations under a single granula-
tion, i.e., the concept is depicted by known knowledge irdiuitom a single relation (such as equivalence relation,
tolerance relation and reflexive relation) on the univetdsg L8, 51]. Conveniently, this kind of rough set models
is called single granulation rough sets, just SGRS. In mammymstances, we often need to describe concurrently a
target concept through multi binary relations according teser’s requirements or targets of problem solving. Based
on this consideration, Qian et al. [26, 27, 28] introducedtigranulation rough set theory (MGRS) to more widely
apply rough set theory in practical applications, in whioWéyupper approximations are approximated by granular
structures induced by multi binary relations. From the yieimt of rough set’s applications, the multigranulation
rough set theory is very desirable in many real applicatisash as multi-source data analysis, knowledge discovery
from data with high dimensions and distributive informatgystems.

Since the multigranulation rough set was proposed by Qic2006 [26], the theoretical framework have been
largely enriched, and many extended multigranulation hoaeg models and relative properties and applications have
also been proposed and studied [27, 28, 29, 30, 31, 32]. WiLeug [39] proposed a formal approach to granular
computing with multi-scale data measured dfatient levels of granulations, and studied theory and agipbics of
granular labelled partitions in multi-scale decision imfiation systems. Tripathy et al. [38] developed an incoeple
multigranulation rough sets in the context of intuitiordsuzzy rough sets and gave some important properties of
the new rough set model. Raghavan et al. [33] first researitteetbpological properties of multigranulation rough
sets. Based on the idea of multigranulation rough sets, Yal 82, 43, 44] developed a variable multigranulation
rough set model, a fuzzy multigranulation rough set moddlamordered multigranulation rough set model. Wu [40]
extended classical multigranualtion rough sets to thametzased on a fuzzy relation, and proposed a new multigran-
ulation fuzzy rough set (MGFRS). Zhang et al. [57] definedr@alde precision multigranulation rough set, in which
the optimistic multigranulation rough sets and the pessimbne can be regarded as two extreme cases. Through
introducing some membership parameters, this model becamaultigranulation rough set with dynamic adaption
according to practical acquirements. Yang et al. [46, 4&heixed the fuzzy multigranulation rough set theory, and
revealed the hierarchical structure properties of the igralhulation rough sets. Liu and Miao [21, 22] established
a multigranulation rough set approach in covering contektang et al. [19] presented a kind offieient feature
selection algorithms for large scale data with a multigtation strategy. She et al. [35] explored the topological
structures and the properties of multigranulation rougdh.skin et al. [20] gave a neighborhood multigranulation
rough set model for multigranulation rough data analysihécontext of hybrid data. In the murigranulation rough
set theory, each of various binary relation determines Bsponding information granulation, which largely imgact
the commonality between each of the granulations and therfasnong all granulations. As one of very important
rough set models, the decision-theoretic rough sets (DERSStill not be researched in the context of multigranula-
tion, which limits its further applications in many problensuch as multi-source data analysis, knowledge discovery
from data with high dimensions and distributive informati&ystems.

In what follows, besides those motivations mentioned int firaltigranulation rough set paper (see Cases 1-3 in
the literature [29]), we further emphasize the specificregeof multigranulation rough sets, which can be illustean
from the following three aspects.

e Multigranulation rough set theory is a kind of of informatifusion strategies through single granulation rough
sets. Optimistic version and pessimistic version are omtysimple methods in these information fusion approaches,
which are used to easily introduce multigranulation ideastigh set theory.

e In fact, there are some other fusion strategies [20, 39-8]L, Bor instance, in the literature [39], Xu et al.
introduced a supporting characteristic function and aaldei precision parametgr called an information level, to
investigate a target concept under majority granulations.

¢ With regard to some special information systems, such a-saurce information systems, distributive infor-
mation systems and groups of intelligent agents, the dalssiugh sets can not be used to data mining from these
information systems, but multigranulation rough sets can.

