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Intuitionistic Fuzzy Rough Set-Based Granular
Structures and Attribute Subset Selection

Anhui Tan , Wei-Zhi Wu, Yuhua Qian , Jiye Liang , Jinkun Chen , and Jinjin Li

Abstract—Attribute subset selection is an important issue in
data mining and information processing. However, most automatic
methodologies consider only the relevance factor between samples
while ignoring the diversity factor. This may not allow the utiliza-
tion value of hidden information to be exploited. For this reason,
we propose a hybrid model named intuitionistic fuzzy (IF) rough
set to overcome this limitation. The model combines the technical
advantages of rough set and IF set and can effectively consider the
above-mentioned statistical factors. First, fuzzy information gran-
ules based on IF relations are defined and used to characterize the
hierarchical structures of the lower and upper approximations of
IF rough set within the framework of granular computing. Then,
the computation of IF rough approximations and knowledge re-
duction in IF information systems are investigated. Third, based
on the approximations of IF rough set, significance measures are
developed to evaluate the approximation quality and classification
ability of IF relations. Furthermore, a forward heuristic algorithm
for finding one optimal reduct of IF information systems is de-
veloped using these measures. Finally, numerical experiments are
conducted on public datasets to examine the effectiveness and effi-
ciency of the proposed algorithm in terms of the number of selected
attributes, computational time, and classification accuracy.

Index Terms—Attribute reduction, granular structure, intu-
itionistic fuzzy (IF) relation, IF rough set, rough approximation.
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I. INTRODUCTION

ROUGH set theory and fuzzy set theory are two important
tools for conceptualizing and analyzing various types of

data. They have attracted considerable attention in the domains
of granular computing and machine learning. Pawlak’s rough set
[1] utilizes an indiscernibility relation to construct the lower and
upper approximations of any arbitrary subset of the universe.
It can directly handle categorical attributes [2]–[5], whereas
numerical and continuous ones must be discretized into several
intervals, which are assigned a set of symbolic values before the
rough set model is applied. Different discretization methods may
change the original distribution of data and lead to information
loss. In view of this observation, fuzzy rough set [6], [7], as
a combination of fuzzy set and rough set, has proven to be
an effective tool for overcoming the puzzle of discretization
and can be used to analyze numerical and continuous attributes
without additional preprocessing steps. Over the past decade,
this theory has been successfully applied in gene expression,
cluster analysis, feature selection, and rule extraction [8]–[11].

We elaborate the advantages of fuzzy rough set from the fol-
lowing two angles. First, this model [12]–[16] was introduced
to express the idea of granular computing, which refers to the
theories and methodologies that utilize granules in information
processing. Zadeh [16] first proposed and discussed the issue
of fuzzy information granulation, which is used to generate a
family of fuzzy information granules from numerical and con-
tinuous data. Pedrycz et al. [17] presented a granular evaluation
of fuzzy models and delivered an augmentation of fuzzy mod-
els by forming information granules. Qian et al. [18] developed
a measure, named a fuzzy granular structure distance, to dis-
criminate the difference between fuzzy granular structures. By
considering the intention and extension of information, Xu and
Li [19] addressed the mechanism required to train arbitrary
fuzzy information granules. Chen et al. [20] introduced the con-
cept of granular fuzzy set based on fuzzy similarity relations
and described the granular structures of fuzzy rough approx-
imation operators. Second, fuzzy rough set is widely utilized
for feature selection (also called attribute reduction) [21], [22].
Jensen and Shen [10], [23] first defined a notion of dependence
function-based reduct and designed a heuristic reduction algo-
rithm using a fuzzy rough set. In [24], a computational domain
was presented to improve the computational efficiency of the
algorithm proposed in [10]. In [25], the authors examined the
granular structures of lower and upper fuzzy rough approxima-
tions and constructed a discernibility matrix, using which the
foundation of fuzzy-rough attribute reduction was established.
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Considerable effort has been devoted to developing reduction
methods by remodeling the discernibility matrices [26], [27].
Wang et al. [28]–[30] introduced the concept of fuzzy decision
of samples for feature selection using the fuzzy rough set. It is
noteworthy that the fuzzy rough set is sensitive to noise inter-
ference. For this reason, the robustness is enhanced to improve
the generalizability of fuzzy rough set models in the presence of
attribute noise and class noise [31]–[33]. The perspective of an
additional class of attribute reduction algorithms with the fuzzy
rough set is fuzzy information entropy. Hu et al. [34] employed
information entropy to redefine the definitions of attribute subset
reduct and relative reduct. Zhang et al. [35] presented the gran-
ular structures of fuzzy rough set under general fuzzy relations
and proposed granule-based information entropy for feature
selection.

The intuitionistic fuzzy (IF) set [36], [37], as an intuitive
generalization of fuzzy set, simultaneously takes the member-
ship and nonmembership of objects belonging to target sets
into account. This model possesses a stronger ability to express
the delicate ambiguities of information in the objective world
than do the traditional fuzzy set. The combination of the IF
set and rough set resulted in the introduction of IF rough set
[38]–[40]. It employs the rough set approximations to describe
the IF set by associating a collection of IF relations between
objects. Zhou et al. [41], [42] examined approximation oper-
ators of the IF rough set by using constructive and axiomatic
approaches. Huang et al. [43], [44] developed IF rough set mod-
els for interval-valued and multigranulation data and discussed
the hierarchical structures and uncertainty measures of IF infor-
mation [45]. Zhang et al. [46] provided a general framework of
IF rough set models related to general binary relations between
two universes. Hesameddini et al. [47] and Zhang [48] investi-
gated the attribute reduction of the IF rough set and constructed
the reduction structures based on discernibility matrices. The
existence of all these results indicates that the IF rough set
has received wide attention in the research community in re-
cent years. However, the studies were focused mainly on model
generalization [49]–[51], property exploration [52]–[54], and
measure description [55], [56], while the advantages of the IF
rough set have rarely been demonstrated in different fields, such
as granular computing and feature selection.

