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the full topology of an original social network have been proposed. However, these algo-
rithms are not very effective at analyzing large-scale social networks. To overcome this
deficiency, this paper proposes a community detection algorithm based on graph compres-
sion. Specifically, a compressed graph is first obtained by iteratively merging vertices with
a degree of 1 or 2 into their neighbors with a higher degree. Then, two indices, i.e., the den-
sity and quality of vertices, are defined to evaluate the probability of vertices as community
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Graph clustering seeds. By considering these two measures together, in a compressed social network, the
Graph compression number of communities and the corresponding initial community seeds are determined
Community seeds simultaneously. After obtaining the community structure of the compressed social net-

work via seed expansion, the community results are propagated to the original social net-
work. Extensive experiments conducted on various social networks have demonstrated the
superiority of our proposal compared to several existing state-of-the-art community detec-
tion algorithms.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Community detection, also called graph clustering, is one of the most fundamental and vital complex network analysis
techniques used to illustrate the structure of the relationship of network nodes. It involves identifying the number of com-
munities in a complex network and the membership of each node, with more interactions among the same community than
between its community nodes and the remainder of the network. Some of the practical applications of community detection
range from the analysis of social networks to the analysis of Protein-Protein Interaction (PPI) networks. A growing number of
community detection methods for different types of networks have recently been developed in the literature. We refer the
reader to surveys of community detection or graph clustering algorithms and their applications [8,14,23,40].

With the development of information technology, the use of social networks in our society is exponentially growing. One
consequence is a deep change in how people react to events and interact with each other. The community structure is a sig-
nificant property of social networks [8]. It often represents specific organized groups of users with similar attributes, hobbies
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or closer relationships. Therefore, detecting the underlying community structure of social networks is an important task for
their analysis.

Recently, the community detection of social networks has attracted immense attention in both academia and industry.
However, as data have accumulated, the scale of social networks is gradually growing and becoming huge. This leads to
the problem that the community detection of large-scale social networks cannot be resolved with traditional algorithms
in terms of time and spatial complexity. That is, most existing algorithms cannot be scaled to the massive size of today’s
social networks. The scalability of community detection algorithms is a critical issue.

To address this challenge, a considerable amount of research has been conducted in the literature [4,5,32,41,44]. These
methods can be divided into parallel community detection algorithms, local community discovery algorithms and network
scale reduction-based community detection algorithms. Note that, local community detection is also called community
search [22,7,28]. It refers to the identification of a community that is specific to a query node and relies on limited informa-
tion about the network structure. In the third category of methods, sampling is one of the most intuitive technologies used to
reduce the network scale. However, the final results are greatly influenced by the representativeness of the subgraphs
selected by the sampling technique. Therefore, some researchers have developed other methods to reduce the size of the
network to speed up community detection in recent years. For example, Satuluri et al. [39] developed a graph sparsification
technique to speed up existing graph clustering algorithms. In this method, by removing some edges that are likely to be
between communities, they reduced the number of edges in the graph while retaining the community structure of the net-
work. Macropol et al. [30] proposed a new technique, Top Graph Clusters (TGCs), to search for the best communities for a
large network. This method only found a subset of best clusters, not all clusters in the entire graph, and save timed and mem-
ory by pruning the search space. Using the multilevel graph clustering framework, Abou-Rjeili et al. [1] proposed new coars-
ening strategies, which allow arbitrary sized sets of vertices to be collapsed together, to resolve the graph clustering problem.
The above algorithms have made some achievements in solving large-scale networks. However, the core process of most
existing community detection algorithms is based on the full network topology. These algorithms still have high computa-
tional complexity. Furthermore, in the community detection process, these methods do not make full use of the structural
characteristics of social networks. Hence, it is necessary to propose a new network scale reduction method for community
detection that is related to social network characteristics.

From the edge connectivity perspective, it is well known that the degree distribution in many social networks follows a
power-law distribution in many social networks [3,47]. This means that a small set of nodes has a higher influence than the
others. A reasonable assumption based on previous research is that certain communities may have some important nodes
with higher influence. A user’s community is often the same as its neighbors’ in most social networks. Intuitively, the above
assumptions suggest that we can identify the community structure of a large-scale social network using a graph compres-
sion strategy by merging the vertices with lower degrees to one of its neighbors with a higher degree.

Based on the above motivation, this paper proposes a community detection algorithm based on graph compression for
large-scale social networks. First, by iteratively merging vertices with a degree of 1 or 2 into their neighbors with a higher
degree, a compressed graph is obtained. Then, two indices, namely, the density and quality of vertices, are defined to eval-
uate the probability of a vertex as a community seed. In the compressed social network, vertices with a high degree or a high
quality are automatically selected as the initial community seeds and the number of communities is determined simultane-
ously. After obtaining the community structure of the compressed social network, we propagate the community result to the
rest of the social network. The experimental results show that the developed algorithm produces high quality communities
comparable to or better than existing state-of-the-art community detection algorithms while being much faster.

The main contributions of the present paper are as follows:

(1) A simple, efficient and lossless graph compression method for social networks is proposed. This method can greatly
reduce the storage space and computing time for community detection. On the experimental data set, the compression
ratio can reach 40% on average.

(2) A community detection mechanism, which can automatically detect the number of communities and find initial com-
munity seeds, is developed based on the density and quality of vertices.

