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Abstract
The evolution of object sets over time is ubiquitous in dynamic data. To acquire reducts for this type of data, researchers 
have proposed many incremental attribute reduction algorithms based on discernibility matrices. Although all reducts of an 
updated decision table can be obtained using these algorithms, their high computation time is a critical issue. To address 
this issue, we first construct three new types of discernibility matrices by compacting a decision table to eliminate redundant 
entries in the discernibility matrices of the original decision table. We then demonstrate that the set of reducts obtained 
from the compacted decision table are the same as those acquired from the original decision table. Extensive experiments 
have demonstrated that an incremental attribute reduction algorithm based on a compacted decision table can significantly 
accelerate attribute reduction for dynamic data with changing object sets while the acquired reducts are identical to those 
obtained using existing algorithms.

Keywords Rough set · Incremental attribute reduction · Discerptiblity matrix · Compacted decision table

1 Introduction

The continuing development of data capture and storage 
technologies has resulted in rapidly incoming and extremely 
dynamic data in many real-life applications, such as transac-
tion data and web data. Traditional non-incremental algo-
rithms address this issue by considering updated data as 
completely new data without using any incremental strat-
egy. Such approaches neglect information shared by the data 
before and after updating, and therefore, they are normally 
inefficient. As a popular mathematical tool for data anal-
ysis [19, 28, 46], rough set has been successfully applied 

in incremental methods for data analysis. Many rough set 
based incremental learning approaches have been developed 
to address this problem. In these approaches, intermediate 
results based on the original data can be used to accelerate 
the process of performing attribute reduction on the updated 
data [1, 18, 22, 27]. Attribute reduction, which is a rep-
resentative feature selection method, attempts to select an 
attribute set that can preserve some discrimination ability 
in the original data [2, 5, 14, 16, 39, 41, 52]. Consequently, 
incremental attribute reduction has become a hot topic in 
rough set theory.

In the last two decades, to meet the demand of process-
ing dynamic data, researchers have introduced several incre-
mental algorithms for attribute reduction. We review some 
related work on incremental updating approaches based on 
rough set theory, which are categorized as follows [11, 34, 
48]:

1. The object set of a data set evolves over time. Liu [26] 
proposed incremental arithmetic to determine the mini-
mal reduct for an information system. To update the 
attribute reduct for a decision table using an incremen-
tal technique, Wang proposed an incremental attribute 
reduction algorithm based on Skowron’s discernibility 
matrix in Wang and Wang [40]; however, the algorithm 
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is incapable of updating reducts for an inconsistent deci-
sion table. Some representative incremental algorithms 
were proposed for conducting attribute reduction based 
on modified discernibility matrices [49], positive region 
[8], 0–1 integer programming [48], and information 
entropies [22]. It should be noted that in Liang et al. 
[22], Liang et al. systemically investigated the properties 
of entropies for a group of objects added into a decision 
table and proposed an incremental attribute reduction 
algorithm that is much more efficient than existing ones. 
For a dynamic incomplete decision table with its object 
set changing, Shu et al. [35] proposed an incremental 
approach of obtaining reducts by updating the positive 
region, and Liu et al. [25] introduced an incremental 
attribute reduction approach by constructing three novel 
matrices: a support matrix, an accuracy matrix, and a 
coverage matrix. By means of computing the updated 
knowledge granularity, Jin et al. [9] presented the corre-
sponding incremental algorithms for attribute reduction 
when some objects evolve dynamically.

2. The condition attribute set of a data set evolves over 
time. A number of important knowledge acquisition 
methods, which can effectively learn knowledge in 
dynamic data sets with a varying attribute set, have been 
presented in [6, 18, 23, 24, 32, 53]. Inspired by such lit-
erature, Wang et al. [38], for the first time, introduced an 
incremental attribute reduction algorithm for a dynamic 
data set in which new attributes are progressively added; 
however, the algorithm is only suitable for a complete 
data set. Shu et al. [34] proposed a positive region-based 
attribute reduction algorithm to extend the application 
of the incremental approach to an incomplete decision 
table with a varying attribute set. Li et al. [17] studied 
the change mechanism of P-dominating sets and P-domi-
nated sets when some attributes are added into or deleted 
from a dominance-based decision table and proposed 
the relevant incremental approaches. By calculating the 
updated knowledge granularity, Jin et al. [10] proposed 
an incremental algorithms for attribute reduction when 
multiple attributes are added to a decision system. For 
dynamic covering decision information systems with 
variations of attribute sets, Lang el al. [12, 13] presented 
several incremental algorithms for attribute reduction.

