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Abstract In practical decision making situations, decision

makers usually express preferences by evaluating qualita-

tive linguistic alternatives using the hesitant fuzzy lin-

guistic term set. To analyze the hesitant fuzzy linguistic

information effectively, we aim to apply the rough set over

two universes model. Thus, it is necessary to study the

fusion of the hesitant fuzzy linguistic term set and rough set

over two universes. This paper proposes a general frame-

work for the study of the hesitant fuzzy linguistic rough set

over two universes. First, both the definitions and some

fundamental properties will be developed, followed by

construction of a general decision making rule based on the

hesitant fuzzy linguistic information. Finally, we illustrate

the newly proposed approach according to the basis of

person-job fit, and discuss its applications compared to

classical methods.

Keywords Hesitant fuzzy linguistic term set � Rough set

over two universes � Hesitant fuzzy linguistic rough set

over two universes � Decision making � Person-job fit

1 Introduction

In real-world decision making activities, due to the inher-

ent uncertainty of preference expression, and the manage-

ment, storage and extraction of various useful information

is not always presented as crisp numbers, it is believed that

fuzzy numbers are advantageous for handling various

complicated information systems. Fuzzy set theory [38],

established by Zadeh in 1965, provides robust solutions in

many application domains such as knowledge discovery,

information processing, uncertainty mining, and machine

learning [1, 8, 12, 18, 30, 31]. In fuzzy sets, the member-

ship degree of an element is a single crisp value within

0; 1½ �. However, the classical fuzzy set experiences limi-

tations when working with incomplete and uncertain

information. Thus, many additional generalizations of

fuzzy sets were developed [2, 19, 20, 35, 39].

During the decision making process, decision makers

might hesitate among several possible membership values

when determining the membership of an element belonging

to a given set. To address this issue, Torra and Narukawa

[29] and Torra [28] established the concept of the hesitant

fuzzy set (HFS). Hesitant fuzzy sets are widely-used in

modeling quantitative expressions when decision makers

are likely to hesitate among several numbers in evaluating

an alternative. However, when confronted with problems

that are too complex or ill-defined to be addressed by uti-

lizing quantitative expressions, it may be suitable to eval-

uate the membership degrees of alternatives by using

qualitative instead of quantitative expressions. The fuzzy

linguistic approach is generally regarded as an effective

method to deal with these difficulties.

Motivated by the superiorities of the hesitant fuzzy set

and fuzzy linguistic approach, Rodriguez et al. [25] intro-

duced the concept of the hesitant fuzzy linguistic term set
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(HFLTS). Compared to other generalizations of fuzzy sets,

hesitant fuzzy linguistic term set potentially deals with

hesitant fuzzy linguistic information perfectly. Suppose

there is a human resource manager who intends to estimate

the English writing level for a job seeker: the manager may

consider the membership degree as between modest and

competent, while the same individual may deem good as

another justifiable answer. In this situation, the assessment

can be expressed as modest and competent, or good. Fol-

lowing the introduction of the hesitant fuzzy linguistic term

set, numerous scholars enriched the theory in different

facets [10, 17, 26, 32, 34, 43]. In light of the above,

decision making utilizing hesitant fuzzy linguistic infor-

mation could better handle uncertain situations and quali-

tative information, and provide experts with more

exemplary and flexible access to convey knowledge base

understanding.

To analyze the hesitant fuzzy linguistic information, we

aim to introduce the rough set theory to decision making

problems based on hesitant fuzzy linguistic information.

Rough set theory, due to Pawlak [21], is a widely-used

mathematical tool to cope with various uncertainties in

real-life applications [11, 14, 16, 41]. Since the equivalence

relation in a classical rough set is a relatively restrictive

condition that may hinder application domains, multiple

generalizations of rough sets were developed [5–7, 9, 24,

37]. Among the various extension forms of the classical

rough set, considering that rough sets and fuzzy sets are the

two main tools used for processing uncertain information

for information systems and are generally accepted as

related, but distinct and complementary. Therefore, how to

generalize the rough set model to a fuzzy case is significant

for the development of rough set theory. Thus, Dubois and

Prade [5] developed the concept of fuzzy rough sets. Since

hesitant fuzzy sets hold many advantages over classical

fuzzy sets, research into the integration of hesitant fuzzy

sets with rough sets is a popular area of study. For instance,

Yang et al. [36] constructed a hesitant fuzzy rough set that

includes both constructive and axiomatic approaches.

Deepak and John [4] studied the relationships between

hesitant fuzzy rough approximation operators. Zhang et al.

[42] further established an interval-valued hesitant fuzzy

rough set model and utilized it in an illustrative medical

diagnosis case. Liang and Liu [15] proposed the decision-

theoretic rough set under hesitant fuzzy information, and

researched its related ranking and resource allocation

methods.

Since consideration of two universes expresses practical

decision making information better than a single universe,

many recent studies put emphasis on rough sets over two

universes [22, 27, 33, 40]. By extending to two universes

for a rough set, it is convenient to depict various intrinsic

relationships composed of two different objections related

to real-life decision making. In a single universe, there are

some limitations for a rough set to analyze these relation-

ships. For example, the research of the relationship

between a disease set and a symptom set exerts a positive

influence on modern clinical disease diagnosis problems.

The rough set over two universes enables medical experts

to obtain lower and upper rough approximations, which act

as two important index sets for medical experts to deter-

mine the patient’s disease. Therefore, a rough set over two

universes could not only analyze many kinds of significant

relationships in multi-attribute decision making activities,

but also provide lower and upper rough approximations as

two types of decision making basis according to the

advantages of rough set theory. Conclusively, compared to

a rough set on single universe and other multi-attribute

decision making tools, the model of rough set over two

universes could be regarded as a relatively ideal data

analysis strategy.

In this paper, in order to deal with the problems of

hesitant fuzzy linguistic term set data analysis, it is nec-

essary to introduce a new rough set model called hesitant

fuzzy linguistic (HFL) rough set over two universes. Since

there are few studies on the combination of these two

theories, we will explore both the definitions and basic

properties of the HFL rough set over two universes model.

Moreover, by utilizing the proposed model, we aim to

present a general approach and show basic steps of deci-

sion making through a case study of person-job fit. In a

real-life job market, person-job fit (P-J fit) tends to exert an

ever-growing influence on various areas of business

activities that aims to match an employee’s skills and

abilities to job demands. Moreover, it is generally

acknowledged that the person-job fit increases job satis-

faction and reduces turnover intention [3, 13, 23].