The rest of this paper is organized as follows: Section 2 reviews the related work on community detection for social net-
works. The proposed community detection algorithm is developed in Section 3. Then, Section 4 evaluates the proposed algo-
rithm compared to other community detection algorithms applied to social networks. Section 5 concludes this paper and
discusses the future work briefly.

2. Related work

Due to the importance of community structures and their enormous applicability in different domains, many community
detection methods have been developed from various perspectives [8,23]. These methods can be broadly categorized into
modularity optimization, spectral clustering, label propagation, nonnegative matrix factorization, block model approxima-
tion, and latent space models; and they are described below.
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o Modularity optimization methods. Among the existing community detection algorithms, this is the most commonly
used type of method. It is based on the modularity measure [34], a commonly used criterion for community detection.
It measures the density of the connections within modules (communities) compared to the density of the connections
outside of those modules. These algorithms seek to find communities with a high modularity value using heuristics. These
algorithms mainly apply different hierarchical clustering strategies to partition networks, which is very time-consuming.
One of the most commonly used modularity optimization-based algorithms for community detection, was proposed by
Girvan et al. [16].

Spectral clustering methods. These methods are derived from graph partitioning problems and have become one of the

most popular community detection algorithms in recent years [42,43]. In order to detect communities, spectral clustering

does not use the geometric information of the graph and does not operate on the graph itself, but rather it operates on a

mathematical representation of the graph. One advantageous feature of spectral clustering is that the decision about each

vertex is made based on a more global view of the problem.

Label propagation methods. In these methods, each node attains its label according to the label information of its neigh-

borhood nodes. The first label propagation algorithm (LPA) was proposed by Raghavan et al. [36,15], in which each node

tries to achieve a label from the highest number of labels possessed by its neighbors. Due to its nearly linear time com-
plexity in determining the community structure, it has received more attention recently. However, the convergence speed
and clustering effectiveness of the algorithm are very sensitive to the update order of the label information. Recently, LPA

was further improved in [6,20].

« Nonnegative matrix factorization methods. Nonnegative matrix factorization (NMF) is an unsupervised machine learn-
ing method. More recently, it has been extensively used and extended for different variations of community detection
problems [26,48]. Inspired by the generative process of networks, NMF-based methods assume that one network can
be divided into a number of low-dimensional subspaces. The coefficient vectors in the new space are soft membership
vectors that determine the relationships between all pairs of nodes and communities.

¢ Block model approximation methods. This method approximates a given network via a block structure by reordering
the index of each node according to their community membership [13]. Then, each block represents a community.

o Latent space model methods. These methods map the nodes in a network into a low-dimensional Euclidean space such
that the proximity between nodes based on network connectivity is kept in the new space [19]. Then, the nodes are clus-
tered in the low-dimensional space using traditional clustering methods such as the k-means algorithm. In recent years,
network embedding methods, e.g., node2vec [17], LINE [46],etc., have become popular for the community detection of
networks.

In recent years, the increasing size and complexity of networks have made most of the above mentioned community
detection algorithms unworkable. In order to address these problems, various novel community detection technologies have
emerged. For example, parallel methods, divide-and-conquer methods, local structure-based methods and condensation-
based methods have been proposed to resolve the scalability of community detection algorithms for large-scale networks.
As a kind of complex network, an attributed graph includes both a topological structure and node attribute information.
Recently, some game theory-based methods and multiagent-based methods have been used to detect communities in attrib-
uted graphs [12,11,10].

3. The proposed community detection algorithm

Social networks can be modeled as graphs, where the nodes and the edges represent the individual users and the social
relationships between them, respectively. Formally, a graph G is represented as G = (V,E, W), where V = {vy, ..., v,} is a set
of n vertices (or nodes), ECV x V is a set of m edges, and W : E — R, is the (nonnegative) weight function over the edge set.
The vertices in G correspond to data points, edges represent pairwise relations, and edge weights reflect the strength of pair-
wise relations. Specifically, for an unweighted graph, if there is an edge between two vertices, the corresponding weight is 1.
The edge between vertices »; and v;(v;, v; € V) can be expressed as an unordered pair (v;, 7;) or e;;. As is customary, we rep-
resent a graph G with the corresponding weighted adjacency matrix A, which is also called the affinity matrix. More specif-
ically, for an undirected graph, A is an n x n symmetric matrix, where A; = A; = W (v;, 9)) if (v;, vj) € E, and Ay = 0 otherwise.
Clearly, if there are no self-loops, all the diagonal elements of A are zeros. In this paper, we only consider undirected graphs
with no self-loops. N(v;) and d(z;) represent a set of neighbors and degrees of vertex z; € V, respectively. That is,
N(v) = {vjla;; # 0, v; € V},d(v;) = |N(v;)|. Formally, given a graph G = (V,E, W), the goal of traditional, exhaustive commu-
nity detection is to partition graph G into k disjoint communities ¢ = {Cy,C>,...,Cy} such that C; UC,,...,UC, =V, where
there are no interactions between different communities. While nonoverlapping community detection traditionally finds
exhaustive and disjoint communities, the overlapping community detection algorithm finds overlapping communities that
are not necessarily exhaustive. Formally, we seek k overlapping communities % = {C;,C5,...,C}, such that
C1UCy,...,UC, CV, where a vertex may belong to more than one community [47]. This paper mainly focuses on traditional
nonoverlapping community detection.