The fuzzy rough set considers only the relevance of samples
while overlooking the diversity. To overcome this limitation, we
in this paper employ the IF rough set model to construct the
fuzzy lower and upper approximations of decisions. This model
aims to maintain both the maximal degrees of samples’ mem-
bership to their own classes and nonmembership to other classes
simultaneously. We first define several types of fuzzy informa-
tion granules and then present the hierarchical structures of the
IF rough set from the viewpoint of granular computing. The sig-
nificance measures are introduced to evaluate the classification
ability of the IF relations in an IF decision system. A forward
reduction algorithm is further proposed for finding a reduct of
the system. Finally, we compare the proposed algorithm with
existing algorithms. The experimental results show that the new
algorithm is effective and efficient in the aspects of dimension-
ality reduction, computational time, and classification accuracy.

The rest of this paper is organized as follows. In Section I, we
briefly review some basic concepts of IF set, IF relation, and IF
rough set. In Section II, we define several types of fuzzy granules
and characterize the hierarchical structures of the lower and up-
per approximations of the IF rough set by using these granules.
In Section III, we present a simple way to compute the IF rough
approximations in the IF decision systems. In Section IV, we
discuss the knowledge reduction of IF decision information sys-
tems in detail. A dependence function-based heuristic reduction
algorithm is then formulated to compute a suboptimal reduct
of IF decision systems. In Section V, numerical experiments to
verify the feasibility and stability of the proposed algorithm are
described. The paper is concluded with a summary.

A. Preliminaries

In this section, we review several basic concepts related to
the IF set and IF relation. The notion of the IF rough set is then
presented. More details can be found in [36], [37], [40], and
[41].

1) IF Set and IF Relation:
Definition 1 ([36], [37]): Let U be the universe. An IF set

X on U is

X =
{

(μX (x), γX (x))
x

|x ∈ U

}

where μX : U → [0, 1] and γX : U → [0, 1] satisfy μX (x) +
γX (x) ≤ 1 for any x ∈ U . μX (x) and γX (x) are called the
membership and nonmembership degrees of object x to set X ,
respectively. The pair (μX (x), γX (x)) is an IF number of x
w.r.t. X .

The family of all IF sets on U is denoted by IF , in which 1̃ =
{ (1,0)

x |x ∈ U} is the IF universal set and ∅̃ = { (0,1)
x |x ∈ U} is

the IF empty set. Obviously, each ordinary fuzzy set X can be
represented by an IF set: X = { (μX (x),1−μX (x))

x |x ∈ U}.
Denote the quality of X as |X| = ∑

x∈U
1+μX (x)−γX (x)

2 [57],
[58], where 1 is a translation factor that ensures the value is a
positive number, and quotient 2 is a scaling factor that ensures
the value is bounded within 0 and 1. Moreover, define the proba-
bility quality of X w.r.t. the universe as p(X) = |X |

|U | . We obtain
the following basic properties.

Property 1: Let U be the universe and X,Y ∈ IF .
1) 0 ≤ |X| ≤ |U | and 0 ≤ p(X) ≤ 1.
2) p(X) = 1 iff X = 1̃.
3) p(X) = 0 iff X = ∅̃.
4) If Y ⊆ X , then |Y | ≤ |X| and p(Y ) ≤ p(X).
We can see from Property 1 that the smaller the membership

and the larger the nonmembership degree, the smaller the IF
set. In extreme cases, 1̃ and ∅̃ are the largest and smallest IF
sets, respectively. All IF sets in IF on the universe generate a
complete lattice.

Definition 2 ([59]): Let U be the universe. An IF binary re-
lation R on U is defined as

R = {< (x, y), μR (x, y), γR (x, y) > |(x, y) ∈ U × U}
where μR : U × U → [0, 1] and γR : U × U → [0, 1] satisfy
μR (x, y) + γR (x, y) ≤ 1 for any (x, y) ∈ U × U . μR (x, y) and
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γR (x, y) are, respectively, the similarity and diversity degrees
of x to y.

For two IF relations R and B, we say R is finer than B,
denoted by R � B, if and only if μR (x, y) ≤ μB (x, y) and
γR (x, y) ≥ γB (x, y) for any (x, y) ∈ U × U .

Assume U = {x1 , x2 , . . . , xn}. An IF relation is then repre-
sented by a matrix R = [(μR (xi, xj ), γR (xi, xj ))]n×n , where
the (i, j)th entry displays the IF number between xi and xj .

An IF relation R is an IF tolerance relation if it satisfies the
following:

a) reflexive: μR (x, x) = 1, γR (x, x) = 0;
b) symmetric: μR (x, y) = μR (y, x), γR (x, y) = γR (x, y).
The representative matrix of an IF tolerance relation is sym-

metric whose diagonal values are 1̃. Throughout this study, we
limit the IF relations within IF tolerance ones.