The presentation of the article is organized below: in the

next section, we review basic knowledge about the fuzzy

linguistic approach, hesitant fuzzy set and hesitant fuzzy

linguistic term set. In Sect. 3, we introduce the hesitant

fuzzy linguistic rough set over two universes and its related

properties. Section 4 presents decision making rules and

algorithm by utilizing the proposed model. Section 5

illustrates the steps of the proposed decision making

method through a person-job fit example. In Sect. 6, we

conclude this paper with some remarks.

2 Preliminaries

In this section, we briefly review the concepts of the fuzzy

linguistic approach, hesitant fuzzy set and hesitant fuzzy

linguistic term set.
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2.1 Fuzzy linguistic approach

Since linguistic terms are close to human’s expression of

opinions, they are widely used by many decision makers

in the real-world. To let fuzzy tools suit problems that are

defined as qualitative situations in nature, the fuzzy lin-

guistic approach [39] is an approximation method that

represents qualitative aspects as linguistic values, by

means of linguistic variables. The linguistic values are not

numbers, but words or sentences used in a natural

language.

The fuzzy linguistic approach encompasses different

linguistic computational models such as a 2-tuple linguistic

model, a linguistic model based on type-2 fuzzy sets, a

linguistic model based on membership functions, and a

linguistic model based on ordinal scales. Usually, these

linguistic models can be classified as either a function-

based model or a symbolic linguistic model [25]. In this

paper, we primarily utilize the ordered structure approach

based on the symbolic linguistic model.

We consider S ¼ s0; s1; . . .; sg
� �

as a finite and totally

ordered linguistic term set. The cardinality of the afore-

mentioned linguistic term set is an odd number. The mid-

term in a linguistic term set records an assessment of

approximately 0.5 and the remaining linguistic terms are

arranged symmetrically around it. Theoretically, the car-

dinality of S might be a sufficiently large positive integer.

However, in management science and real-life decision

making procedures, in order to combat problems more

efficiently, it is generally acknowledged that the limit of

cardinality is 11, or at most 13 [32]. In this paper, we define

the limit of cardinality for S as 11, or at most 13.

For example, a set of seven terms S can be represented

as follows:

S ¼ fs0 : very poor; s1 : poor; s2 : medium poor;

s3 : fair; s4 : medium good; s5 : good; s6 : very goodg:

Usually, it is required that the linguistic term S should

satisfy the following additional characteristics:

1. The set is ordered: si � sj , i� j. Thus, there exists a

maximization operator: max si; sj
� �

¼ si, if si � sj, and

a minimization operator: min si; sj
� �

¼ si, if si � sj;

2. There is a negation operator: neg sið Þ ¼ sg�i, where the

cardinality of the linguistic term set S is gþ 1.

2.2 Hesitant fuzzy set

Torra and Narukawa [29] and Torra [28] presented the

concept of hesitant fuzzy sets, which permits the mem-

bership degree of an element to a reference set expressed

by several possible values.

Definition 2.1 [28] Let a set U be fixed. A hesitant fuzzy

set (HFS) on U is in terms of a function h that when applied

to U returns a subset of 0; 1½ �, which can be represented in

terms of the following mathematical symbol:

F ¼ x; hF xð Þh i x 2 Ujf g; ð1Þ

where hF xð Þ is a set of some different finite values in 0; 1½ �,
denoting the possible membership degrees of the element

x 2 U to the set F. For convenience, hF xð Þ is the hesitant

fuzzy element (HFE) and the set of all hesitant fuzzy ele-

ments is called HFEs.

2.3 Hesitant fuzzy linguistic term set

For HFS, an expert may hesitate among several possible

values as the membership degree when evaluating an

alternative. In a qualitative setting, an expert may also

hesitate among several linguistic terms. To address such

cases, based on the fuzzy linguistic approach and hesitant

fuzzy set, Rodriguez et al. [25] presented the concept of

hesitant fuzzy linguistic term sets.

Definition 2.2 [25] Suppose that S ¼ s0; s1; . . .; sg
� �

is a

linguistic term set, and a hesitant fuzzy linguistic term set

(HFLTS), HS, is an ordered finite subset of the consecutive

linguistic terms of S.

Since Definition 2.2 does not give specific mathematical

form of HFLTS, Liao and Xu [17] mathematically refined

the definition of HFLTS to be much easier understood.

Definition 2.3 [17] Let a set U be fixed and S ¼
fs0; s1; . . .; sgg be a linguistic term set. A hesitant fuzzy

linguistic term set (HFLTS) on U is in terms of a function

h that when applied to U returns a subset of S, which can be

represented in terms of the following mathematical

symbol:

A ¼ x; hA xð Þh i x 2 Ujf g; ð2Þ

where hA xð Þ is a set of some different ordered finite values

in the linguistic term set S, denoting the possible mem-

bership degrees of the element x 2 U to the set A. For

convenience, hA xð Þ is the hesitant fuzzy linguistic element

(HFLE) and the set of all hesitant fuzzy linguistic elements

is called HFLEs.

Suppose that U is the universe of discourse, then the set

of all hesitant fuzzy linguistic term sets on U is denoted by

HFL Uð Þ.

Example 2.1 Suppose that S ¼ fs0 : very poor; s1 :

poor; s2 : medium poor; s3 : fair; s4 : medium good; s5 :

good; s6 : very goodg is a linguistic term set. Let U ¼
x1; x2f g be a universe set, hA x1ð Þ ¼ fs4 : medium good; s5 :

goodg ¼ s4; s5f g and hA x2ð Þ ¼ fs0 : very poor; s1 : poor;
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s2 : medium poorg ¼ s0; s1; s2f g be the HFLEs of

xi i ¼ 1; 2ð Þ to a set A, respectively. Then, A can be

expressed as:

A ¼ x1; s4; s5f gh i; x2; s0; s1; s2f gh if g:

Here, we define two special hesitant fuzzy linguistic

term sets as follows:

1. For all x 2 U, we call A an empty hesitant fuzzy

linguistic term set if and only if hA xð Þ ¼ s0f g . In this

case, the empty hesitant fuzzy linguistic term set is

represented by ;.

2. For all x 2 U, we call A a full hesitant fuzzy linguistic

term set if and only if hA xð Þ ¼ sg
� �

. In this case, the

full hesitant fuzzy linguistic term set is represented by

U.