An overview of the proposed algorithm is shown in Fig. 1. It consists of four steps: graph compression, community seed
determination, seed expansion, and community structure propagation. The algorithm is abbreviated as CDEP (graph Com-
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Fig. 1. Overview of the proposed algorithm.

pression, community seed Determination, seed Expansion, and community structure Propagation). In the graph compression
step, a compressed graph is obtained by iteratively merging vertices with a degree of 1 or 2 into their neighbors with higher
degrees. In the community seed determination step, the number of communities and initial seeds of communities in the
compressed graph are determined automatically. Then, the community structure of the compressed graph is obtained via
seed expansion. Finally, in the community structure propagation step, we further expand the communities to the hidden ver-
tices that were compressed in the first step.

3.1. Graph compression

As technology advances, the scale of the social network data we collect and archive increases continuously. In order to
process enormous social networks, efficient computational methods for compressing and simplifying data by reducing
the amount of I/O accesses and the required storage are becoming vital. Recently, some graph compression techniques for
social networks have been studied in the literature [27]. First, most of these methods reuse the compression schemes devel-
oped for web graphs. The works on web graph compression often use the URL lexicographic order and various encoding tech-
niques. However, these methods are not necessarily suitable for social networks because of the different characteristics of
web graphs and social networks. Second, existing compression methods for social networks for query operations on graphs
have been proposed. Different operations on graphs have different characteristics and great differences. For different oper-
ations, we usually need to design specific compression methods to achieve better results. Thus, designing a proper compres-
sion method for community detection is necessary.

In social networks, a power-law degree distribution indicates that a small set of high degree vertices covers a large por-
tion of the edges in the network. Most of the low degree vertices in the network tend to be attached to high degree vertices.
Inspired by this, this step will compress the original graph based on the characteristics of a social network. The goal of this
step is to obtain a compressed graph, which is much smaller than the original graph. This step is divided into two phases that
are repeated iteratively. In the first phase, we iteratively randomly visit a vertex with a degree of 1 and merge this vertex into
its neighbor. The edge between them is removed, and the resulting vertex is considered a supernode that has more than one
object. In the second phase, the vertices whose degree is 2 are merged into one of their neighbors with a larger degree. Then,
an edge may be added or the edge weight between two neighboring vertices of this vertex may be updated. If the two neigh-
bors of the vertex are not connected, then there will be a new edge between them after compression. If there is an edge
before compression, the edge weight between these two vertices will be strengthened. Suppose that the neighboring vertices
of vertex v; € V are v; and vy (v}, vk € V). The new weight W’(vj, z/k) between v; and vy after compressing is defined as

W/(Uj,l)k) :W(Uj,l)k) -‘r%'W(Ui,Uj) 'W(Ui,Z/k). (1)

However, some vertices with a degree of 2 may be the key nodes connecting different communities, which cannot be
compressed. These nodes are called “bridge nodes”, which are defined as follows. For vertex z;, where d(z;) = 2, suppose that
its neighbors are vertices »; and vy, ie., (v, v5), (vi, %) € E. If (v;, %) ¢ E, vertex v; € V is a bridge node and cannot be
compressed.

In the following, taking Fig. 2 as an example, we briefly describe the operation of the compression step. For the original
graph in Fig. 2(a), there are 15 vertices and 23 edges. In the first phase, the vertexes with a degree of 1 are compressed. First,
vertices v, and 7,5 are merged into their neighbors v, and v4, respectively. Next, the corresponding edges are removed.
Then vertex v14 and included vertex »;5 are merged into v;3. The edge (713, v14) is removed. In the second phase, some ver-
tices v = {v'|d(¢') = 2, v’ € V} are compressed. Vertex v, and included vertex v are merged into v, whose degree is larger
than the degree of vertex v;. The weight of the edge (v3, v4) is updated to 1.5 according to Eq. (1). The neighbors of vertex v13
are vertices vy and v4,. Because the degree of vertex vy is larger than the degree of vertex vy,, vertex v;3 and included vertex
set {v14, 15} are merged with vertex vy. Similarly, W(vy, v1;) = 1.5 according to Eq. (1). For vertex »;, because it is a bridge
node, it cannot be compressed. The compressed graph is shown in Fig. 2(b). There are 10 vertices and 16 edges in the com-
pressed graph. The edge weights W(vs, v4) and W(vs, v1,) are 1.5. The other edge weights are 1. The sets of the included
vertices for vertices v, and vg are {v1, v2, ¥4} and {vs, v13, V14, V15 }, respectively.

As an illustration of the step, we further apply the graph compression step on Zachary’s Karate Club network, which is a
classical example for testing community detection algorithms. This network represents the friendship relationships between
34 members in a karate club at a US university in 1970. In this network, as shown in Fig. 3(a), vertex 1 and vertex 34 are
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Fig. 2. Comparison of the original graph and the compressed graph: (a) the original graph; (b) the compressed graph.

known to be the instructor and the student founder of the club, respectively. These two vertices are central in the network
forming two natural clusters around them. When we run this step on the original graph, some vertices, including
10,12,13,15,16,17,18,19,21,22,23,27, are compressed. Fig. 3(b) shows the compressed graph of Zachary’s Karate Club
network. We can see that there are 22 vertices and 56 edges in the compressed graph. The edge weights of
€12,€14,667,€334,€3334 and esg33 are 2,1.5,1.5,0.5,3.5 and 1.5, respectively. The other weights are 1.