2) IF Rough Set:
Definition 3 ([41], [42]): Let U be the universe and R an IF

relation. For any IF set X ∈ IF , the lower and upper approxi-
mations of X w.r.t. R are, respectively, defined as

R(X) =
{

(μR(X )(x), γR(X )(x))
x

|x ∈ U

}

R(X) =

{
(μR(X )(x), γR(X )(x))

x
> |x ∈ U

}

where

μR(X )(x) = inf
y∈U

max(γR (x, y), μX (y))

γR(X )(x) = sup
y∈U

min(μR (x, y), γX (y))

μR(X )(x) = sup
y∈U

min(μR (x, y), μX (y))

γR(X )(x) = inf
y∈U

max(γR (x, y), γX (y)).

The pairs (μR(X )(x), γR (X)(x)) and (μR(X )(x), γR(X )(x))
are the IF numbers of object x to the lower and upper approxima-
tion sets, respectively. If R(X) = R(X), then (R(X), R(X))
is referred to as an IF definable set; otherwise, as an IF rough
set.

Property 2: Let R and B be two IF relations. If R � B, then
for any X ∈ IF , it holds that

a) R(X) ⊆ X ⊆ R(X);
b) B(X) ⊆ R(X);
c) R(X) ⊆ B(X).
Property 2 discloses that IF approximations are monotonic

with the increasing or decreasing in the granularity of the IF re-
lations. A finer IF relation leads to a larger lower approximation
and a smaller upper approximation w.r.t. a given IF set.

3) IF Decision Information System: Classification is one of
the most important tasks in the machine learning field. For deal-
ing with IF information and IF information-related classifica-
tion, in this section, we formally define the notion of IF infor-
mation systems and examine IF rough approximations in this
context.

Definition 4: Let U be the universe andR a family of IF re-
lations. The pair S = (U,R) is called an IF information system.

Moreover, if d is a decision attribute, then S = (U,R∪ {d}) is
called an IF decision system.

For processing real datasets, it is possible to construct IF
relations from the attributes by applying various methods. Then,
the datasets can be transformed to IF information systems for
further analysis.

Assume d is a decision attribute, which divides the universe
into a family of decision classes U/d = {d1 , d2 , . . . , dl} ac-
cording to different decision labels. Each decision class can

be typically written as an IF set: di = { (μd i
(x),γd i

(x))
x |x ∈ U},

where

(μdi
(x), γdi

(x)) =
{

(1, 0), x ∈ di ;
(0, 1), x /∈ di.

Data often contain redundant information, which is irrelevant
for knowledge representation and decision classification. Its re-
moval can save the storage space and computational time, and
raise learning efficiency. In this section, we describe the use
of the IF rough set to reduce irrelevant IF relations and select
important ones from IF decision systems.

Given a subset of IF relations B ⊆ R. A special IF relation
may be induced fromB by taking the interrelationship among the
IF relations. We represent the corresponding IF relation w.r.t.
B by the symbol B. Note that the IF relation induced varies
with different constructive methods. Based on this generalized
definition, we examine the knowledge reduction of IF decision
systems in the following.

Let S = (U,R∪ {d}) be an IF decision system with U/d =
{d1 , d2 , . . . , dl}. Given a subset B ⊆ R, we can compute the
distributions of IF lower and upper approximations of decision
classes as

B(d) = {B(d1),B(d2), . . . ,B(dl))}
B(d) = {B(d1),B(d2), . . . ,B(dl))}.

Definition 5: Let S = (U,R∪ {d}) be an IF decision
system with U/d = {d1 , d2 , . . . , dl} and B ⊆ R. Define
PosB(d) = ∪l

i=1B(di) as the IF positive region w.r.t. B. B is
called a reduct of S if it satisfies the following:

a) PosB(d) = PosR(d)
b) PosB−{R}(d) ⊂ PosB(d) ∀R ∈ B.
In Definition 5, the IF positive region is an IF set generated

by taking the union of the lower approximations of all decision
classes. It reflects the classification ability of any subset B.
The larger the IF positive region, the stronger the classification
ability of B.

II. GRANULAR STRUCTURES OF INTUITIONISTIC

FUZZY APPROXIMATIONS

In this section, we examine the granular structures of IF rough
approximation operators. We first define several types of fuzzy
granules and clarify the hierarchies of the lower and upper ap-
proximations of IF set using these granules.

Definition 6: Let U be the universe and R an IF relation.
Given a real number λ ∈ [0, 1] and x ∈ U , we define a type-1
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fuzzy granule as

[xλ
γR

](y) =
{

λ, γR (x, y) < λ

0, γR (x, y) ≥ λ
.

In Definition 6, the granule [xλ
γR

] is based on the diversity
function γR of the relation R. Parameter λ influences the size
of the fuzzy granule: the larger is the value of λ, the larger is the
fuzzy granule. The lower approximations can be hierarchically
described as follows.

Theorem 1: Let U be the universe and R an IF relation. For
X ∈ IF and x ∈ U , we have

μR(X )(x) = sup{λ|[xλ
γR

] ⊆ μX }.
Proof:
1) For any x ∈ U , let μR(X )(x) = λ0 . Then, from Defi-

nition 3, it holds that max(γR (x, y), μX (y)) ≥ λ0 for
any y ∈ U , and there exists one y0 ∈ U satisfying
max(γR (x, y0), μX (y0)) = λ0 .
We have that if γR (x, y) < λ0 , then μX (y) ≥ λ0 for
any y ∈ U . This means that [xλ0

γR
](y) ≤ μX (y) for any

γR (x, y) < λ0 . On the other hand, if γR (x, y) ≥ λ0 , then
[xλ0

γR
](y) = 0. On the whole, [xλ0

γR
] ⊆ μX .