Wei et al. [32] defined the negation, max-union and min-

intersection operations on hesitant fuzzy linguistic term

sets based on the idea proposed by Torra [28].

Definition 2.4 [32] Suppose that S ¼ s0; s1; . . .; sg
� �

is a

linguistic term set. Let U be the universe of discourse,

8A;B 2 HFL Uð Þ, then

1. The negation of A, denoted by Ac, is defined as:

hAc xð Þ ¼ � hA xð Þ ¼ sg�i i 2 Ind hA xð Þð Þj
� �

; ð3Þ

where Ind sið Þ denotes the index i of a linguistic term si
in a linguistic term set S, and Ind hA xð Þð Þ denotes the

set of indexes of the linguistic terms in an HFLE hA xð Þ.
2. The max-union of A and B, denoted by A [ B, is

defined as:

hA[B xð Þ ¼ hA xð Þ _ hB xð Þ
¼ max si; sj

� �
si 2 hA xð Þ;j sj 2 hB xð Þ

� �
;

ð4Þ

3. The min-intersection of A and B, denoted by A \ B, is

defined as:

hA\B xð Þ ¼ hA xð Þ ^ hB xð Þ
¼ min si; sj

� �
si 2 hA xð Þ;j sj 2 hB xð Þ

� �
:

ð5Þ

In above definition, the operations c;[;\ are defined on

HFLTSs, while operations � ;_;^ are defined on the

corresponding HFLEs.

Example 2.2 Suppose that S ¼ fs0 : very poor; s1 : poor;

s2 : medium poor; s3 : fair; s4 : medium good; s5 : good;
s6 : very goodg is a linguistic term set. We let A, B be two

hesitant fuzzy linguistic term sets. Suppose that hA xð Þ ¼
s1; s2; s3f g and hB xð Þ ¼ s3; s4f g are two HFLEs of x to

A and B. According to Definition 2.4, we have:

hAc xð Þ ¼ s6�3; s6�2; s6�1f g ¼ s3; s4; s5f g;
hA xð Þ _ hB xð Þ ¼ fmax s1; s3f g;max s1; s4f g;
max s2; s3f g;max s2; s4f g;max s3; s3f g;max s3; s4f gg
¼ s3; s4f g;
hA xð Þ ^ hB xð Þ ¼ fmin s1; s3f g;min s1; s4f g;
min s2; s3f g;min s2; s4f g;min s3; s3f g;min s3; s4f gg
¼ s1; s2; s3f g:

Theorem 2.1 [32] Let U be the universe of discourse,

Suppose that S ¼ s0; s1; . . .; sg
� �

is a linguistic term set. If

we let A, B and C be three hesitant fuzzy linguistic term

sets based on S, then the followings are true:

(1) Double negation law: � � hA xð Þð Þ ¼ hA xð Þ;
(2) De Morgan’s laws: � hA xð Þ _ hB xð Þð Þ ¼ � hA xð Þð Þ

^ � hB xð Þð Þ and � hA xð Þ ^ hB xð Þð Þ ¼ � hA xð Þð Þ
_ � hB xð Þð Þ;

(3) Commutativity: hA xð Þ _ hB xð Þ ¼ hB xð Þ _ hA xð Þ and

hA xð Þ ^ hB xð Þ ¼ hB xð Þ ^ hA xð Þ;
(4) Associativity:hA xð Þ _ hB xð Þ _ hC xð Þð Þ ¼ hA xð Þð

_hB xð ÞÞ _ hC xð Þ and hA xð Þ ^ hB xð Þ ^ hC xð Þð Þ ¼
hA xð Þð ^hB xð ÞÞ ^ hC xð Þ;

(5) Distributivity:hA xð Þ ^ hB xð Þ _ hC xð Þð Þ ¼ hA xð Þð
^hB xð ÞÞ _ hA xð Þ ^ hC xð Þð Þ and hA xð Þ _ hB xð Þð
^hC xð ÞÞ ¼ hA xð Þ _ hB xð Þð Þ ^ hA xð Þ _ hC xð Þð Þ.

Theorem 2.1 shows the basic properties of negation,

max-union and min-intersection operations, which are

defined on HFLEs.

Rodriguez et al. presented a context-free grammar GH

which aims to produce simple but rich linguistic

expressions.

Definition 2.5 [26] Suppose that S ¼ s0; s1; . . .; sg
� �

is a

linguistic term set, and EGH
is a function that transforms the

linguistic expression H, obtained by a context-free gram-

mar GH , into a hesitant fuzzy linguistic element hA xð Þ, as

follows: EGH
: H ! hA xð Þ.

By using the following, the linguistic expressions can be

transformed into HFLEs.

(1) EGH
sið Þ ¼ si si 2 Sjf g;

(2) EGH
at most sið Þ ¼ sj sj 2 S

�� and sj � si
� �

;

(3) EGH
lower than sið Þ ¼ sj sj 2 S

�� and sj\si
� �

;

(4) EGH
at least sið Þ ¼ sj sj 2 S

�� and sj � si
� �

;

(5) EGH
greater than sið Þ ¼ sj sj 2 S

�� and sj [ si
� �

;

(6) EGH
between si and sj
� �

¼ sk sk 2 Sj and si�skf
� sjg:

Although there are several methods that aim to compare

the magnitude of HFLEs, we selected a comparison method
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for HFLEs based on pairwise comparisons of each lin-

guistic term in the two HFLEs because of its advantages

over other approaches when ranking alternatives to be

obtained through utilizing intervals [10]. Moreover, con-

sidering that it is not suitable to compare discrete linguistic

terms in HFLTSs through utilizing the comparison method

for continuous numerical intervals. When comparing two

hesitant fuzzy linguistic term sets, which may be of dif-

ferent lengths, the notion of pairwise comparisons of each

linguistic term was constructed.

Prior to the introduction of the approach, we introduced

the distance between two single linguistic terms. Let

si; sj 2 S, and d si; sj
� �

¼ i� j be the distance between si

and sj.