In this study, our objective is to develop a new multigratiolarough decision theory through combining the
multigranulation idea and the Bayesian decisoin theojedanultigranulation decision-theoretic rough sets (MG-
DTRS). We mainly give three common forms, the mean multiglation decision-theoretic rough sets, the optimistic
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multigranulation decision-theoretic rough sets, and #sjmistic multigranulation decision-theoretic rougtsse

The study is organized as follows. Some basic concepts gsicla rough sets and multigranulation rough sets
are briefly reviewed in Section 2. In Section 3, we first analife loss function and the entire decision risk in the
context of multigranulation. Then, we propose three mratigilation decision-theoretic rough set forms that inelud
the mean multigranulation decision-theoretic rough shispptimistic multigranulation decision-theoretic rowsgts,
and the pessimistic multigranulation decision-theonatigh sets. When the thresholds have a special constitaint, t
multigranulation decision-theoretic rough sets will puod one of various variables of multigranulation rough.sets
In Section 4, we establish the relationships among multigiegtion decision-theoretic rough sets (MG-DTRS), other
MGRS models, single granulation decision-theoretic raaggh (SG-DTRS) and other SGRS models. Finally, Section
5 concludes this paper by bringing some remarks and dismsssi

2. Preliminary knowledge on rough sets

In this section, we review some basic concepts such as imtlmmsystem, Pawlak’s rough set, and optimistic
multigranulation rough set. Throughout this paper, we &sthat the universe is a finite non-empty set.

2.1. Pawlak srough set
Formally, an information system can be considered as d pairU, AT >, where

¢ U is a non—empty finite set of objects, it is called the universe
e AT is a non—empty finite set of attributes, such that AT, V, is the domain of attribute.

V¥x € U, we denote the value of under the attribute (a € AT) by a(x). GivenA C AT, an indiscernibility
relationl ND(A) can be defined as

IND(A) = {(x,y) e U x U :a(x) =a(y), ac A} Q)

The relationl ND(A) is reflexive, symmetric and transitive, theND(A) is an equivalence relation. By the indis-
cernibility relationl ND(A), one can derive the lower and upper approximations of aitranp subse of U. They
are defined as

AX) = {xe U :[X]aC X}andA(X) = {(xe U : [x]aN X # 0} (2)

respectively, wherea = {y € U : (x,y) € IND(A)} is theA—equivalence class containixgThe pair A(X), A(X)] is
referred to as the Pawlak’s rough sedoWith respect to the set of attributés

2.2. Multigranulation rough sets

The multigranulation rough set (MGRS) isfldirent from Pawlak’s rough set model because the former is con
structed on the basis of a family of indiscernibility retats instead of single indiscernibility relation.

In optimistic multigranulation rough set approach, the dvptimistic” is used to express the idea that in multi
independent granular structures, we need only at least @mallgr structure to satisfy with the inclusion condition
between equivalence class and the approximated target.ugjper approximation of optimistic multigranulation
rough set is defined by the complement of the lower approxémat

Definition 1. [32] Let | be an information system in which Aq, Ay, -+, An € AT, then YX C U, the optimistic
o) O

m m
multigranulation lower and upper approximations are denoted by Z A (X)and Z A (X), respectively,
i=1 i=1

{xeU:[X]a, € XVI[X]a, € XV V[Xa, € X} 3)

INg
>
X

[

™
>
X
[

m O
(S e ) @
i=1
where[X] 4 (1 <i < m)isthe equivalence class of x in terms of set of attributes A;, and ~ X is the complement of X.
3
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m O m O
By the lower approximatiorEAi (X) and upper approximatioEA; (X), the optimistic multigranulation
i=1 i=1
boundary region oK is
m O m O
BNSn o) = - A ()= > A (X). (5)
i=1 i=1
Proposition 1. Let | be an information systemin which Ag, Az, - - -, An € AT, then VX C U, we have
m O
ZA“ (X)={XeU:[Xa " X£OA[Xa, N XEDA--A[X]a, N X £ 0. (6)

i=1

Proor. By Definition 1, we have

o o

xegml:Ai X) & xeiZmllAi (~ X)

e Ma EGX)AMNA £ (XA A XA, € (~X)
S [Xa,NX#EOA[Xp, N XEOA---A[X]a, N X 0.

(]

From Proposition 1, it can be seen that though the optimistittigranulation upper approximation is defined by

the complement of the optimistic multigranulation lowepegximation, it can also be considered as a set in which

objects have non—empty intersection with the target in $esfreach granular structure.
Based on the SCED strategy, the following definition givesftimal representation of low@pper approximation
in the context of multi granular structures.