2) Assume that there is some λ1 > λ0 such that [xλ1
γR

] ⊆ μX .
It follows that [xλ1

γR
](y) ≤ μX (y) for any y ∈ U . We know

from Definition 6 that the condition γR (x, y) < λ1 im-
plies [xλ1

γR
](y) = λ1 . With the fact of [xλ1

γR
] ⊆ μX , we have

that if γR (x, y) < λ1 , then μX (y) ≥ λ1 . Subsequently

μR(X )(x) = inf
y∈U

max(γR (x, y), μX (y))

= inf
γR (x,y )<λ1

max(γR (x, y), μX (y))

≥ min{λ1 , λ1} = λ1 .

This implies that μR(X )(x) ≥ λ1 > λ0 , which is in contradic-
tion with μR(X )(x) = λ0 . Hence, μR(X )(x) = sup{λ|[xλ

γR
] ⊆

μX , λ ∈ [0, 1]}. We complete the proof. �
From Theorem 1, one can see that the membership of an

object x belonging to the set μR(X ) is the maximal real number,
which guarantees that the granule [xλ

γR
] is contained in μX . An

example is used to examine this idea.
Example 1: Continued from Example 1.
In Example 1, we have obtained that μR(X ) = 0.5

x1
+ 0.5

x2
+

0.2
x3

. From Definition 6, we have that

[
x0.5

1γR

]
=

0.5
x1

+
0.5
x2

+
0
x3

[
x0.5

2γR

]
=

0.5
x1

+
0.5
x2

+
0
x3

[
x0.2

3γR

]
=

0
x1

+
0
x2

+
0.2
x3

.

Since μX = 0.5
x1

+ 0.6
x2

+ 0.2
x3

, we can see that [x0.5
1γR

] ⊆ μX ,
[x0.6

2γR
] ⊆ μX and [x0.2

3γR
] ⊆ μX .

Moreover, if we take λ > 0.5, it holds [xλ
1γR

](x1) = λ >

μX (x1) and [xλ
2γR

](x2) = λ > μX (x2), which follows the con-
clusion that [xλ

1γR
] ⊆ μX and [xλ

2γR
] ⊆ μX do not hold. If

λ > 0.2, it follows that [xλ
3γR

](x3) = λ > μX (x3), which fol-
lows that [xλ

3γR
] ⊆ μX does not hold.

By these analyses, we assert that μR(X ) = 0.5
x1

+ 0.5
x2

+ 0.2
x3

.
This is in accordance with Theorem 1.

Definition 7: Let U be the universe and R an IF relation.
Given a real number λ ∈ [0, 1] and x ∈ U , define a type-2 fuzzy
granule as

[xλ
μR

](y) =
{

λ, μR (x, y) > λ;
1, μR (x, y) ≤ λ.

The granule [xλ
μR

] is based on the similarity function μR of
the relation R and parameter λ: the larger is the value of λ, the
larger is the fuzzy granule. We have the following theorem.

Theorem 2: Let U be the universe and R an IF relation. For
X ∈ IF and x ∈ U , we have

γR(X )(x) = inf{λ|[xλ
μR

] ⊇ γX }.
Proof:
1) For any x ∈ U , let γR(X )(x) = λ0 . Then, from Defi-

nition 3, it holds that min(μR (x, y), γX (y)) ≤ λ0 for
any y ∈ U , and there exists one y0 ∈ U satisfying that
min(μR (x, y0), γX (y0)) = λ0 .
We have that if μR (x, y) > λ0 , then γX (y) ≤ λ0 for any
y ∈ U . This means that [xλ0

μR
](y) ≥ γX (y) for μR (x, y) >

λ0 . On the other hand, if μR (x, y) ≤ λ0 , then [xλ0
μR

](y) =
1. On the whole, [xλ0

μR
] ⊇ γX .

2) Assume that there is some λ1 < λ0 such that [xλ1
μR

] ⊇ γX .
It follows that [xλ1

μR
](y) ≥ γX (y) for any y ∈ U . We know

from that the condition μR (x, y) > λ1 implies [xλ1
μR

](y) =
λ1 . With the fact of [xλ1

μR
] ⊇ γX and Definition 7, we have

that if μR (x, y) > λ1 , then γX (y) ≤ λ1 . Subsequently

γR(X )(x) = sup
y∈U

min(μR (x, y), γX (y))

= sup
μR (x,y )>λ1

min(μR (x, y), γX (y))

≤ max{λ1 , λ1} = λ1 .

This implies that γR(X )(x) ≤ λ1 < λ0 , which is in contradic-
tion with γR(X )(x) = λ0 . Hence, γR(X )(x) = inf{λ|[xλ

μR
] ⊇

γX }. We complete the proof. �
From Theorem 2, one can see that the membership of an

object x to the set γR(X ) is the minimal real number, which
guarantees that the granule [xλ

μR
] contains γX. An example is

used to illustrate this idea.
Example 2: Continued from Example 1.
Example 1 indicates that γR(X ) = 0.3

x1
+ 0.4

x2
+ 0.7

x3
. From

Definition 7, we have that

[
x0.3

1μR

]
=

0.3
x1

+
0.3
x2

+
1
x3

[
x0.4

2μR

]
=

0.4
x1

+
0.4
x2

+
1
x3

[
x0.7

3μR

]
=

1
x1

+
1
x2

+
0.7
x3

.
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Since γX = 0.3
x1

+ 0.1
x2

+ 0.7
x3

, we can see that [x0.3
1γR

] ⊇ γX ,
[x0.4

2γR
] ⊇ γX , and [x0.7

3γR
] ⊇ γX .