Definition 2.6 [10] Suppose that hA x1ð Þ and hA x2ð Þ are

two HFLEs on S, and the pairwise comparison matrix

between hA x1ð Þ and hA x2ð Þ are defined as:

C hA x1ð Þ; hA x2ð Þð Þ ¼ d si; sj
� �� �

hA x1ð Þj j� hA x2ð Þj j; ð6Þ

where si 2 hA x1ð Þ and sj 2 hA x2ð Þ. Then, we let

C hA x1ð Þ; hA x2ð Þð Þ ¼ Cmn½ � be the pairwise comparison

matrix between hA x1ð Þ and hA x2ð Þ, where m and n denote

row and column indexes in the pairwise comparison

matrix. Then, the preference degree of hA x1ð Þ and hA x2ð Þ is

defined as:

P hA x1ð Þ[ hA x2ð Þð Þ ¼
P

Cmn [ 0 Cmn

�� ��

# Cmn ¼ 0f g þ
P

Cmnj j ;
ð7Þ

P hA x1ð Þ ¼ hA x2ð Þð Þ ¼ # Cmn ¼ 0f g
# Cmn ¼ 0f g þ

P
Cmnj j ; ð8Þ

P hA x1ð Þ\hA x2ð Þð Þ ¼
P

Cmn\0 Cmn

�� ��

# Cmn ¼ 0f g þ
P

Cmnj j ;
ð9Þ

we say that hA x1ð Þ is superior to hA x2ð Þ with the degree of

P hA x1ð Þ[ hA x2ð Þð Þ, denoted by PA
x1 [ x2

; hA x1ð Þ is equal to

hA x2ð Þ with the degree of P hA x1ð Þ ¼ hA x2ð Þð Þ, denoted by

PA
x1¼x2

; hA x1ð Þ is inferior to hA x1ð Þ with the degree of

P hA x1ð Þ\hA x2ð Þð Þ, denoted by PA
x1\x2

. Finally,

PA
x1 [ x2

þ PA
x1¼x2

þ PA
x1\x2

¼ 1.

In order to rank alternatives from the preference rela-

tion, there are several choice functions. We selected the

concept of the non-dominance degree because it indicates

the degree to which an alternative is not dominated by

remaining ones. This is convenient for decision makers to

rank alternatives from the above preference relation.

Definition 2.7 [26] Let PD ¼ Pij

� �
be a preference rela-

tion defined over a set of alternatives X. For the alternative

xi, the non-dominance degree is defined as:

NDDi ¼ min 1 � PS
ji; j ¼ 1; . . .; n; j 6¼ i

n o
; ð10Þ

where PS
ji ¼ max Pji � Pij; 0

� �
denotes the degree to which

xi is strictly dominated by xj. The non-dominated alterna-

tives are defined as:

XND ¼ xi xi 2 X;NDDi ¼ maxxj2X NDDj

� ���� �
: ð11Þ

Hierarchy plays a significant role in granular computing.

In a classical set, hierarchy is characterized by set con-

tainment. Conversely, hierarchy is characterized by the

comparisons of membership degrees in the background of a

fuzzy set. Since the hesitant fuzzy linguistic term set is an

extended form of fuzzy set, it is necessary to develop a new

definition for comparing two hesitant fuzzy linguistic term

sets. An HFL subset will be used to compare two hesitant

fuzzy linguistic term sets. Let the kth largest value in hA xð Þ
be denoted as h

r kð Þ
A xð Þ, and the kth largest value in hB xð Þ be

denoted as h
r kð Þ
B xð Þ.

Definition 2.8 Let U be a non-empty and finite universe

of discourse. For all A;B 2 HFL Uð Þ, if

hA xð Þ	hB xð Þ holds for any x 2 U such that

hA xð Þ	hB xð Þ , h
r kð Þ
A xð Þ� h

r kð Þ
B xð Þ, j ¼ 1; 2. . .; l. We

denote it by A 
 B.

This illustrates that the comparison of two hesitant fuzzy

linguistic term sets is based on the comparisons of each

value in corresponding HFLEs for all objects in the uni-

verse. Moreover, 
 is reflexive, antisymmetric and transi-

tive on HFL Uð Þ.

3 Hesitant fuzzy linguistic rough set over two
universes

In this section, we introduce the hesitant fuzzy linguistic

(HFL) relation to classical model of fuzzy rough set and

further extend the proposed rough set from a single uni-

verse to two universes. First, it is necessary to construct the

concept of an HFL relation over two universes to form

HFL rough approximation operators over two universes.

Definition 3.1 Suppose that S ¼ s0; s1; . . .; sg
� �

is a lin-

guistic term set and U, V are two non-empty and finite

universes of discourse. An HFL subset R of the universe

U � V is called an HFL relation over U � V . Then, R can

be expressed as:

R ¼ x; yð Þ; hR x; yð Þh i : x; yð Þ 2 U � Vf g; ð12Þ
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where hR x; yð Þ is a set of linguistic values in S for each

x; yð Þ 2 U � V , denoting possible membership degrees of

the relationships between x and y. Moreover, we denote the

family of all HFL relations over two universes as

HFLR U � Vð Þ. If U ¼ V , the hesitant fuzzy linguistic

relation R 2 HFLR U � Vð Þ reduces to the hesitant fuzzy

linguistic relation on a single universe.

Next, we introduce a special HFL relation over two

universes.

Definition 3.2 Suppose that S ¼ s0; s1; . . .; sg
� �

is a lin-

guistic term set. Let R 2 HFLR U � Vð Þ for all x 2 U, with

R being serial if there exists a y 2 V such that

hR x; yð Þ ¼ sg
� �

. Then, R is referred to as a serial HFL

relation over U � V .

Since fuzzy rough sets can only deal with fuzzy infor-

mation, it is common for real-life decision makers to

express opinions by utilizing hesitant fuzzy linguistic

information. To overcome this limitation, it is necessary to

introduce the hesitant fuzzy linguistic relation to fuzzy

rough set. Furthermore, considering the advantages of

extending a single universe to two universes for the rough

set, we develop the hesitant fuzzy linguistic rough set over

two universes below.

Definition 3.3 Suppose that S ¼ s0; s1; . . .; sg
� �

is a lin-

guistic term set and U, V are two non-empty and finite

universes of discourse. R 2 HFLR U � Vð Þ, the pair

U;V ;Rð Þ is an HFL approximation space over two uni-

verses. For any A 2 HFL Vð Þ, the lower and upper

approximations of A with respect to U;V ;Rð Þ, denoted by

R Að Þ and R Að Þ, are two hesitant fuzzy linguistic term sets,

defined as follows:

R Að Þ ¼ x; hR Að Þ xð Þ
	 
��x 2 U

� �
; ð13Þ

R Að Þ ¼ x; hR Að Þ xð Þ
D E���x 2 U

n o
; ð14Þ

where

hR Að Þ xð Þ ¼ ^y2V hRc x; yð Þ _ hA yð Þf g;
hR Að Þ xð Þ ¼ _y2V hR x; yð Þ ^ hA yð Þf g:

The pair R Að Þ;R Að Þ
� �

is referred to as a hesitant fuzzy

linguistic rough set over two universes of A in terms of the

hesitant fuzzy linguistic relation R, where both R Að Þ and

R Að Þ are hesitant fuzzy linguistic term sets. R and R are the

lower and upper HFL rough approximation operators over

two universes, respectively.