Definition 2. Let | be an information systemin which A, A, - - -, An € AT, then YX C U, the pessimistic multigran-
p P

m m
ulation lower and upper approximations are denoted by Z A (X)and Z A (X), respectively,

i=1 i=1
m P
ZA- (X) = {xeU:[¥a € XA[Xa, €XA---A[Xa, € X} @
i=1
m P m P
QA0 = - [ZA- (~ ><>]. ®)
i=1 i=1

P

P

m m
By the lower approximatiorEAi (X) and upper approximatioEAi (X), the pessimistic multigranulation

i=1 i=1
boundary region oK is
m P m P
BNSn o (X) = D" A (X) = D" A (X). (9)
i=1 i=1
Proposition 2. Let | be an information systeminwhich Ag, Az, - - -, An € AT, then VX C U, we have
= P
ZA‘ X)={xeU : [XanX£0V[X]p, "N X#EOV---V[Xa,NX%0} (20)
i=1
4
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Proor. By Definition 2, we have

P P

xeiZm;Ai X)) o xgizml:Ai (~ X)

e [Xa E X)) VI E(=X) V- VIXa, € (~X)
o [Xa, N X#0V[Xap, NX£EOV---V[X]a, N X #0.

O

Different from the upper approximation of optimistic multignkation rough set, the upper approximation of
pessimistic multigranulation rough set is representedset & which objects have non—empty intersection with the
target in terms of at least one granular structure.

3. MG-DTRS: Multigranulation decision-theoretic rough sets

Probabilistic approaches to rough sets have many formf, asithe decision-theoretic rough set model (DTRS)
[49, 52, 50], the variable precision rough set model [58}, Bayesian rough set model [37], and other related studies.
Specially, the decision-theoretic rough sets proposedduy[¥9, 50, 52] has very strong theoretical basis and sound
semantic interpretation. Through giving special thredhpthe decision-theoretic rough set model can degenerate
into the classical Pawlak rough sets, the variable pratioigh set, the 0.5-probabilistic rough set, and so on. In
many real applications such as multi-source data anakstyledge discovery from data with high dimensions and
distributive information systems, if one applies the diecigheoretic rough sets in these cases, the multigraoualat
version of DTRS will be very desirable. In this section, wdl wstablish a multigranulation decision-theoretic rough
set framework.

3.1. Decision-theoretic rough sets

In this subsection, we briefly review some basic conceptgaisibn-theoretic rough sets.

In the Bayesian decision procedure, a finite set of state®eavritten a€ = {w, wy, - - -, ws}, and a finite set of
m possible actions can be denotedAy= {a;, ay, - - -, &}. Let P(wjlx) be the conditional probability of an objext
being in statev; given that the object is described kyLet A(a|w;) denote the loss, or cost, for taking act&mwhen
the state isvj, the expected loss associated with taking acsids given by

R(@iX) = J_gslﬂ(mw,-)P(w;lx).

In classical rough set theory, the approximation operatarstion the universe into three disjoint clas§$3S(A),
NEG(A), and BND(A). Through using the conditional probabili§(X|[X]), the Bayesian decision precedure can
decide how to assigr into these three disjoint regions [50, 52]. The expected R{s;|[X]) associated with taking
the individual actions can be expressed as

R(a1l[X]) = A11P(XI[X]) + 212P(X“|[X]),
R(@2l[X]) = 221P(XI[X]) + 222P(X“|[X]),
R(@s|[X]) = 231P(XI[X]) + A32P(X“|[X]),

whereli; = A(&X), diz = A(a]X®), andi = 1,2, 3. Whenl;1 < 131 < A2 andAy; < A3, < 112, the Bayesian decision
procedure leads to the following minimum-risk decisioresul

(P) If P(XI[X]) = y andP(X|[X]) = a, decisionPOS(X);
(N) If P(X|[X]) < BandP(X|[X]) < y, decisionNEG(X);
(B) If B < P(X|[X]) < a, decideBND(X);

where

A1o—A32

4= —F
(A31-1A32)~(A11—412)’
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y = A1p=Az
(A21-222)~(A11-112)’

B= (/121*/123:(/12;1*/132)'
If a loss function with11; < A31 < 221 andAs < A3y < A further satisfies the condition:
(A12 = A32)(A21 — A31) = (A31 — A11)(A32 = A22),

thena >y > .
Whenea > 8, we havex > y > 8. The decision-theoretic rough set has the decision rules:
(P1) If P(X|[X]) = a, decidePOS(X);

(N1) If P(X|[X]) < B, decideNEG(X);
(B1) If B < P(X|[X]) < @, decideBND(X).

Using these three decision rules, we get the probabiligfic@imation:

EQ(X) ={x: P(X|[X]) = @, xe U},

aprg(X) = (x: P(XIDX) > B, x e U}.