Moreover, if λ < 0.3, it holds [xλ
1μR

](x3) = λ < γX (x3),
which follows that [xλ

1μR
] ⊇ γX does not hold. If λ < 0.4, we

have that [xλ
2μR

](x3) = λ < γX (x3), then [xλ
2μR

] ⊇ γX does
not hold. If λ < 0.7, it follows [xλ

3μR
](x3) = λ < γX (x3). Thus,

[xλ
3μR

] ⊇ γX does not hold. This is in accordance with the con-
clusion in Theorem 2.

From the examples mentioned above, we see that the IF lower
approximations can be characterized and computed using fuzzy
information granules. We next examine the IF upper approxi-
mations. The following theorems can be similarly verified.

Theorem 3: μR(X )(x) = inf{λ|[xλ
μR

] ⊇ μX }.
Proof: The proof is similar to that of Theorem 2. �
Example 3: Continued from Example 1.
In Example 1, we have that μR(X ) = 0.6

x1
+ 0.6

x2
+ 0.4

x3
. We

now use Theorem 3 to examine μR(X ) .
From Definition 7, we have that

[
x0.6

1μR

]
=

0.6
x1

+
1
x2

+
1
x3

[
x0.6

2μR

]
=

1
x1

+
0.6
x2

+
1
x3

[
x0.4

3μR

]
=

1
x1

+
1
x2

+
0.4
x3

.

Since μX = 0.5
x1

+ 0.6
x2

+ 0.2
x3

, we can see that [x0.6
1μR

] ⊇ μX ,
[x0.6

2μR
] ⊇ μX , and [x0.6

3μR
] ⊇ μX .

Moreover, if we take λ < 0.6, it holds [xλ
1μR

](x2) = λ <

μX (x2) and [xλ
2μR

](x1) = λ < μX (x2), which follows that
[xλ

1μR
] ⊇ μX and [xλ

2γR
] ⊇ μX do not hold. If λ < 0.4, it holds

[xλ
3γR

](x2) = λ < μX (x2), which follows that [xλ
3μR

] ⊇ μX

does not hold.
Theorem 3 implies that μR(X )(x1) = 0.6, μR(X )(x2) = 0.6,

and μR(X )(x3) = 0.4. Consequently, μR(X ) = 0.6
x1

+ 0.6
x2

+
0.4
x3

.
Theorem 4: γR(X )(x) = sup{λ|[xλ

γR
] ⊆ γX }.

Proof: The proof is similar to that of Theorem 1. �
Example 4: Continued from Example 1.
From Example 1, we obtain that γR(X ) = 0.2

x1
+ 0.1

x2
+ 0.5

x3
.

From Definition 6, we compute that

[
x0.2

1γR

]
=

0.2
x1

+
0
x2

+
0
x3

[
x0.1

2γR

]
=

0
x1

+
0.1
x2

+
0
x3

[
x0.5

3γR

]
=

0
x1

+
0
x2

+
0.5
x3

.

Since γX = 0.3
x1

+ 0.1
x2

+ 0.7
x3

, we can see that [x0.2
1γR

] ⊆ γX ,
[x0.1

2γR
] ⊆ μX , and [x0.5

3γR
] ⊆ μX .

If λ > 0.2, it holds [xλ
1γR

](x2) = λ > γX (x2), which fol-
lows that [xλ

1γR
] ⊆ γX does not hold. If λ > 0.1, we have

[xλ
2γR

](x2) = λ > γX (x2). This indicates that [xλ
2γR

] ⊆ γX

does not hold. If λ > 0.5, it holds [xλ
3γR

](x2) = λ > γX (x2),
which follows that [xλ

3γR
] ⊆ γX does not hold.

Theorem 4 indicates that γR(X )(x1) = 0.6, μR(X )(x2) =
0.6, and μR(X )(x3) = 0.4. Consequently, μR(X ) = 0.6

x1
+

0.6
x2

+ 0.4
x3

.
In this section, we presented the construction of two types

of fuzzy granules based on IF relations, and then, the hierar-
chical structures of IF rough lower and upper approximations
were both characterized. In this sense, the lower and upper ap-
proximations of the IF set can be computed by the granular
computing-based methods.

III. COMPUTATION OF INTUITIONISTIC

FUZZY APPROXIMATIONS

The computation of IF approximations is a basic issue for the
further application of the IF rough set. We employ the following
example to illustrate the acquisition of the rough approximations
of the IF set.

Example 5: Assume U = {x1 , x2 , x3} and the IF relation R
is

R =

⎛
⎝ (1, 0) (0.6, 0.2) (0.3, 0.6)

(0.6, 0.2) (1, 0) (0.4, 0.5)
(0.3, 0.6) (0.4, 0.5) (1, 0)

⎞
⎠ .

Let X = (0.5,0.3)
x1

+ (0.6,0.1)
x2

+ (0.2,0.7)
x3

. We now compute
the lower and upper approximations of X .

We have that

μR(X )(x1) = inf{max(0, 0.5),max(0.2, 0.6),max(0.6, 0.2)}
= 0.5

μR(X )(x2) = inf{max(0.2, 0.5),max(0, 0.6),max(0.5, 0.2)}
= 0.5

μR(X )(x3) = inf{max(0.6, 0.5),max(0.5, 0.6),max(0, 0.2)}
= 0.2,

and

γR(X )(x1) = sup{min(1, 0.3),min(0.6, 0.1),min(0.3, 0.7)}
= 0.3

γR(X )(x2) = sup{min(0.6, 0.3),min(1, 0.1),min(0.4, 0.7)}
= 0.4

γR(X )(x3) = sup{min(0.3, 0.3),min(0.4, 0.1),min(1, 0.7)}
= 0.7.