The detailed algorithmic description of this step is shown in Algorithm 1.

Algorithm 1. The Graph Compression Algorithm

Input: Graph G = (V,E,W).
Output: Compressed graph G° = (V¢ E°, W°).
1: Compute degree for all vertices v; € V, i.e., d(v;) = |{vj|(v;, vj) € E,vj € V}|;
2: Initialize the sets of including vertices for each vertex »; € V after compressing, i.e., IV(v;) = {v;};
3: Initialize sets of vertices with a degree of 1 and 2, respectively, i.e.,
D1 ={v;j|d(v;) = 1,v; € V},D2 = {v;|d(v;) =2, v; € V}.
4: Initialize the compressed graph G° = G;
5: repeat
6: for each v; € D1
7
8

: Update V° =V — {9}, E° = E° — {(v;, v;) }, where (v;, ;) € ES;
: Update IV () = IV(v;) U{vi},d(v;) = 0,d(v;) =d(v;) — 1;
9: Add the vertex v; into D1 or D2 according to its degree;
10: Update D1 = D1 — {v;};
11: end for
12: for every v; € D2
13: if v; is not a bridge node
14: Update V° =V — {9}, E° = E° — {(v;, vj), (vi, vk) }, EC = ECU{ v}, vk }, where (v;, vp), (v, ) € E;
15: if W (v;, ) >0
16: d(v;) =d(v;) — 1,d(vy) =d(vy) — 1;
17: end if
18: Compute new weight W*(v;, v) between the vertex »; and vy according to Eq. (1);
19: Update d(v;) =0 and IV (v;) = IV (v;) U{v;}, where d(v;) > d(wy), (v;, v)), (v;, vk) € ES;
20: Add the vertices »; and vy into D1 or D2 according to their degree;
21: end if
22: Update D2 = D2 — {v;};
23: end for
24: until D1 = @f and D2 = &;
25: return Compressed graph G° = (V¢ E, W°).

362



X. Zhao, J. Liang and J. Wang Information Sciences 551 (2021) 358-372

(b)

Fig. 3. The illustration of graph compression on Karate Club network: (a) the original graph of Karate Club network; (b) the compressed graph of Karate
Club network.

3.2. Community seed determination

The goal of this step is to determine the number of communities and select a set of seeds in the compressed graph. We
extend the automatic density peaks clustering algorithm [38], which relies on the idea that cluster centers are characterized
by a higher density than their neighbors and by a relatively large distance from objects with higher densities. The objects
with high density and distance values are also called peaks. Then, a decision graph is introduced to help the user to deter-
mine the cluster centers. Inspired by the idea of this method, an automatic community seed determination algorithm is pro-
posed in this section. In the proposed method, the initial community seeds and the number of communities are determined
simultaneously. First, two indices, i.e., the density and quality of vertices, are defined to evaluate the probability of a vertex
as a community center. Here, we use the degree of a vertex to reflect its density. The quality of a vertex is defined as the
number of vertices contained in the vertex. The higher a vertex’s degree is, the higher its density. The higher a vertex’s qual-
ity is, the more vertices it contains. Therefore, the density and quality of a vertex z; € V° in a compressed graph
G = (V°,E°, W) are defined as p(v;) = d(v;) and p(v;) = |IV(v;)|, respectively. Specifically, for a vertex »; € V<, if p(v;) =0
ZueN(ui)d(

and pu(v;) > 1, then the density of this vertex is redefined as p(v;) = LIEA] y), where N(7;) is a set of neighbors of »; in

the original graph. The vertices with a high p(#;) and p(v;) are more likely to be community seeds. Note that the ranges
of these two indices are different. In order to consistently measure the probability, the density and quality for a vertex
v; € V¢ are normalized to [0, 1] using the following equations:

p(vi) = mgg((;y)i() V) .

and

’ :u( Ui)

W(vi) = maxu(v)” 3)

veV*©

Similar to the method in [38], the decision graph of the density and quality for the compressed graph is shown in Fig. 4.
We find that the density and quality maxima are at vertices 4 and vy, which are identified as community seeds. Hence, as
anticipated, the only vertices with a high p’ and ' are the community seeds. Unfortunately, in the case of a large graph with
large vertices, the decision graph is not sufficient to identify the community seeds, and the number of communities and com-
munity seeds still must be determined automatically.

With these two indices p’ and p/, we measure the possibility of a vertex being a community seed using a new centrality
index 7, which is defined as

V(i) = p'(v) « W(vy), vy € VE. (4)
When p’'(7;) or ('(v;) is larger, the value of y(#;) will be larger. Therefore, the vertices with a large y value are recognized
as the community seeds.
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Fig. 4. Decision graph for the compressed graph in Fig. 2(b).