Whena = 8, we haver = y = 8. The decision-theoretic rough set has the following deaisules:
(P2) If P(X|[X]) > a, decidePOS(X);

(N2) If P(X|[X]) < @, decideNEG(X):
(B2) If P(X|[X]) = a, decideBND(X).

Using the above three decision rules, we get the probabitipproximation:

apr (X) = {x: P(X|[[x]) > a, xe U},

apr,(X) = {x: P(X|[X]) = @, xe U}

In the framework of decision-theoretic rough sets, the Bawbugh set model, the variable precision rough set

model, the Bayesian rough set model and the 0.5-probabitziigh set model can be pooled together and studied
based on the notions of conditional functions.

3.2. Theoretical foundation in multigranulation decision-theoretic rough sets

The multigranulation rough set (MGRS) idfiéirent from Pawlak’s rough set model because the former is con
structed on the basis of a family of indiscernibility retats instead of single indiscernibility relation.

GivenRy, Ry, - - -, Ry € R mgranular structures artX € U, the lowefupper approximation in a multigranulation
rough set can be formally represented as two fusion funsti@spectively,

D R(X) = fi(R, R, -+, R,
i=1

D R(X) = fu(Ru, R, -+, R,
i=1

wheref is called a lower fusion function, anfg is called an upper fusion function. These two functions aedito
compute the lowgupper approximation of a multigranulation rough set thitofugingm granular structures.

In practical applications of multigranulation rough sehe fusion function has many forms according to various
semantics and requirements. Convenientlydiés|w;) denote the loss, or cost, for taking acti@rwhen the state is
wj by k-th granular structures. L&(wj|xx) be the conditional probability of an objexteing in statev; given that
the objectis described by underk-th granular structures. The expected loss associatedadkiting actiong; is given

by

m S

R(ailx1, X2, - - -, Xm) = Z Z A(@|wj) P(wjlXk). (11)
=1 =1
6
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The expected losB(g;|x1, X2, - - -, Xm) iS @ conditional risk.t(x1, X2, - - -, Xm) Specifies which action to take, and
its value is one of the actioreg, ap, - - -, a;. The overall riskR is the expected loss associated with the decision rule
7(X1, X2, - + -, Xm), the overall risk is defined by

R = Z R(T(X1, X2, - = -, Xm)|X1, X2, * -+, Xm)P(X1, X2, - - - , Xm), (12)
Xl,XZ,”',Xm

whereP(x1, X2, - - -, Xm) IS @ joint probability, which is calculated through fusi(ié(xy), P(x2), - - -, P(Xm)) induced by
mgranular structures induced by the same universe.

Given multiple granular structurd®;, Ry, ---, Ry € R, the multigranulation decision-theoretic rough sets aim
to select a series of actions for which the overall risk israalkas possible, in which the actions include deciding
positive region, deciding negative region and decidingriatauy region.

In the multigranulation decision-theoretic rough setgr¢hare two kinds of assumptions. One assumes that the
values ofAx(a|wj), k < m, are all equal each other, and the other assumes that thepeegquivalent, in which each
granular structure has its independent loss( or cost) imeftself. In order to introduce the idea of multigranidat
decision-theoretic rough sets, this paper only deals wigHfitst assumption. Hence, the determined procedure of the
parameters, 8 andy is consistent with that of classical decision-theoretigosets, and the value of each parameter
in every granular structure is also equal each other. Thégnahulation decision-theoretic rough sets for the sdcon
assumption will be established in future work.

3.3. Three cases of multigranulation decision-theoretic rough sets

Givenmgranular structureBy, Ry, - - -, R € R, whenAk(ailwj) = Ai(alwj), k.| € {1,2,---, m}, the expected loss
associated with taking actiag can be given by

m S

R@ X1, X, -+, Xm) = > > A&ilw;)P(wjxe). (13)

k=1 =1

In this case, the information fusion in multigranulatiorcidéon-theoretic rough sets can be simplified as the fusion
of a set of probabilities under the same universe. In thisection, we give three multigranulation decision-theoret
rough set models, which are a mean multigranulation detiieoretic rough set (MMG-DTRS), an optimistic multi-
granulation decision-theoretic rough set (OMG-DTRS) amkssimistic multigranulation decision-theoretic rough
set (PMG-DTRS), respectively.