This means that R(X) = (0.5,0.3)
x1

+ (0.5,0.4)
x2

+ (0.2,0.7)
x3

.
Moreover,

μR(X )(x1) = sup{min(1, 0.5),min(0.6, 0.6),min(0.3, 0.2)}
= 0.6

μR(X )(x2) = sup{min(0.6, 0.5),min(1, 0.6),min(0.4, 0.2)}
= 0.6

μR(X )(x3) = sup{min(0.3, 0.5),min(0.4, 0.6),min(1, 0.2)}
= 0.4.
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Also

γR(X )(x1) = inf{max(0, 0.3),max(0.2, 0.1),max(0.6, 0.7)}
= 0.2

γR(X )(x2) = inf{max(0.2, 0.3),max(0, 0.1),max(0.5, 0.7)}
= 0.1

γR(X )(x3) = inf{max(0.6, 0.3),max(0.5, 0.1),max(0, 0.7)}
= 0.5.

Subsequently, R(X) = (0.6,0.2)
x1

+ (0.6,0.1)
x2

+ (0.4,0.5)
x3

.

We clearly see that R(X) ⊆ X ⊆ R(X).
The computation of IF approximations is a difficult task be-

cause it requires a full run through all the IF numbers in the IF
relation. To facilitate this process, we examine the special prop-
erties of IF approximations in IF decision systems. We arrive
at the following statements for the IF rough approximations of
decision classes.

Theorem 5: Let S = (U,R∪ {d}) be an IF decision system
with R ∈ R and U/d = {d1 , d2 , . . . , dl}. For any 1 ≤ i ≤ l, we
have

μR(di )(x) = inf
y /∈di

γR (x, y)

γR(di )(x) = sup
y /∈di

μR (x, y)

μR(di )(x) = sup
y∈di

μR (x, y)

γR(di )(x) = inf
y∈di

γR (x, y).

Proof:
1) From Definition 3, we have that μR(di )(x) = infy∈U

max(γR (x, y), μdi
(y)). If y ∈ di , then μdi

(y) = 1,
which leads to that max(γR (x, y), μdi

(y)) = max(γR

(x, y), 1)=1. Consequently, μR(di)(x)=infy /∈di
max(γR

(x, y), μdi
(y)) = infy /∈di

max(γR (x, y), 0)= infy /∈di
γR

(x, y). Hence, μR(di )(x) = infy /∈di
(γR (x, y)).

2) It holds that γR(di )(x) = supy∈U min(μR (x, y), γdi
(y)).

If y ∈ di , then γdi
(y) = 0, which leads to that

min(μR (x, y), γdi
(y)) = min(μR (x, y), 0)=0. We have

that γR(di)(x)=supy /∈di
min(μR (x, y), γdi

(y))=supy /∈di

min(μR (x, y), 1) = supy /∈di
μR (x, y). This means that

γR(di )(x) = supy /∈di
μR (x, y).

3) With the fact that y /∈ di implies μdi
(y) = 0 and

min(μR (x, y), μdi
(y)) = 0. Hence, μR(di )(x) = supy∈U

min(μR (x, y), μdi
(y))=supy∈di

min(μR (x, y), μdi
(y))

= supy∈di
min(μR (x, y), 1) = supy∈di

μR (x, y). It
implies that μR(di )(x) = supy∈di

μR (x, y).
4) With the fact that if y /∈ di , then γdi

(y) = 1 and
max(μR (x, y), γdi

(y))=1. Subsequently, γR(di )(x) =
infy∈di

max(γR (x, y), γdi
(y)) = infy∈di

max(γR (x, y), 0) =
infy∈di

γR (x, y). It follows that γR(di )(x) = infy∈di

γR (x, y). �

Theorem 5 intuitively indicates the following.
1) The lower membership degree of an object x to a deci-

sion class di is the minimum diversity between x and the
objects outside the decision class.

2) The lower nonmembership degree of an object to a de-
cision class is the maximal similarity between x and the
objects outside the decision class.

3) The upper membership degree of an object to a decision
class is the maximal similarity between x and the objects
in the same decision class.

4) The upper nonmembership degree of an object to a deci-
sion class is the minimum diversity between x and the ob-
jects in the same decision class. These conclusions present
a simpler means of calculating the IF approximations of
decision classes.

In particular, if an object does (or does not) belong to a
decision class, the rough approximations are directly obtained
as follows.

Property 3: Let S = (U,R∪ {d}) be an IF decision system
with R ∈ R and U/d = {d1 , d2 , . . . , dl}. For any 1 ≤ i ≤ l, if
x /∈ di , then

μR(di )(x) = 0, γR(di )(x) = 1.

Proof:
1) With the fact of γR (x, x) = 0 and x /∈ di , it follows

from Theorem 5 that μR(di )(x) = infy /∈di
(γR (x, y)) =

γR (x, x) = 0.
2) With the fact of μR (x, x) = 0 and x /∈ di , we have that

γR(di )(x) = supy /∈di
(μR (x, y)) = μR (x, x) = 1. �

Property 3 means that, if x /∈ di , the lower membership de-
gree and lower nonmembership degree are fixed to 0 and 1,
respectively.

Property 4: Let S = (U,R∪ {d}) be an IF decision system
with R ∈ R and U/d = {d1 , d2 , . . . , dl}. For any 1 ≤ i ≤ l, if
x ∈ di , then

μR(di )(x) = 1, γR(di )(x) = 0.