3. The attribute values of objects evolve over time. Chen 
et al. [3, 4] introduced two types of incremental algo-
rithms to update rough approximations of a target con-
cept in the context of varying attribute values. Unfortu-
nately, the means of implementing attribute reduction for 
this kind of dynamic data set was not discussed. To solve 
this problem, Wang et al. [37] presented three incre-
mental attribute reduction algorithms based on three 
representative entropies: complementary entropy [20, 
21], combination entropy [31], and Shannon’s entropy 

[33] that can obtain an updated reduct in much lesser 
time. Shu et al. [35] proposed a method of modifying the 
positive region for an incomplete dynamic data set with 
attribute values evolving over time and designed two 
incremental algorithms to compute the updated reducts. 
To enhance the efficiency of the type of algorithms, Xie 
and Qin [45] introduced three update strategies of toler-
ance classes and the update mechanism of the inconsist-
ency degree, presented a framework of the incremental 
attribute reduction algorithms for incomplete decision 
systems with variation of attribute values.

In addition, some researches on updating rough approxima-
tions in the context of multi-granulation rough set has been 
launched. Yang et al. [50] proposed a method of updating the 
multi-granulation rough approximations. Ju et al. [51] fur-
ther developed the updating of the multi-granulation fuzzy 
rough approximations. Hu et al. [7] proposed a matrix rep-
resentation of multi-granulation approximations in multi-
granulation rough set, and then corresponding matrix-based 
algorithms for updating rough approximations. Note that, by 
means of the methods of updating rough approximations, it 
is easy to design corresponding incremental attribute reduc-
tion algorithms for dynamic data.

Among the algorithms mentioned above, discernibility 
matrix based incremental attribute reduction [40, 49] is one 
of the important algorithms in which updated reducts can 
be obtained by modifying a decision table’s discernibility 
matrix based on the relationships among the newly added 
object and all other objects in the decision table. This type 
of algorithm can obtain all reducts of an updated decision 
table, which is its distinct advantage in comparison with 
other incremental algorithms. However, it should be noted 
that efficiency is still a critical issue for incremental attrib-
ute reduction algorithms based on discernibility matrices. 
Inspired by the study on compacted decision tables in Wei 
et al. [43], we investigate the mechanism of discernibility 
matrices of a compacted decision table after adding a new 
object into the compacted decision table to address the issue 
associated with efficiency. We demonstrated that the reducts 
derived from an updated compacted decision table are iden-
tical with those derived from its corresponding original 
decision table. It should be noted that incremental attribute 
reduction algorithms based on the discernibility matrix of a 
compacted decision table are more efficient than those based 
on the discernibility matrix of its original version because 
the scale of the discernibility matrix of a compacted decision 
table is much smaller than that of the original decision table.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some preliminaries on rough sets, discern-
ibility matrices, and incremental algorithms. In Sect. 3, we 
introduce the discernibility matrices of a compacted decision 
table and present the relationship between the discernibility 
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matrices of a compacted decision table and those of the origi-
nal decision table. In Sect. 4, we investigate the relation-
ship between reducts obtained from an updated compacted 
decision table and those obtained from an updated decision 
table and design an incremental attribute reduction algorithm 
based on a compacted decision table. In Sect. 5, extensive 
experiments and their results are described to indicate the 
effectiveness and efficiency of the proposed incremental algo-
rithms. Section 6 concludes the paper with some remarks.