With this in mind, then, by analyzing the distribution of this index, we transform the community seed identification prob-
lem into an extreme-value detection problem using the second order difference method to identify the community seeds
automatically. We first construct a decreasing sequence g, > g, > --- > g, , where n. is the number of vertices of the com-
pressed graph, g, is the highest value in {y(;), v; € V°},g, is the second highest value, and so on. The second order differ-
ence of the decreasing sequence is defined as

hi = (g — &) — (gi+1 —&o)l, i=1,...,n.-2. (5)

The second order difference curve with the number of community seeds for the compressed graph of Fig. 2(b) is given in
Fig. 5. As seen in this figure, when the horizontal axis is 2, there is a knee point. Thus, the knee point of the second order
difference sequence can be defined as

kp = argmax h;. (6)

second order difference sequence. In order to identify more community seeds, the knee point (the highest value) is found
from large to small according to the subscript value in the sequence. Therefore, the potential community seeds CS are deter-
mined by

1/K

3 4 5 6 7 8
number of community seeds

Fig. 5. Second order difference curve with the number of community for the compressed graph.
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CS = {wily(vi) > g vi € V). .

If two different potential community seeds are connected by an edge, they will be merged. From the calculation, the com-
munity seeds for the compressed graph of Fig. 2(b) are vertices 4 and vy. Similarly, for Zachary’s Karate Club network shown
in Fig. 3(b), the seeds of the communities are vertices 1 and 34, which is consistent with the ground truth.

In the following, Algorithm 2 shows the pseudocode description of this step.

Algorithm 2. The Community Seed Determination Algorithm

Input: Compressed graph G° = (V,E°, W) with n, vertices.
Output: Community seeds CS.

1: Compute the density and quality of vertices »; € V¢ and normalize them using Egs. (2) and (3), respectively;
2: Compute the index y(;), v; € V¢ according to Eq. (4), and construct a decreasing sequence g; > g, > -+ > g,.;
3: Compute the second order difference sequence h according to Eq. (5);

4: Find the knee point of the second order difference sequence according to Eq. (6);

5: Determine the potential community seeds CS according to Eq. (7);

6: if W (v;,v5) #0,v;,9, € CS

7:CS=CS—{v;}.

8: end if

9

: return Community seeds CS.

3.3. Seed expansion

After determining a set of community seeds CS = {cs1,csa, - - -, ¢S}, where k is the number of communities, we wish to
expand them to obtain the corresponding community structure ¢° = {Cq,C,,...,C}. A simple and effective technique for
this task is iteratively assigning labels to unlabeled vertices with the label information of their neighbors according to some
criterion. A key concept in seed expansion is the similarity measure between a vertex and a community, which to a large
extent determines the community structure. Existing similarity measures typically include the weight or the number of
common neighbors between two vertices. However, one limitation of these similarity measures is that they usually do
not take into account the fine local topological structures of the network, such as the connection vertexes among the neigh-
bors of a vertex, and the connections among the important vertices. This information is crucial in determining the right com-
munity structures.

Adamic and Adar [2] proposed a measure to evaluate the association between personal home pages. In the proposed mea-
sure, the features of the compared pages p, and p, are used to estimate their similarity score, score(p,, p,), as follows:

score(Pa, Py) = ) (8)

= log frequency(zc))

where Z denotes the set of features shared by home pages p, and p,, and frequency(z.) represents the number of times z.
appears in the studied set of pages. Note that the method gives high weights to rare features and low weights to features
that are common to most of the pages. Inspired by this measure, this paper proposes a new similarity measure that takes
into account not only the weights between the vertices, but also the degree information of their common neighbors. Specif-
ically, the quality of the common vertex is determined by the rarity of links connecting itself to other vertices. The neighbor
set of the current community C € ¢° is CN(C) = {vj|(v;, vj) € E,v; € C,v; ¢ C}. The proposed similarity measure between a
vertex u € V¢ and a community C € %° is defined as

sim(u, C) = Z WC u,v)+

veN(u

3 3 1 . 9)

veN(u) () CveNw) (|N(2) Wow)

In the above similarity measure, N(u) (" C represents the vertex set of vertex u connected to community C. N(u) N(v)
denotes the common neighbors of vertices u and . % expresses the importance for one of the common neighbors
V"eN(v') '
v'. This similarity measure is composed of two terms. The first term >  W®(u, v) denotes the sum of weights between
veN(u)mC
the unlabeled vertex u and the community C in the compressed graph. The second term > > W is
veN(u ﬂc v'eN(u ﬂN W) ’

v"eN(v')

used to measure the similarity from the point of view of a common neighbor.
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The vertex assignment to communities on the compressed graph in Fig. 2(b) is illustrated as follows. After the community
seed determination step, the community seeds of this compressed graph are v, and ve. That is, the initial communities are
%° = {C1,C,}, where C; = {v4} and C; = {wo}. In the first iteration of this step, the union of the neighbors of the initial com-
munities is {vs, vs, Us, V7, Vs, V10, V12 }. Intuitively, except for vertex vg, the rest of the vertices are directly connected only to
a community. For the vertex s, according to Eq. (9), sim(vs, C1) = 1 + 15,55 + 1955 = 1.619, and sim(ws, C;) = 1. Therefore,
vertex vg will go with community C; with the highes similarity. In addition, vertices {vs, s, v;} and {vs, v19, 12} are
assigned to communities C; and C,, respectively. In the second iteration, only vertex »;; is unassigned. Because it only con-
nects to community C,, it will be added to C,. The community structure of the compressed graph is ¢ = {C;,C,}, where
Cy = {vs, v4, U5, Us, ¥7} and C, = {vs, ¥o, V10, ¥12}. The graph is shown in Fig. 6(a).

The pseudocode description of this step is shown in the following Algorithm 3.