If we let U ¼ V , hesitant fuzzy linguistic rough

approximations over two universes reduce to hesitant fuzzy

linguistic rough approximations on single universe.

Moreover, if the hesitant fuzzy linguistic relation R reduces

to a binary relation, A reduces to a crisp set, and the

hesitant fuzzy linguistic rough approximation operators

reduce to the classical rough approximation operators.

Similar to the practical meaning of rough set theory, the

lower hesitant fuzzy linguistic rough approximation refers

to all objects that are definitely contained in the set A, and

the upper hesitant fuzzy linguistic rough approximation

refers to all objects that are definitely contained and pos-

sibly contained in the set A. In real-life decision making

activities, these two types of decision making ranking

results denote the final decision making outcome along

with minimum and maximum uncertainties, making the

procedure more objective and logical. Thus, hesitant fuzzy

linguistic rough approximation operators over two uni-

verses have advantages in modeling hesitant fuzzy lin-

guistic information analysis and providing multiple ranking

results for assessment by decision makers.

Example 3.1 Suppose that S ¼ fs0 : very poor; s1 : poor;
s2 : medium poor; s3 : fair; s4 : medium good; s5 : good;

s6 : very goodg is a linguistic term set. HFLTS is denoted

as A and an HFL relation over two universes is denoted as

R, as seen below.

A ¼ f x1; between medium poor and fairf gh i;
x2; between good and very goodf gh i; x3; fairf gh ig;
R ¼ x1; y1ð Þ; very goodf gh i;f
x1; y2ð Þ; between fair and medium goodf gh i;
x1; y3ð Þ; poorf gh i;
x2; y1ð Þ; between fair and medium goodf gh i;
x2; y2ð Þ; very goodf gh i;
x2; y3ð Þ; between good and very goodf gh i;
x3; y1ð Þ; poorf gh i;
x3; y2ð Þ; between good and very goodf gh i;
x3; y3ð Þ; very goodf gh ig:

In this example, R is serial. According to Definition 2.5, we

transform the linguistic expressions into HFLEs.

A ¼ x1; s2; s3f gh i; x2; s5; s6f gh i; x3; s3f gh if g;
R ¼ x1; y1ð Þ; s6f gh i;f x1; y2ð Þ; s3; s4f gh i; x1; y3ð Þ; s1f gh i;
x2; y1ð Þ; s3; s4f gh i; x2; y2ð Þ; s6f gh i; x2; y3ð Þ; s5; s6f gh i;
x3; y1ð Þ; s1f gh i; x3; y2ð Þ; s5; s6f gh i; x3; y3ð Þ; s6f gh ig:

Then, we can compute R Að Þ and R Að Þ,

hR Að Þ x1ð Þ ¼ ^y2V hRc x1; yð Þ _ hA yð Þf g
¼ s0f g _ s2; s3f gð Þ ^ s2; s3f g _ s5; s6f gð Þ ^ s5f g _ s3f gð Þ
¼ s2; s3f g ^ s5; s6f g ^ s5f g
¼ s2; s3f g:

582 Int. J. Mach. Learn. & Cyber. (2018) 9:577–588

123



Similarly, it is easy to acquire hR Að Þ x2ð Þ ¼ s2; s3f g,

hR Að Þ x3ð Þ ¼ s3f g, hR Að Þ x1ð Þ ¼ s3; s4f g, hR Að Þ x2ð Þ ¼ s5; s6f g,

hR Að Þ x3ð Þ ¼ s5; s6f g. Therefore, we have: R Að Þ ¼
f x1; s2; s3f gh i; x2; s2; s3f gh i; x3; s3f gh ig, R Að Þ ¼ f x1; s3;fh
s4gi; x2; s5; s6f gh i; x3; s5; s6f gh ig.

Theorem 3.1 Let U, V be two non-empty and finite

universes of discourse. For any A;B 2 HFL Vð Þ, the fol-

lowing properties are true:

(1) R Acð Þ ¼ R Að Þ
� �c

, R Acð Þ ¼ R Að Þð Þc;
(2) A 
 B ) R Að Þ 
 R Bð Þ, A 
 B ) R Að Þ 
 R Bð Þ;
(3) R A \ Bð Þ ¼ R Að Þ \ R Bð Þ, R A [ Bð Þ ¼ R Að Þ [ R Bð Þ;
(4) R A [ Bð Þ � R Að Þ [ R Bð Þ, R A \ Bð Þ 
 R Að Þ \ R Bð Þ;
(5) R Vð Þ ¼ R Vð Þ ¼ U, R ;ð Þ ¼ R ;ð Þ ¼ ;.

Proof

(1) For all x 2 U,

hR Acð Þ xð Þ ¼ ^y2V hRc x; yð Þ _ hAc yð Þf g
¼ ^y2V � hR x; yð Þð Þ _ � hA yð Þð Þf g
¼ � _y2V hR x; yð Þ ^ hA yð Þf g

� �

¼ h
R Að Þð Þc xð Þ:

Therefore, we have R Acð Þ ¼ R Að Þ
� �c

. R Acð Þ ¼
R Að Þð Þc is obtained similarly.

(2) Since A 
 B, by Definition 2.8, h
r kð Þ
A yð Þ	h

r kð Þ
B yð Þ for

all y 2 V . Therefore, it follows that ^y2Vfhr kð Þ
Rc x; yð Þ

_hr kð Þ
A yð Þg� ^y2Vfhr kð Þ

Rc x; yð Þ _ h
r kð Þ
B yð Þg, and thus,

for all x 2 U, we have hR Að Þ xð Þ	hR Bð Þ xð Þ, which

indicates R Að Þ 
 R Bð Þ. A 
 B ) R Að Þ 
 R Bð Þ is

obtained in a similar manner.