2  Preliminaries

2.1  Rough set

In rough set theory, as a knowledge representation system, 
an information system [28–30], is a 4-tuple S = (U,A,V , f ) , 
where U is a non-empty and finite set of objects, called a 
universe of discourse, and A is a non-empty and finite set of 
attributes, Va is the domain of the attribute a, V =

⋃
a∈A Va and 

fS ∶ U × A → V is a function, fS(x, a) ∈ Va ( a ∈ A ). Thereaf-
ter, S = (U,A) is used to represent S = (U,A,V , f ) for short.

For any Y ⊆ U , (B(Y),B(Y)) is defined as the rough 
set of Y with respect to B, where the lower approxi-
mation B(Y) and the upper approximation B(Y) of Y  
are B(Y) = {x ∣ [x]B ⊆ Y} and B(Y) = {x ∣ [x]B ∩ Y ≠ �} , 
respectively. The B−boundary region of Y is defined as the 
set BNB(Y) = B(Y) − B(Y) . The objects in lower approxima-
tion of Y are certainly classified as the members of Y based 
on information in B, while the objects in upper approxima-
tion of Y are possibly classified as the members of Y based 
on information in B.

When we encounter a decision problem, a decision table 
DT = (U,C ∪ {d},V , f ) is usually employed to represent the 
problem, where C is a condition attribute set and {d} is a 
decision attribute, Vd = {vd1 , vd2 , ..., vdl} is the domain of the 
attribute d. Let B ⊆ C , U∕{d} = {Y1, Y2,… , Yn} , we define 
the lower and upper approximations of the decision attrib-
ute {d} as B{d} = {BY1,BY2,… ,BY

n
}, and B{d} = {BY1,

BY2,… ,BY
n
} . Then the positive region of {d} with respect 

to B can be defined as POSB({d}) =
⋃n

i=1
BYi.

Note that in a decision table, the rows of the objects in 
the positive region of {d} with respect to C is regarded as the 
consistent part of the decision table, and the other rows is its 
inconsistent part. If POSC({d}) equals U in a decision table, 
then we call the decision table is a consistent decision table.

2.2  Discernibility matrix

Discernibility matrix is first introduced by Skowron and 
Rauszer for an information system [36], by using which, it 

is easy to obtain reducts and make the rule acquisition easier 
and the extracted approximate decision rules more compact 
[15]. To extend the discernibility matrix to a decision table, 
a decision table oriented discernibility matrices was pre-
sented in Yang [49] as follows.

Definition 1 [49] Let DT = (U,C ∪ {d}) be a decision 
table, C the condition attribute set, and d the decision attrib-
ute. The discernibility matrix in the context of the positive 
region is defined as �P

DT
= {mP

ij
} , where

U1 is the consistent part of the decision table DT and U2 is 
the inconsistent part of the decision table DT.

From this definition, we can determine that if two objects 
xi and xj belong to U1 of DT and their values of the decision 
attribute are different, and xi is in U1 while xj is in U2 , then 
an attribute ai in which these two objects possess different 
values must be in the corresponding entry ( mP

ij
 ) of the dis-

cernibility matrix in the context of positive region ( �P
DT

 ). 
In other words, ai can distinguish xi and xj . Therefore, if ai 
is deleted from C, then the two objects will fall into one 
equivalence class if there are no other attributes that can 
distinguish between the two objects. Subsequently, the posi-
tive region derived from C − {ai} ( POSC−{ai}(D) ) is larger 
than POSC(D) , which suggests that the information required 
for distinguishing between the two objects is preserved in a 
discernibility matrix. Therefore, it is possible to obtain all 
reducts of a decision table through its discernibility matrix. 
To obtain these reducts, the corresponding discernibility 
function in the context of positive region was defined as 
 (�P

DT
) =

⋀
{
⋁
(mP

ij
) ∣ ∀x, y ∈ U,mP

ij
≠ �}.