Algorithm 3. The Seed Expansion Algorithm

Input: Compressed graph G° = (V°,E°, W) and its community seeds CS = {csy, ¢S, ..., S}
Output: Communities %°.

: Initialize communities ¢ = {C;,C5,...,C;}, where C; = {cs;},i=1,2,...,k;

: Initialize a set of the unlabeled vertices UL = V¢ — CS;

: while UL # &

1 7€ = {T1C1,TCy,...,TC,}, where TC; = &;

: Compute common neighbors of the communities CV = |JCN((;), i=1,2,....,k;
: for each vertex u € CV

. if u is unlabeled

(ifNw) CC,i=1,2,...,k

L TG = TG | H{u};

: else

: h = argmaxsim(u, C;), TC, = TCp, U{u}.
i=12,..k

: end if

UL =UL—{u};

: end if

: end for

: Update C; = G;UTG;, i=1,2,... k.
: end file

: return Communities %°.

— = O 00N UI A WN =

- O

G W VI VY
cONNOY LT WDIN

3.4. Community structure propagation

Once the communities on the compressed graph are obtained, we further expand each of the communities to the com-
pressed vertices, which were merged in the graph compression step. This community propagation step is straightforward.

Fig. 6. Community of the original graph and the compressed graph in Fig. 2: (a) the compressed graph; (b) the. original graph.
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The unlabeled vertices are assigned to corresponding communities according to the category information of the vertex that
these vertices have been merged into in the graph compression step. For the graph in Fig. 2(a), the sets of vertices {v1, 75}
and {v13, v14, v15} are merged into v4 and v, after the graph compression step, respectively. v, and vy belong to communi-
ties C; and G, respectively. Therefore, {71, v2} and {713, 14, v15} are added into communities C; and C,, respectively. The
community structure of the original graph is shown in Fig. 6(b). This step is described in Algorithm 4.

Algorithm 4. The Community Propagation Algorithm

Input: Graph G = (V,E, W), Compressed graph G = (V,E°, W) and communities of G : ¢° = {C1,Cs,...,Cc}.
Output: Communities of G: % .

1: Initialize communities of G : ¥ = 4¢;

2: for each community C; € ¢

3: for each vertex u € C;

4: /= IV(u): a set of including vertices for each vertex u after graph compression =/ 5: if IV(u) > 1
6: Update C; = C;JIV(u).
7
8
9
1

: end if

: end for

: end for

0: return Communities .

3.5. Time complexity analysis

In this section, the time complexity of the proposed CDEP algorithm is analyzed. As described above, the proposed CDEP
includes four steps, graph compression, community seed determination, seed expansion, and community structure propa-
gation. Given a social network with n vertices and m edges and a compressed graph with n. vertices and m. edges, the graph
compression step needs to iteratively merge the vertices with a degree 1 or 2. Thus the time complexity of this step is
O((n +m)t), where t is the number of iterations. In the community seed determination step, the complexity is bounded
by constructing a decreasing sequence using the sorting algorithm. Therefore, the time complexity of this step is
O(n. logn.). Community seed expansion requires measuring the similarity between unlabeled vertices and each community.
The complexity of this operation scales with the size of each community. Therefore, the time complexity for this step scales

as O(nfk), where C is the average size of each community during the expansion process and k denotes the number of com-
munities. Finally, the community propagation step costs O(n.) time to check whether the vertices in the compression graph
include merged vertices. Therefore, the total time complexity of our overall algorithm scales as O((n +m)t+ nfk).

4. Experimental analysis

In this section, we evaluate the performance of the proposed algorithm against several benchmark algorithms over a vari-
ety of social networks in terms of two important evaluation criteria: the modularity(Q) and the normalized mutual informa-
tion (NMI).

4.1. Experimental settings

The descriptions of different data sets, evaluation criteria, comparison algorithms, and related experimental environment
settings are given in this subsection.

4.1.1. Data sets
In order to illustrate the effectiveness and efficiency of the proposed algorithm, we use 14 social networks that have been
widely adopted in the literature. A detailed description of these networks is shown in Table 1.

4.1.2. Evaluation criteria

Measuring the quality of detected communities for a social network is challenging since different measures may lead to
different quality communities. The quality measures used differ according to whether the ground-truth communities for a
specific social network are known or not. In this section, the normalized mutual information (NMI) will be used as an eval-
uation measure for the quality of the detected communities for datasets with known communities. For social networks with-
out ground truth information, we employ the modularity to measure the quality of the community detection results.

e Normalized Mutual Information (NMI). This is one of the most popular community detection algorithm validation met-
rics. It estimates the quality of the community with respect to the given labels of the data. More formally, NMI can effectively
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measure the amount of statistical information shared by random variables representing the cluster assignments and the pre-
defined label assignments of the objects. Consider a graph G = (V,E) with n vertices (or nodes) and m edges, and suppose
that ¢ = {Cy,C5,...,C¢} and 2 = {P4,P,, ..., Py} represent the sets of the communities detected by the community detection
algorithm and the ground-truth communities of the n vertices, respectively. k and k' are the numbers of communities % and
2, respectively; n;; is the number of common vertices for community C; and ground-truth community Pj; nf is the number of
vertices in community C; ; and nj’.’ is the number of vertices in community P;. Then NMI is defined and computed according to
the following formula [45]:

k K

> nijlog iy

i1 =1
k " K WP ’
c i p J
> ne-logit-> n? - log
i1 =

e Modularity (Q). Modularity is currently used to measure the performance of community detection algorithms when the
underlying community labels of networks are unknown. For a set of communities of a given graph G = (V, E), the modularity
is defined as [34]:

: d(id(
Q= o (=S50 o0, N

ijev

NMI =

(10)

where Q represents the modularity, m is the number of edges in the network, and A is the adjacency matrix of the network. If
vertices v; and v; are directly connected, A; = 1; otherwise A; = 0. ]; and J; are the labels of the community to which »; and v;
belong, respectively. If ; = [;, then 5(I;, ;) = 1; otherwise, 5(I;,I;) = 0.