3.3.1. Mean multigranulation decision-theoretic rough sets

In multigranulation decision-theoretic rough sets, whenlbss function is fixed, judging the conditional proba-
bility of an objectx within a target concept im granular structures can be computed by its mathematic @t
That is to say,

E(P(XIX)) = P(XI[Xr,) + P(XI[X]R,) + - - - + P(XI[X]r,))/m. (14)

The joint probability is estimated by the mean valuamoonditional probabilities. Based on this idea, hence we
give a kind of multigranulation decision-theoretic rougdt, called mean multigranulation decision-theoretic toug
sets. Its formal definition is as follows.

Definition 3. Given Ry, Ry, - -+, Ry € R mgranular structures and ¥X ¢ U, the mean multigranulation lower and
m Ma m M
upper approximations are denoted by Z R (X)and Z R (X), respectively,
i=1

i=1

a

m M
Z R (X) = {x:(P(XI[X]r,) + P(XI[X]r,) + - - - + P(XI[X]R,))/M > @, x € U}; (15)
i=1
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m M.p
Z R (X) = U-{x:(P(XI[Xr) + P(XI[X]r,) + - - - + P(X|[[X]r,))/m< B, x € U}; (16)
i=1

where [X]r (1 < i < m) isthe equivalence class of x induced by R;, P(X|[X]r) is the conditional probability of the
equivalent class [X]g with respect to X, and «, 8 are two probability constraints.

M, B

m Ma m
By the lower approximatiorER; (X) and upper approximatioERi (X), the mean multigranulation
i=1 i=1
boundary region oK is
m WA m Ma
BNfh ()= > R ()= R (X). (17)
i=1 i=1

Similar to the classical decision-theoretic rough setgmithe thresholds > 8, we can obtain the decision rules
tie-broke:

(MP1) If (P(XI[X]R,) + P(XI[X]R,) + - - - + P(X|[X]R,))/M = @, decidePOS(X);

(MNL) If (P(XI[X]r,) + P(XI[XIR,) + - - - + P(XI[X]R,))/m < B, decideNEG(X);

(MB1) If B < (P(X|[X]R,) + P(XI[X]R,) + - - - + P(X[[X]R,))/M < @, decideBND(X).

Whena = B, we havea = y = 8. The mean multigranulation decision-theoretic rough set the following
decision rules:

(MP2) If (P(XI[X]r,) + P(XI[X]g,) + - - - + P(XI[XIr,))/M > a, decidePOS(X);
(MN2) If (P(XI[X]R,) + P(XI[X]R,) + - - + P(XI[X]R,))/M < @, decideNEG(X);
(MB2) If (P(X|[X]r,) + P(XI[XR,) + - - - + P(XI[X]r,))/M = a, decideBND(X).

3.3.2. Optimistic multigranulation decision-theoretic rough sets

In existing optimistic multigranulation rough set apprbas, the word “optimistic” is used to express the idea that
in multi independent granular structures, its multigratioh lower approximation only needs at least one granular
structure to satisfy with the inclusion condition betweenegjuivalence class and the approximated target. While
the upper approximation of an optimistic multigranulatiogh set is defined by the complement of the lower ap-
proximation. Based on this idea, in this part, we develop jtinastic multigranulation decision-theoretic rough
set.

In this optimistic multigranulation decision-theoretaugh set, its lower approximation collects those objects in
which each object has at least one granular structuregatjshe probability constraint{ «) between its equivalence
class and the approximate target, while its upper apprai@ma&ollects those objects in which each object has all
granular structures satisfying the probability constrgin g) between its equivalence class and the approximate
target.

Definition 4. Given Ry, Ry, -+, Ry € R m granular structures and YX C U, the optimistic multigranulation lower
0.p

m O, a

m
and upper approximations are denoted by Z R (X)and Z R (X), respectively,
i=1 i=1

m O, a
Z R (X)) = {x:P(X[[Xr,) =V PX[XRg)=aV--VPX|[XRg,) = a xe U} (18)
i=1

m O!ﬁ

ZR@ X) = U—{x:P(X|[Xr,) <BAPXI[XR,) <BA---VPX|[XRr,) <B,xe U} (29)

i=1

where [X]r (1 < i < m) is the equivalence class of x induced by R;, P(X|[X]r) is the conditional probability of the
equivalent class [X]g, with respect to X, and «, 8 are two probability constraints.