Proof:
1) We have that μR (x, x) = 0. From Theorem 5, it holds that

μR(di )(x) = supy∈di
(μR (x, y)) = μR (x, x) = 1.

2) Since γR (x, x) = 0, from Theorem 5, we see that
γR(di )(x) = infy∈di

(γR (x, y)) = γR (x, x) = 0. �
Property 4 shows that if x ∈ di , the lower membership de-

gree and lower nonmembership degree are fixed to 1 and 0,
respectively.

From Theorem 5 and Properties 3 and 4, we find that the
IF rough approximations in IF decision systems satisfy special
properties, which will simplify the process of computation. In
other words, if we want to obtain the rough approximations of an
IF set, we need only to compute the lower approximations of an
object w.r.t. its decision class, i.e., μR(di )(x) and γR(di )(x) for
x ∈ di , and the upper approximations of an object w.r.t. other
decision classes, i.e., μR(di )(x) and γR(di )(x) for x /∈ di .
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IV. KNOWLEDGE REDUCTION OF INTUITIONISTIC FUZZY

DECISION SYSTEMS

To measure the IF positive region generated by any subset
B ⊆ R, define a dependence function f(B) = p(PosB(d)) as
the probability quality of the IF positive region. The dependence
function is the ratio of the sizes of the IF positive region. The
reduct of IF decision systems can also be defined from the
viewpoint of the dependence function as follows:

1) f(PosB(d)) = f(PosR(d))
2) f(PosB−{R}(d)) < f(PosB(d)) ∀R ∈ B.
The following conclusions present a simplified method for

computing the IF positive region and the dependence function.
Property 5: Let S = (U,R∪ {d}) be an IF decision system

with U/d = {d1 , d2 , . . . , dl} and B ⊆ R. Then
1) PosB(d)(x) = B(di0 )(x) where x ∈ di0 ,
2) f(B) =

∑l
i=1

∑
x∈di

p(B(di)(x)), and

3) f(B) = 1
2 + 1

2|U |
∑l

i=1
∑

x∈di
(μB(di )(x)− γB(di )(x)).

Proof:
1) From Property 3, if x /∈ di , then μB(di )(x) = 0 and

γB(di )(x) = 1. It follows that PosB(d)(x) = (∪l
i=1

B(di))(x) = B(di0 ))(x) for x ∈ di0 .
2) It holds that f(B) = P (PosB(d)) =

∑
x∈U P (PosB(d)

(x)). Combing with (1), we have that f(B) =∑
x∈U P (PosB(d)(x)) =

∑l
i=1

∑
x∈di

P (B(di))(x)).

3) With the fact of P (B(di)(x)) = 1
|U |

1+μB (d i ) (x)−γB (d i ) (x)
2 ,

it follows that

f(B) =
l∑

i=1

∑
x∈di

P (B(di)(x))

=
1
|U |

l∑
i=1

∑
x∈di

1 + μB(di )(x)− γB(di )(x)
2

=
1
2

+
1

2|U |
l∑

i=1

∑
x∈di

(μB(di )(x)− γB(di )(x)).�

It is observed from Property 5 that if we want to obtain the IF
positive region, we need only to compute the lower approxima-
tion of each object w.r.t. its own decision class.

The following example is employed to exhibit the idea of
Property 5.

Example 6: Continued from Example 1.
Let S = (U,R∪ {d}) be an IF decision system, where U =
{x1 , x2 , x3} andR = {Ri |1 ≤ i ≤ 4}:

R1 =

⎛
⎝ (1, 0) (0.6, 0.2) (0.3, 0.6)

(0.6, 0.2) (1, 0) (0.4, 0.5)
(0.3, 0.6) (0.4, 0.5) (1, 0)

⎞
⎠

R2 =

⎛
⎝ (1, 0) (0.7, 0.3) (0.4, 0.4)

(0.7, 0.3) (1, 0) (0.5, 0.3)
(0.4, 0.4) (0.5, 0.3) (1, 0)

⎞
⎠

R3 =

⎛
⎝ (1, 0) (1, 0) (0.5, 0.5)

(1, 0) (1, 0) (0.4, 0.4)
(0.5, 0.5) (0.4, 0.4) (1, 0)

⎞
⎠

R4 =

⎛
⎝ (1, 0) (0.5, 0.1) (0.2, 0.7)

(0.5, 0.1) (1, 0) (0.8, 0.1)
(0.2, 0.7) (0.8, 0.1) (1, 0)

⎞
⎠ .

Denote a special IF relation by B = ∩{R|R ∈ B} w.r.t. any
subsetB ⊆ R. Clearly, B is a commonly used one in the existing
literature. Consequently

R = ∩R =

⎛
⎝ (1, 0) (0.5, 0.3) (0.2, 0.7)

(0.5, 0.3) (1, 0) (0.4, 0.5)
(0.2, 0.7) (0.4, 0.5) (1, 0)

⎞
⎠ .

The decision is defined as U/d = {d1 , d2}, where d1 =
{x1 , x2}, d2 = {x3}.

From Property 3, we directly obtain that

μR(d1 )(x3) = 0, γR(d1 )(x3) = 1

μR(d2 )(x1) = 0, γR(d2 )(x1) = 1

μR(d2 )(x2) = 0, γR(d2 )(x2) = 1.