(3) For all x 2 U,

R A \ Bð Þ xð Þ ¼ ^y2V hRc x; yð Þ _ h A\Bð Þ yð Þ
� �

¼ ^y2V hRc x; yð Þ _ hA yð Þ ^ hB yð Þð Þf g
¼ ^y2V hRc x; yð Þ _ hA yð Þð Þ ^ hRc x; yð Þ _ hB yð Þð Þf g
¼ ^y2V hRc x; yð Þ _ hA yð Þf g

� �
^

^y2V hRc x; yð Þ _ hB yð Þf g
� �

¼ hR Að Þ xð Þ ^ hR Bð Þ xð Þ
¼ hR Að Þ\R Bð Þ xð Þ

Thus, R A \ Bð Þ ¼ R Að Þ \ R Bð Þ. Similarly,

R A [ Bð Þ ¼ R Að Þ [ R Bð Þ is obtained.

(4) Based on the above discussions, it is not difficult to

prove R A [ Bð Þ � R Að Þ [ R Bð Þ and R A \ Bð Þ 

R Að Þ \ R Bð Þ.

(5) This theorem holds when R is serial. For all x 2 U,

we have h; xð Þ ¼ s0f g. Suppose that there exists y0 2
V such that hR x; y0ð Þ ¼ sg

� �
. Then,

hR ;ð Þ xð Þ ¼ ^y2V hRc x; yð Þ _ s0f gf g
¼ ^y2V hRc x; yð Þf g
¼ hRc x; y0ð Þ ^ ^y 6¼y0 hRc x; yð Þf g

� �

¼ s0f g ^ ^y 6¼y0 hRc x; yð Þf g
� �

¼ s0f g

Thus, we obtain R ;ð Þ ¼ ;. R ;ð Þ ¼ ; is determined

in a similar manner. For all x 2 U, we have

hV xð Þ ¼ sg
� �

, hR Vð Þ xð Þ ¼ ^y2VfhRc x; yð Þ _ sg
� �

g
¼ sg

� �
, and therefore obtain R Vð Þ ¼ U. R Vð Þ ¼ U

is obtained in an identical fashion.

h

Theorem 3.1 indicates the fundamental properties of

hesitant fuzzy linguistic rough sets over two universes: (1)

shows the complement of hesitant fuzzy linguistic rough

approximations over two universes; (2) shows the mono-

tone of hesitant fuzzy linguistic rough approximations over

two universes; (3) and (4) show the multiplication and

addition of hesitant fuzzy linguistic rough approximations

over two universes; (5) illustrates the normality and

conormality of hesitant fuzzy linguistic rough approxima-

tions over two universes.

Theorem 3.2 Let U, V be two non-empty and finite

universes of discourse. Suppose that R1;R2 2 HFLR

U � Vð Þ. If R1 
 R2, for any A 2 HFL Vð Þ, then the fol-

lowing properties are true:

(1) R1 Að Þ � R2 Að Þ, for all A 2 HFL Vð Þ;
(2) R1 Að Þ 
 R2 Að Þ, for all A 2 HFL Vð Þ.

Proof Since R1 
 R2, by Definition 2.8, we have

h
r kð Þ
R1

x; yð Þ� h
r kð Þ
R2

x; yð Þ for all x; yð Þ 2 U � Vð Þ. It fol-

lows that

hR1 Að Þ xð Þ ¼ ^y2V h
r kð Þ
Rc

1
x; yð Þ _ h

r kð Þ
A yð Þ

n o

�^y2V h
r kð Þ
Rc

2
x; yð Þ _ h

r kð Þ
A yð Þ

n o

¼ hR2 Að Þ xð Þ

Hence, for each x 2 U, we have hR1 Að Þ xð Þ� hR2 Að Þ xð Þ,
which means R1 Að Þ � R2 Að Þ. R1 Að Þ 
 R2 Að Þ is similarly

obtained. h

This theorem shows that the lower and upper approxi-

mations in HFL rough sets over two universes are mono-
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tonic due to the monotonic forms of the HFL relations over

two universes.

4 Decision making approach based on HFL rough
set over two universes

In this section, we introduce a new approach to decision

making utilizing the HFL rough set over two universes.

The main points of our model and decision making meth-

ods are summarized as follows.

4.1 Application model

Suppose that U ¼ x1; x2; . . .; xj
� �

is the alternatives set and

V ¼ y1; y2; . . .; ykf g is the general characteristic factors set.

R 2 HFLR U � Vð Þ is an HFL relation reflecting the rele-

vancy degree between alternatives and general character-

istic factors. We also let A 2 HFL Vð Þ be an evaluation set

that reflects the general characteristic factors of a new

occurred alternative. Then, we obtain an HFL decision

making information system U;V ;R;Að Þ.
Based on the decision making strategy developed in

[27], we present decision rules by using an HFL rough set

over two universes. First, we denote three decision making

index sets:

T1 ¼ i max
xi2U

���� R Að Þ xið Þf g
� �

; ð15Þ

T2 ¼ j max
xj2U

���� R Að Þ xj
� �� �� �

; ð16Þ

T3 ¼ k max
xk2U

���� R Að Þ xkð Þ 
 R Að Þ xkð Þ
� �� �

: ð17Þ

From the viewpoint of the classical operational risk deci-

sion making principle, and according to the definitions of

the above decision making index sets, we can obtain the

explanation for decision making index sets T1, T2 and T3.

These sets are composed of subscripts of the largest hesi-

tant fuzzy linguistic element in the corresponding hesitant

fuzzy linguistic term set. Specifically, since the lower

hesitant fuzzy linguistic rough approximation refers to all

objects that are definitely contained in the set A, and the

upper hesitant fuzzy linguistic rough approximation refers

to all objects that are definitely contained and possibly

contained in the set A. T1 is the max-min decision criterion,

and is the final decision making result with minimum

uncertainties; T2 is the max-max decision making criterion

of risk decision making, and is the final decision making

result with maximum uncertainties; T3 is the weighted

decision criterion of T1 and T2 with the weighted value 0.5,

and is the final decision making result with medium

uncertainties. When determining T3, linguistic operational

laws are used [17]: For any linguistic terms sa, sb 2 S, we

have sa 
 sb ¼ saþb and ksa ¼ ska k 2 0; 1½ �ð Þ. To obtain a

more objective decision making result, the decision rules

are presented as follows, based on the above definitions:

(1) If T1 \ T2 \ T3 6¼ ;, then xi i 2 T1 \ T2 \ T3ð Þ is the

optimal decision making result;

(2) If T1 \ T2 \ T3 ¼ ; and T1 \ T2 6¼ ;, then

xi i 2 T1 \ T2ð Þ is the optimal decision making result;

(3) If T1 \ T2 \ T3 ¼ ; and T1 \ T2 ¼ ;, then xi i 2 T3ð Þ
is the optimal decision making result.