Note that the higher the values of the above two measures, the better the community detection algorithm.

4.1.3. Comparison algorithms

To fully investigate the performance of the proposed community detection algorithm, the following state-of-the-art com-
munity detection algorithms, which cover most of the main categories of existing approaches, will be adopted for bench-
marking purposes. Since the proposed algorithm is a global community detection method, it is compared with the
representative global community methods in the experiment analysis. These algorithms include fast modularity maximiza-
tion (FMM) [33], normalized spectral clustering (NSC) [42], nonnegative matrix factorization (NMF) [35], the label propaga-
tion algorithm (LPA) [36], and the fast unfolding communities (FUC) [9].

In the NSC and NMF algorithms, the k-means algorithm with random initialization cluster centers is used. The maximum
number of iterations of the LPA algorithm is set as 200. For the FUC algorithm, we set the parameter s as the default value, i.e.,
s = 1, indicating recursive computation. The methods other than the NSC and NMF algorithms, can determine the number of
communities automatically. In addition, according to whether the ground-truth communities for a specific social network
are known, the main parameter of NSC and NMF, the number of communities, was set to the number of ground-truth com-
munities or the number of communities detected by our method. The time complexity of these algorithms is analyzed as
follows. For the FMM algorithm, a maximum of n — 1 join operations are necessary to construct the complete dendrogram;
hence, its time complexity is O(n?). Because matrix decomposition is needed in the NMF and NSC algorithms, the time com-
plexity of these algorithms is O(n?®). Although the time complexity of the LPA is low, the running time of the LPA is closely
related to the initialization conditions. The most time-consuming part of the FUC algorithm is the bottom-level community

Table 1

Summary of social networks.
Datasets # Vertices # Edges # Communities
Karate [16] 34 78 2
Dolphin [29] 62 159 2
Football [16] 115 613 12
Polbooks [24] 105 441 3
Polblogs [16] 1,490 16,718 2
Email [18] 1,133 5,451 NA
PGP [31] 10,681 24,316 NA
CA_AstroPh [25] 18,772 396,160 NA
CA_CondMat [25] 23,133 186,936 NA
Email_Enron [25] 36,692 183,831 NA
soc_Epinions [37] 75,879 508,837 NA
Email_EuAll [25] 265,214 420,045 NA
com_Youtube [49] 1,134,890 2,987,624 NA
WikiTalk [49] 2,394,385 5,021,410 NA
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division. The other part is the calculation of the change in the modularity during community merging. The total time com-
plexity of FUC is only related to the edges. The proposed algorithm and the compared algorithms were all implemented in
the MATLAB computing environment and all experiments were conducted on a workstation with an Intel Xeon CPU E5-
2650@2.60 GHz and 128gb of RAM.

4.2. Results of the effectiveness analysis

In this section, we present the performance results of the effectiveness analysis obtained by the different community
detection algorithms. The NMI index is used to measure the quality of communities for the real dataset with known com-
munities. The corresponding results are shown in Table 2. Note that the numbers in boldface denote the largest values in
the corresponding row. From this table, we observe that the CDEP algorithm outperformed all the competing methods. Espe-
cially, for the Karate network, the communities detected by the proposed algorithm are consistent with the real community
structure. For those social networks without ground-truth communities, we use the modularity index to measure the quality
of the community detection results. The numbers of communities on these 9 networks are determined as 9, 4, 3,5,9, 7,5, 6
and 8, respectively. The comparative modularity results are shown in Table 3. In this table, if the running time of an algo-
rithm is greater than 10 h, we terminate it and set the result as ‘NA’. In terms of modularity, we obtain the following obser-
vations. The CDEP algorithm performs better and obtains optimal results on 6 networks, compared to the other algorithms.
In addition, the FUC algorithm acquires the best results on the other 3 networks. That is, the modularity values of our par-
titions are lower than those obtained by the FUC algorithm on some networks. This can be expected because our method is
not specifically designed to optimize the modularity as with the FUC algorithm. However, the modularity values obtained by
our method are almost always better than those of the other algorithms. Therefore, we can conclude that the CEDP algorithm
is an effective and competitive method for identifying community structures.

4.3. Results of the efficiency analysis

In order to investigate how well the method scales over networks as they increase in size, the time performance of dif-
ferent algorithms on these given networks is compared in Table 4. We note that if the scale of a data set is large, some algo-
rithms cannot obtain the community results within an acceptable time. Therefore, in our experiment, if the running time of
an algorithm is greater than 10 h, we terminate it and set the running time as ‘NA’. This table shows that the CDEP algorithm
outperforms the competing methods in terms of efficiency as well. We conclude that the CDEP algorithm is the only method
that can process all large-scale networks in a reasonable time.