8
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m O, a m O’ﬂ
By the lower approximatiorE R (X) and upper approximatioE R (X), the optimistic multigranulation
i=1 i=1
boundary region oK is
m 0. m O,
BNS, n(X)= >R (X)-> R (X (20)
i=1 i=1

From the definition of optimistic multigranulation decisitheoretic rough sets, one can obtain the following three
propositions.

Proposition 3. Given Ry, Ry, - - -, Ry, € R mgranular structures and VX € U. Then, the following properties hold
DI RO 2R, (X),i<m
2) TR0 € R00, i <m

whereR (X) = {x: P(X|[X]r) > @, x€ U}, and ﬁﬁ(X) ={x: P(X[[X]r) =B, xe U}

Proposition 4. Given Ry, Ry, - - -, Ry € R mgranular structuresand ¥ X € U. Then, the following properties hold
D) I R(X) = UL, R (X);
2) TR 00 = N R0

where R (X) = {x: P(XI[XRr) = @, x€ U}, andRu(X) = {x: P(XI[x]r) = B, x € U}.

Proposition 5. Given Ry, Ry, - - -, Ry € R mgranular structures and VX; € X, € U. Then, the following properties
hold

1) 2M RO (X)) € XM RO (X);
TR ) c TR L (%),

Similar to the classical decision-theoretic rough setsme thresholds > 3, we can obtain the decision rules
tie-broke:

(OP1) If3i € {1,2,- - -, m} such thaP(X|[X]r) > @, decidePOS(X);

(ON1) If Vi € {1,2,---,m} such thaP(X|[X]r) < B, decideNEG(X);

(OB1) Otherwise, decidBND(X).

Whena = 8, we haver = y = 8. The optimisitc multigranulation decision-theoretic ghuset has the following
decision rules:

(OP2) Ifdi € {1,2,---, m} such thaP(X|[X]r) > a, decidePOS(X);
(ON2) If Vi € {1, 2, - -, m} such thaP(X|[X]r) < @, decideNEG(X);
(OB2) Otherwise, decidBND(X).

3.3.3. Pessimistic multigranulation decision-theoretic rough sets

In decision making analysis, “Seeking common ground whil@iaating differences” (SCED) is one of usual
decision strategies. This strategy argues that one reseoramon decisions while deleting inconsistent decisions,
which can be seen as a conservative decision strategy. Bastis consideration, Qian et al. [31] proposed a so-
called pessimistic multigranulation rough set. In thissmdiion, we will combine pessimistic multigranulationgbu
set and decision-theoretic rough set into an entire decfsiamework together.

In the pessimistic multigranulation decision-theoretingh sets, its lower approximation collects those objects
in which its equivalence class from all granular structusassfying the probability constraint(«) between its
equivalence class and the approximate target, while iteuppproximation collects those objects in which each
object has at least one granular structure satisfying theahility constraint£ 8) between its equivalence class and
the approximate target.
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Definition 5. Given Ry, Ry, - - -, Ry € R mgranular structures and ¥YX C U, the pessimistic multigranulation lower
P, g

m Pa m
and upper approximations are denoted by Z R (X)and Z R (X), respectively,
i=1 i=1
m P a
DR = X:P(XI[Mr) = @A PXI[XR) = @ A+ A P(XIXR,) > @, x € U); (21)
i=1
m P’ﬁ
Z R (X) = U-{x:PX[Xr) <BVPXIXR,) <BV:---VPX|[XRr,) <B,xeU}; (22)

i=1

where [X]r (1 < i < m) isthe equivalence class of x induced by R;, P(X|[X]r) is the conditional probability of the
equivalent class [X]g with respect to X, and «, 8 are two probability constraints.

m Pa m—PA
By the lower approximatio@ A (X) and upper approximatioE A (X), the pessimistic multigranulation
i=1 i=1
boundary region oK is
m PB m P a
BNEn c ()= > R (X)-> R (X) (23)
i=1 i=1

From the definition of pessimistic multigranulation deeisitheoretic rough set, the following three propositions
can be easily induced.

Proposition 6. Given Ry, Ry, - - -, Rm € R mgranular structuresand X < U. Then, the following properties hold
DI R CR, (X),i<m,
TR L) 2 Ry(X), i < m

where R (X) = {x: P(XI[XRr) = @, x€ U}, and Ry(X) = {x: P(XI[x]r) = B, x € U}.