By virtue of the decision making index sets T1, T2 and T3,

the proposed decision rules are a multi-faceted decision

making scheme that considers multiple situations. Con-

cretely speaking, situation (1) denotes little difference

between the three decision making index sets; situation (2)

denotes some difference between the three decision making

index sets; situation (3) denotes many differences between

the three decision making index sets. By utilizing the

multi-faceted decision making scheme, decision makers

obtain more accurate results than when using other

approaches.

4.2 Algorithm for application model

We present an algorithm for the decision making model

based on an HFL rough set over two universes as follows:

Algorithm 1 The decision making procedure by uti-
lizing an HFL rough set over two universes.
Require: The relation R between the universe U and V pro-

vided by an expert and an evaluation set A.
Ensure: The optimal decision making result.
1: Transform the linguistic expressions into HFLEs;
2: Calculate the R (A) and R (A) with respect to (U, V,R);
3: Construct the pairwise comparison matrix over a set of

alternatives in R (A) and R (A);
4: Compute the preference degrees of alternatives and con-

struct the corresponding preference matrix;
5: Compute the non-dominance degree and determine the

ranking results over a set of alternatives in R (A) and
R (A);

6: Compute T1, T2, T3, T1 ∩ T2 ∩ T3 and T1 ∩ T2, and de-
termine the optimal decision making result.

5 An illustrative example

The basic steps of the proposed decision making approach

are illustrated using an example of a person-job fit prob-

lem. Job requirements linguistic information of a typical

OTT (over the top) player from a local recruitment website

in China was extracted for use in this example. We
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modeled a person-job fit problem by utilizing the HFL

rough set over two universes.

5.1 Case description

Suppose that Mr. X is a job seeker wanting to know which

job suit for him. and hires an expert to conduct occupation

evaluations. Let U ¼ x1; x2; x3; x4; x5f g denotes five com-

mon departments in an OTT company. Where xi stands for

‘‘administrative department’’, ‘‘marketing department’’,

‘‘research & development department’’, ‘‘financial depart-

ment’’ and ‘‘sales department’’. The universe V ¼
y1; y2; y3; y4; y5; y6; y7f g denotes seven professional abili-

ties in an OTT player. Where yi stands for ‘‘mathematical

ability’’, ‘‘software application capability’’, ‘‘writing abil-

ity’’, ‘‘verbal ability’’, ‘‘organization and management

skill’’, ‘‘detail awareness ability’’ and ‘‘social skills’’.

Let R 2 HFLR U � Vð Þ be a hesitant fuzzy linguistic

relation extracted from a recruitment website’s job

requirements information. Mr. X needs to conduct the self-

evaluation denoted as A ¼ yi; hA yið Þh i yi 2 Vjf g, where yi
contains seven linguistic values within S: S ¼ fs0 :
Extremely Limited User; s1 : Limited User; s2 : Modest

User; s3 : Competent User; s4 : Good User; s5 : Very

Good User; s6 : Expert Userg.

The original information given by the expert is pre-

sented in Table 1.

To match Mr. X’s professional abilities to requirements

information, Mr. X conducts a self-evaluation denoted by A.

A ¼
�
y1; between Good User and Very Good Userf gh i;

y2; between Very Good User and Expert Userf gh i;
y3; Competent Userf gh i;
y4; between Good User and Very Good Userf gh i;
y5; between Good User and Very Good Userf gh i;
y6; between Competent User and Good Userf gh i;
y7; Modest Userf gh i

�
:

5.2 Decision making process

The steps for Algorithm 1 are followed to transform the

linguistic expressions into HFLEs. We rewrite the relation

R, shown in Table 2, and the self-evaluation set A as

follows.

A ¼ f y1; s4; s5f gh i; y2; s5; s6f gh i; y3; s3f gh i;
y4; s4; s5f gh i; y5; s4; s5f gh i; y6; s3; s4f gh i; y7; s2f gh ig:

Then, we calculate the R Að Þ and R Að Þ in terms of the

approximation space U;V;Rð Þ as follows.
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R Að Þ ¼ f x1; s2f gh i; x2; s2f gh i; x3; s3f gh i; x4; s3f gh i;
x5; s2f gh ig;

R Að Þ ¼ f x1; s4; s5f gh i; x2; s4f gh i; x3; s5; s6f gh i;
x4; s5f gh i; x5; s4; s5f gh ig:

Since s2 � s3, the ranking order of linguistic values in R Að Þ
is: x3 ¼ x4 [ x1 ¼ x2 ¼ x5. This indicates the optimal

choice for Mr. X is the research & development depart-

ment, or the financial department. T1 ¼ 3; 4f g is easily

obtained.

Next, the ranking order of the linguistic values in R Að Þ
is determined. There are four different linguistic values in

R Að Þ, i.e., s4; s5f g, s4f g, s5f g and s5; s6f g.

The preference degrees of s4; s5f g, s4f g, s5f g and

s5; s6f g are computed:

P s4; s5f g[ s4f gð Þ ¼ 0:5;

P s4; s5f g\ s4f gð Þ ¼ 0;
P s4; s5f g[ s5f gð Þ ¼ 0;

P s4; s5f g\ s5f gð Þ ¼ 0:5;

P s4; s5f g[ s5; s6f gð Þ ¼ 0;
P s4; s5f g\ s5; s6f gð Þ ¼ 0:8;

P s4f g[ s5f gð Þ ¼ 0;

P s4f g\ s5f gð Þ ¼ 1;
P s4f g[ s5; s6f gð Þ ¼ 0;

P s4f g\ s5; s6f gð Þ ¼ 1;
P s5f g[ s6f gð Þ ¼ 0;

P s5f g\ s6f gð Þ ¼ 0:5:

We rank s4; s5f g, s4f g, s5f g and s5; s6f g by using the non-

dominance degree method described in Definition 2.7.