From Theorem 5, we compute that

μR(d1 )(x1) = inf
xi /∈d1

γR (x1 , xi)

= inf(γR (x1 , x2), γR (x1 , x3)) = inf(0.3, 0.7) = 0.3

γR(d1 )(x1) = sup
xi /∈d1

(μR (x1 , xi))

= sup(μR (x1 , x2), μR (x1 , x3)) = sup(0.5, 0.2) = 0.5

μR(d2 )(x2) = inf
xi /∈d2

γR (x2 , xi) = inf(γR (x2 , x1))

= inf(0.3) = 0.3

γR(d2 )(x2) = sup
xi /∈d2

(μR (x2 , xi)) = sup(μR (x2 , x1))

= sup(0.5) = 0.5

μR(d2 )(x3) = inf
xi /∈d2

γR (x3 , xi) = inf(γR (x3 , x1))

= inf(0.7) = 0.7

γR(d2 )(x3) = sup
xi /∈d2

(μR (x3 , xi)) = sup(μR (x3 , x1))

= sup(0.2) = 0.2.

To sum up

R(d1) =
(0.3, 0.5)

x1
+

(0, 1)
x2

+
(0, 1)
x3

R(d2) =
(0, 1)
x1

+
(0.3, 0.5)

x2
+

(0.7, 0.2)
x3

.
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The IF positive region w.r.t.R is

PosR(d) = R(d1) ∪R(d2) =
(0.3, 0.5)

x1
+

(0.3, 0.5)
x2

+
(0.7, 0.2)

x3
.

The probability quality of the IF positive region is

p(PosR(d)) =
|PosR(d)|
|U | =

∑
x∈U

1+μPosR(d ) (x)−γPosR(d ) (x)
2

|U |

=
1
3

(
1 + 0.3− 0.5

2
+

1 + 0.3− 0.5
2

+
1 + 0.7− 0.2

2

)
= 0.51.

Theorem 6: Let S = (U,R∪ {d}) be an IF decision system
with A, B ⊆ R. If B � A, then

1) PosA(d) ⊆ PosB(d);
2) f(A) ≤ f(B).
Proof:
1) Since B � A, it holds from Definition 3 that A(di)(x) ⊆

B(di)(x) for any di . This implies that PosA(d) ⊆
PosB(d).

2) It can be concluded from (1). �
It is noted from Theorem 6 that the IF positive region is

monotonic with the granularity of the induced IF relation. In
other words, the finer is the IF relation induced by a subset of
IF relations, the larger is the IF positive region. A subset of
IF relations may maintain the entire positive region. From this
viewpoint, the notion of reduct can be introduced.

The dependence function reflects the classification ability of
IF relations and can be used to evaluate the significance of
IF relations. Adding different IF relations to a given subset
of IF relations may lead to a variety of different changes in
the dependence function. Accordingly, the significance of IF
relations can be defined as follows.

Definition 8: Let S = (U,R∪ {d}) be an IF decision sys-
tem with B ⊆ R and R ∈ R− B. The significance of R w.r.t.
B is defined as Sig(R,B, d) = f(B ∪ {R})− f(B).

Based on the above-mentioned discussion, a forward heuris-
tic algorithm for finding a reduct of an IF decision system is
formulated as shown in Algorithm 1.

The parameter δ is used to stop the loop in the algorithm. The
larger is the value of δ, the larger is the number of selected IF
relations. Therefore, the value of δ should be chosen in appropri-
ate ranges according to real data. Moreover, the computation of
IF relation B ∪R in Step 3 adopts an incremental method. That
is, we remember the IF relation B in the previous loop and take
an intersection between it and relation R, instead of recalculat-
ing the IF relation B ∪R. This strategy avoids a considerable
amount of unnecessary time-consuming calculation.

In Step 4, the computation of the IF approximations for every
object can be completed in O(|U |2). In Step 5, the dependence
functions can be obtained within O(|U |2). In Steps 9–11, the
elements ofR are evaluated by using the significance measure,

Algorithm 1 A Heuristic Algorithm for Finding a Reduct
of an IF Decision System Based on IF Positive Region (Al-
gorithm IFPR).

Input: An IF decision system (U,R∪ {d});
Output: An IF relation reduct B.

1: Let B = ∅;
2: For each IF relation R ∈ R
3: Compute the IF relation B ∪R;
4: Compute the IF approximations μB∪R(di )(x) and
γB∪R(di )(x) for each x ∈ di according to Theorem 5;
5: Compute the dependence functions f(B) and
f(B ∪ {R}) according to Property 5(3);
6: Compute the significance Sig(R,B, d) according to
Definition 8;
7: End For
8: Find R0 with maximum value Sig(R0 ,B, d);
9: If Sig(R0 ,B, d) > δ;

10: Let B ← B ∪ {R0} andR ← R− {R0};
11: Return to Step 2;
12: Else
13: Output B and terminate the algorithm.
14: End If

and their complexity is O(|U |2 |R|). The overall time complex-
ity of the algorithm is thus O(|U |2 |R|).

Let us employ an example to show the idea of the new algo-
rithm.

Example 7: Continued from Example 6.
We take the value δ = 0 in Algorithm 1 for illustration.
We first initialize B = ∅, and compute the IF approximations

under each Ri(1 ≤ i ≤ 4), respectively, in what follows.
We obtain that

μR1 (d1 )(x1) = inf
xi /∈d1

γR1 (x1 , xi)

= inf(γR1 (x1 , x2), γR1 (x1 , x3)) = inf(0.2, 0.6) = 0.2

γR1 (d1 )(x1) = sup
xi /∈d1

(μR1 (x1 , xi))

= sup(μR1 (x1 , x2), μR1 (x1 , x3)) = sup(0.6, 0.3) = 0.6

μR1 (d2 )(x2) = inf
xi /∈d2

γR1 (x2 , xi)

= inf(γR1 (x2 , x1)) = inf(0.3) = 0.3

γR