Proposition 7. Given Ry, Ry, - - -, Ry, € R mgranular structures and VX € U. Then, the following properties hold
DI REI0 = NI R, (X
2) TR0 = Ul Ry(X);
whereR (X) = {x: P(XI[Xr) = @, x€ U}, andRx(X) = {x: P(XI[x]r) = B, x € U}.
Proposition 8. Given Ry, Ry, - - -, Ry € R mgranular structures and ¥X; € X, € U. Then, the following properties
hold
1) X R™ (%) € B R™(%);
TR ) < TR (X).

Similar to the classical decision-theoretic rough setsme thresholds > 3, we can obtain the decision rules
tie-broke:

(PP1) IfVi € {1,2,-- -, m} such thaP(X|[X]r) > «, decidePOS(X);

(PN1) If3i € {1,2,---,m} such thaP(X|[X]r) < B, decideNEG(X);

(PB1) Otherwise, decidBND(X).

Whena = 8, we haver = y = 8. The pessimistic multigranulation decision-theoretiggh set has the following
decision rules:

(PP2) IfVi € {1,2,---,m} such thaP(X|[X]r) > a, decidePOS(X);
10
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(PN2) If3i € {1,2,---,m} such thaP(X|[X]r) < @, decideNEG(X);
(PB2) Otherwise, demdBND(X)

The following proposition establishes the relationshipeag the mean multigranulation decision-theoretic rough
sets, the optimistic multigranulation decision-thearetugh sets, and the pessimistic multigranulation degisio
theoretic rough sets.

Proposition 9. Given Ry, Ry, - - -, Ry € R mgranular structuresand ¥ X € U. Then, the following properties hold
DN F«"’“(X) c IR -M’“(X) < IR U(X);
M, 8 = =08
YL R ") 2 TR TR,

4. Relationships between MG-DTRS and other MGRS models

4.1. Classical multigranulation rough sets

In the decision-theoretic rough sets, the probability gathe thresholds andg decide its detailed form of rough
sets. From Yao’s work [50, 52], it follows that when= 1 andB = 0, the decision-theoretic rough sets will degenerate
into the standard rough sets. In this case, we have that

P(XI[XR) = 50X = 1 & [r X,

P(X[[X]r) = XX - 0 & [X]rN X = @.

(Xl

Hence,
&O“’(X) = {x: P(XI[Xr,) = 1V P(X[[X]R,) =1V --- Vv P(X[[Xr,) > 1,x € U}
= XL R%(X) = {x: [Xr, € XV [Xr, € XV -V [X]g, € X, x € U},
and
Zi= 1R P(X) = U - (x: P(XI[Xlw) < 0 A P(XI[XR,) < 0A -+~ A P(XI[X]g,) < 0,x € U}
S ROY (X)_ X:[Xr N X% DA R, N X#BA - A[Xr, N X % B, x € U},

The multigranulation lower approximation and multigraatidn upper approximation are consistent with those
in classical optimistic multigranulation rough sets (OM&H32]. Hence, wherr = 1 andB = 0, the optimistic
multigranulation decision-theoretic rough sets (OMG-CE)Rvill degenerate into the optimistic multigranulation
rough sets (OMGRS).

Similarly, one has that

SR (X) = (x: PXI[KR) = 1A P(XI[X]R,) = 1A --- A PXI[X]R,) = 1, x € U}
= YR R™Y(X) = {x: [X]r, S X A[X]r, S XA ---A[X]g, € X, x € U},

and
Z. 1R (X) {x: P(XI[X]r,) <0V P(X[[X]g,) <0V ---VPX|[XRr, <0,xe U}
=>Z. 1R (X)_ X [Xrg N X#BV[Xg,"NX£DV---V[Xr, NX#D,xe U}

The multigranulation lower approximation and multigraatidn upper approximation are equivalent to those
in classical pessimistic multigranulation rough sets (A8} [31]. Thus, pessimistic multigranulation decision-
theoretic rough sets (PMG-DTRS) will degenerate into thesjmistic multigranulation rough sets (PMGRS).