From this, the following is obtained:

PS
D ¼

� 0:5 0 0

0 � 0 0

0:5 1 � 0

0:8 1 0:5 �

0

BBB@

1

CCCA
:

Thus, we have:

NDD1 ¼ minf 1 � 0Þð Þ; 1 � 0:5ð Þ; 1 � 0:8ð Þg ¼ 0:2;

NDD2 ¼ minf 1 � 0:5ð Þ; 1 � 1ð Þ; 1 � 1ð Þg ¼ 0;

NDD3 ¼ min 1 � 0ð Þ; 1 � 0ð Þ; 1 � 0:5ð Þf g ¼ 0:5;

NDD4 ¼ min 1 � 0ð Þ; 1 � 0ð Þ; 1 � 0ð Þf g ¼ 1.

Finally, we obtain s5; s6f g[ s5f g[ s4; s5f g[ s4f g.

Therefore, the ranking order of linguistic values in R Að Þ is:

x3 [ x4 [ x1 ¼ x5 [ x2. According to the ranking result,

the optimal choice for Mr. X is the research & development

department, while the marketing department is the worst.

We obtain T2 ¼ 3f g. Then, according to Algorithm 1, we

also obtain T3 ¼ 3f g. Since T1 \ T2 \ T3 6¼ ;, the optimal

recruitment department is the research & development

department.

5.3 Comparative analysis

Here, we compare the newly proposed decision making rules

with the method of cosine similarity measure between

HFLTSs [17]. The cosine similarity measure is defined as the

inner product of two vectors divided by the product of their

lengths. Prior to the introduction of cosine similarity mea-

sure between HFLTSs, all the distance and similarity mea-

sures are based on algebra distance measures, such as the

Hamming distance, the Euclidean distance, and the Haus-

dorff distance. The cosine similarity measure between

HFLTSs is based on the geometric point of view. Moreover,

the cosine distance and similarity measures are more easily

understood, as their geometric meanings are intuitive.

Therefore, the method of cosine similarity measure between

HFLTSs is a typical and effective approach for analysis.

5.3.1 Cosine similarity measure

As presented by Liao and Xu [17], the cosine similarity

measure between the HFLTSs H1
S and H2

S is proposed as:

q H1
S ;H

2
S

� �
¼
PN

i¼1
1
Li

PLi
l¼1

d1
l xið Þj j

2sþ1
� d2

l xið Þj j
2sþ1


 �
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
1
Li

PLi
l¼1

d1
l xið Þ

2sþ1

� �2

 �

�
PN

i¼1
1
Li

PLi
l¼1

d2
l xið Þ

2sþ1

� �2

 �s ; ð18Þ

where H1
S ¼ xi; h

1
S xið Þ

	 

xi 2 Xj

� �
and H2

S ¼ f xi; h
2
S xið Þ

	 


xi 2 Xj g i ¼ 1; 2; . . .;Nð Þ, with hkS xið Þ ¼
n
sdkl

xið Þ
��sdkl xið Þ

2 S; l ¼ 1; 2; . . .Li

o
, k ¼ 1; 2, Li is the maximum number

of linguistic terms in h1
S xið Þ and h2

S xið Þ (the shorter one

should be extended until they are equal in length), N is the

cardinality of X, and s denotes the index of a linguistic

term.

5.3.2 Result analysis and discussions

Through utilizing the above cosine similarity measure

formula, the following is obtained: q A; x1ð Þ ¼ 0:94,

q A; x2ð Þ ¼ 0:88, q A; x3ð Þ ¼ 0:98, q A; x4ð Þ ¼ 0:96,

q A; x5ð Þ ¼ 0:87. The results reveal ranking order of xi as

Table 2 The relation between departments and abilities presented by

HFLEs

R y1 y2 y3 y4 y5 y6 y7

x1 fs3g fs4g fs5g fs5g fs6g fs5g fs4g
x2 fs3g fs4g fs5g fs3g fs4g fs3g fs6g
x3 fs5g fs6g fs5g fs4g fs4g fs4g fs3g
x4 fs5g fs5g fs3g fs3g fs5g fs6g fs3g
x5 fs3g fs3g fs4g fs6g fs3g fs5g fs6g
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x3 [ x4 [ x1 [ x2 [ x5. According to the ranking result,

the ideal department for Mr. X is research & development.

The ranking order is similar to that determined by Algo-

rithm 1. Conclusively, both methods indicate the optimal

department as research & development.

Moreover, there are extra steps for the cosine similarity

measure between the hesitant fuzzy linguistic term sets

which may reduce result precision. Since the aforemen-

tioned cosine similarity measure is based on an assumption

that each HFLE are equal lengths, if HFLE lengths differ,

the shorter one should be extended until the HFLEs are

equal lengths. To some extent, it is inevitable that original

HFLE information is changed. Thus, such an adjustment is

less well justified in theory and practice. Consequently, the

proposed approach is more flexible in dealing with the

person-job fit problem.

Comparing to the above theoretical results to existing

literature, the main contribution of the proposed decision

making model is in providing different decision making

criteria based on the advantages of rough set theory.

Specifically, by introducing the notion of a rough set into

hesitant fuzzy linguistic information analysis, decision

makers can refer to two types of ranking results: lower and

upper hesitant fuzzy linguistic rough approximations over

two universes. These yield a final result with minimum and

maximum uncertainties, respectively. Furthermore, based

on the multi-type results, the multi-faceted recruitment

decision rules provide more accurate recruitment outcomes

than other methods. The hesitant fuzzy linguistic rough set

over two universes model is superior in providing robust

solutions for person-job fit problems.

Despite the contributions mentioned above, this study

may also serve as directions for further research. First,

although this study focuses on real-life decision making

problems by utilizing HFL rough sets over two universes, it

would be interesting to investigate several theoretical parts

of the proposed rough set model, such as the axiomatic

approach, attribute reduction, and uncertainty measures

based on HFL rough sets over two universes. It is also worth

investigating the relationships between HFL rough sets over

two universes and multigranulation rough sets, and related

applications in a group decision making background.

6 Conclusions

In this paper, we developed a general framework for the

study of HFL rough sets over two universes. The lower and

upper hesitant fuzzy linguistic rough approximation oper-

ators over two universes were defined, and related prop-

erties of HFL rough sets over two universes were proved.

Lastly, a comprehensive algorithm for real-life decision

making was established and illustrated by a numerical

example under the background of person-job fit. This

research discusses some theoretical and practical aspects of

HFL rough sets over two universes, and further study may

investigate how to measure uncertainties and construct

efficient attribute reduction methods for HFL information

systems. Finally, how to utilize the proposed approach to

solve more decision making problems should also be dis-

cussed in future research.
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