4.4. Performance analysis of graph compression

In order to show the effectiveness of the graph compression step, we report the compression ratio of the proposed algo-
rithm. The compressed rate indicates how many vertices and edges are merged into the compressed graph. If |V¢| and |E°|
represent the number of vertices and edges for the compressed graph, respectively, then the compression ratio (CR) is cal-
culated as

1 V] V] \E\—\E%)
CRZ*( + . 12
AT ] 12

The higher the value of this index, the better the compression performance. The summary of social networks after the
graph compression step is shown in Table 5. In addition, the results of the compression ratio for these networks without
a known community structure are shown in Fig. 7. One important observation is that the compressing performance increases
as the network scale increases. However, this relationship is not strictly monotonic.

In summary, the above experimental results show that the proposed algorithm not only obtains higher or comparable
quality community detection results, but it also has high computational efficiency. The larger the variance of the degree
of vertices in a network, the sparser the degree distribution of the vertices in the network. That is, a sparse network with
low rich-club connectivity includes more lower degree vertices. First, for this kind of network, the graph compression step
can reduce the network size efficiently by compressing vertices. Second, on the compressed graph, the initial community

Table 2

The NMI values of communities found by different algorithms.
Datasets FMM NSC NMF LPA FUC CDEP
Karate 0.7069 0.7329 0.8365 0.8372 0.7236 1.0000
Dolphin 0.5020 0.5270 0.4528 0.5290 0.5649 0.5996
Football 0.7569 0.8302 0.8368 0.8651 0.8581 0.8691
Polbooks 0.5314 0.4033 0.3256 0.4944 0.5311 0.5436
Polblogs 0.3262 0.1968 0.2402 0.3505 0.4378 0.4403
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Table 3

The modularity (Q) values of communities found by different algorithms.
Datasets FMM NSC NMF LPA FUC CDEP
Email 0.5083 0.2669 0.2518 0.3833 0.5502 0.3837
PGP 0.8407 0.0928 NA 0.5961 0.8474 0.7865
CA_AstroPh NA NA NA 0.3000 0.5038 0.5326
CA_CondMat NA NA NA 0.5940 0.5942 0.4714
Email_Enron NA NA NA 0.3195 NA 0.4538
soc_Epinions NA NA NA NA NA 0.2205
Email_EuAll NA NA NA NA NA 0.5463
com_Youtube NA NA NA NA NA 0.4753
WikiTalk NA NA NA NA NA 0.3674

Table 4

Computational time (seconds) of different algorithms.
Datasets FMM NSC NMF LPA FUC CDEP
Karate 0.0310 0.0190 0.0290 0.0380 0.0310 0.0160
Dolphin 0.0180 0.0110 0.0140 0.0760 0.0780 0.0104
Football 0.0300 0.0340 0.0370 0.0630 0.0780 0.0251
Polbooks 0.0170 0.0210 0.0180 0.0780 0.0620 0.0152
Polblogs 33.7280 17.7040 2.4540 44.4000 6.9730 2.0460
Email 18.2770 4.7200 1.9000 31.6803 1.9790 1.6150
PGP 18248.3210 31130.8600 NA 783.5310 1376.4520 9.8080
CA_AstroPh NA NA NA 3024.1190 2239.7330 33.3670
CA_CondMat NA NA NA 3907.8630 10321.9240 33.2150
Email_Enron NA NA NA 7903.3200 NA 67.5040
soc_Epinions NA NA NA NA NA 247.7370
Email_EuAll NA NA NA NA NA 3053.5550
com_Youtube NA NA NA NA NA 4621.5726
WikiTalk NA NA NA NA NA 5428.4692

Table 5

Summary of social networks after graph
compression.

Datasets # Vertices # Edges
Email 940 5,221
PGP 3,996 16,701
CA_AstroPh 15,813 193,730
CA_CondMat 17,824 85,745
Email_Enron 23,332 168,273
soc_Epinions 33,041 359,124
Email_EuAll 17,824 85,745
com_Youtube 350,441 2,020,611
WikiTalk 277,650 2,555,576

center discovery method can effectively detect the initial community structure, and then obtain the community results of
the whole network.

5. Conclusion and future work

Community detection is a challenging problem, especially in social network analysis when the scale of the network is
large. This paper aims to improve the community detection efficiency within social networks by compressing the network
scale. The proposed algorithm includes four steps: graph compression, community seed determination, seed expansion, and
community structure propagation. First, a compressed graph is obtained by iteratively merging vertices with a degree of 1 or
2 into their neighbors with a higher degree. Then, the number of communities and initial seeds of communities for the com-
pressed graph are determined automatically by considering the density and quality of vertices. Finally, after obtaining the
community structure of the compressed social network via seed expansion, the community results are propagated to the
original social network. The advantages of the proposed algorithm are demonstrated on 14 real social networks. The exper-
imental results show that the proposed algorithm has much better performance in extracting community structures than the
other algorithms in terms of efficiency and effectiveness.
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Fig. 7. Compression ratio of the social networks.

The proposed algorithm based on graph compression can improve the efficiency while maintaining the effectiveness for
large-scale networks, but it is only suited for undirected networks. Therefore, how to extend the graph compression strategy
to the community discovery of attribute networks [10] and multilayer networks [21] is the focus of future research.
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