4.2. Variable multigranulation rough sets

Whena + 8 =1 and 0< 8 < 0.5 < a < 1, the decision-theoretic rough sets become the variablggion rough
sets. The condition & 8 < 0.5 < a < 1 follows that the lower approximation is a subset of the ugp@roximation.
Hence,

MR AX) = {(x: P(XI[X]R,) = @ V P(XI[XR,) > @ V -+ V P(X|[X]r,) > @, X € U},
11
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MG-DTRS MG-DTRS
| MGPRs | [ MGVRS | [ MG0.5PRS | SG-DTRS
| sG-Prs | | sG-vRs | [ sG-0.5PRS | | sG-Prs | | sGVRs | [ sG05PRS |
(&) Relationship between MG-DTRS and other (b) Relationship between MG-DTRS and SG-
MGRS models DTRS

Figure 1: Relationships among MG-DTRS, other MGRS moddéls ' RS and other SGRS models

SRP(X) = U - (x: P(XIIIR) < B A PXIIXIR) <8 A -+ A P(XI[X]R,) < B, X € U},
= Y ROUX) = (x: PX[Xr,) = @V PX|[[Xg,) = aV---V P(X|[X]g,) = . x € U},
it RO = x: P(XI[Xr) > 1-a APXX|[[X]r,) > 1—a A--- APXX|[X]r,) > 1-a,xe U}.

The multigranulation lower approximation and multigraatidn upper approximation are consistent with those in
the optimistic variable precision multigranulation rouggts (OVMGRS) proposed by [57]. Hence, wher 8 = 1
and 0< 8 < 0.5 < a < 1, OMG-DTRS will degenerate into the optimistic variablegsion multigranulation rough
sets (OVMGRS).

Similarly, the pessimistic multigranulation decisioretinetic rough sets have the following properties.

m RPY(X) = (x: PXI[X]r) = @ A P(X|[X]r,) = @ A --- A P(X[[X]g,) = @, X € U},
SR Z(X) = U - (x: PXI[Xr,) < BV P(XI[XIr,) <8V -+~ v P(XI[XIr,) < B, X € U},
= Y™ RP*(X) = (x: P(XI[X]r,) = @ A P(XI[X]r,) = a A --- A P(X[[X]r,) > @, X € U},
ﬁp’ﬁ(X) ={X: PX|[[X]g,) >1-aVPX|[Xg,)>1-aV---VPX[XRr,) >1-axec U}

The multigranulation lower approximation and multigraatidn upper approximation are equivalent to those in
the pessimistic variable precision multigranulation rowgts (PVMGRS) developed by Zhang et al. [57]. Thus,
PMG-DTRS will degenerate into the pessimistic variablecfgien multigranulation rough sets (PVMGRS).

When the thresholds andg have other constrain relationships, the multigranuladiecision-theoretic rough sets
will produce various variables of multigranulation rougtiss which can be applied in many practical applications.

Based on the above discussions, we can obtain the relaifienamong MG-DTRS, other MGRS models, SG-
DTRS and other SGRS models, which is shown as Figure 1. Infithise, MG-PRS means a multigranulation
probabilistic rough set, MG-VRS is a multigranulation adulie precision rough set, and MG-0.5PRS means a multi-
granulation 0.5-probabilistic rough set, while SG-PRS mseaMG-PRS means a multigranulation probabilistic rough
set, probabilistic rough set, SG-VRS is a single granutatiariable precision rough set, and MG-0.5PRS means a
single granulation 0.5-probabilistic rough set, respetyi

5. Conclusions

Multigranulation rough set theory (MGRS) is one of desieatitections in rough set theory, in which lovigoper
approximations are approximated by granular structurdadad by multiple binary relations. It provides a new
perspective for decision making analysis based on the reagtheory. In this paper, we have first proposed a new
multigranulation rough set model through combining MGR8 Hre decision-theoretic rough sets together, called a
multigranulation decision-theoretic rough set model. His framework, we have given three forms of MG-DTRS,
which are mean multigranulation decision-theoretic rosgts, optimistic multigranulation decision-theoretiagh
sets, and pessimistic multigranulation decision-théometugh sets. These forms of MG-DTRS can derive many
existing multigranulation rough set models when the patamsesatisfy special constraints. Finally, we have also
established the relationships among multigranulationsitettheoretic rough sets, multigranulation rough seis a
single granulation rough sets.

12
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This study only develops a framework of multigranulatioiden-theoretic rough sets, in which there are still
many interesting issues to be explored. Its future diradtias four aspects: (1) model extension of multigranulation
decision-theoretic rough sets in other types of data setsnformation fusion based on multiple granular strucsyre
(3) information granule selection and granulation setectand (4) applications of multigranulation decisionetedic
rough sets. It is deserved to point out that the multigramiadecision-theoretic rough set and standard decision-
theoretic rough set can be combined to data mining and decieaking in real applications, such as multi-source
information systems, data with high dimensions, distriiinformation systems.
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