However, the discernibility matrix can only be used to 
compute reducts in the context of the positive region. To 
obtain the reducts in the context of Shannon entropy and 
complement entropy, Wei et al. [42] proposed two new dis-
cernibility matrices as follows:

Definition 2 [42] Let DT = (U,C ∪ {d}) be a decision 
table, C the condition attribute set, and d the decision attrib-
ute. The discernibility matrix in the sense of Shannon 
entropy is defined as �S

DT
= {mS

ij
} , where

(1)

mP
ij
=

⎧
⎪⎨⎪⎩

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, f (xi, d) ≠ f (xj, d) and xi, xj ∈ U1;

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, xi ∈ U1, xj ∈ U2;

�, otherwise;
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where U1 is the consistent part of the decision table DT and 
U2 is the inconsistent part of the decision table DT, 
�ik =

|[xi]C∩Yk|
|[xi]C|  , �jk =

|[xj]C∩Yk|
|[xj]C|  , [xi]C ∈ U∕C and [xj]C ∈ U∕C.

From this definition, we can determine that if two objects 
xi and xj belong to the consistent part U1 of DT and their 
values of decision attributes are different, or xi is in U1 and 
xj is in U2 , or there exists a decision class Yk such that |[xi]C∩Yk||[xi]C|  

and |[xj]C∩Yk||[xj]C|  when both xi and xj are in U2 , then an attribute 

ai in which these two objects possess different values must 
be in the corresponding entry ( mij ) of the discernibility 
matrix in the context of Shannon entropy ( �S

DT
 ). In other 

words, ai can distinguish between xi and xj . Therefore, if ai 
is deleted from C, then the two objects will fall into one 
equivalence class if there is no other attribute that can dis-
tinguish between the objects. The Shannon entropy derived 
from C − {ai} ( H(D|C − {ai}) ) is larger than H(D|C), which 
suggests that the information used to distinguish between the 
two objects is preserved in a discernibility matrix, where 
H(D�C) = −

∑m

i=1

�Xi�
�U�

∑n

j=1

�Xi∩Yj�
�Xi� log

�Xi∩Yj�
�Xi�  , Xi ∈ U∕C and 

Yj ∈ U∕D is a nonempty set. Therefore, it is possible to 
obtain all reducts of a decision table through its discernibil-
ity matrix. To obtain these reducts, the corresponding dis-
cernibility function in the context of Shannon entropy was 
defined as  (�S

DT
) =

⋀�⋁
(mS

ij
) ∣ ∀x, y ∈ U,mS

ij
≠ �

�
.

Definition 3 [42] Let DT = (U,C ∪ {d}) be a decision 
table, C the condition attribute set, and d the decision attrib-
ute. The discernibility matrix in the context of complement 
entropy is defined as �C

DT
= {mC

ij
} , where

where U1 is the consistent part of the decision table DT and 
U2 is the inconsistent part of the decision table DT.

From this definition, we can determine that if two objects 
xi and xj belong to U1 of DT and their values of decision 
attributes are different, or xi is in U1 and xj is in U2 of DT, or 
both xi and xj are in U2 of DT, then an attribute ai in which 
these two objects possess different values must be in the 

(2)mS
ij
=

⎧
⎪⎨⎪⎩

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, f (xi, d) ≠ f (xj, d) and xi, xj ∈ U1;

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, xi ∈ U1, xj ∈ U2;

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, ∃Yk ∈ U∕{d} such that �ik ≠ �jk, and xi, xj ∈ U2;

�, otherwise;

(3)

mC
ij
=

⎧
⎪⎨⎪⎩

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, f (xi, d) ≠ f (xj, d) and xi, xj ∈ U1;

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, xi ∈ U1, xj ∈ U2;

{c ∈ C ∶ f (xi, c) ≠ f (xj, c)}, xi, xj ∈ U2;

�, otherwise;

corresponding entry ( mij ) of the discernibility matrix in the 
context of complement entropy ( �C

DT
 ). In other words, ai 

can distinguish xi and xj . Therefore, if ai is deleted from C, 
then the two objects will fall into one equivalence class if 
there are no other attributes that can distinguish between the 
two objects, and then the complement entropy derived from 
C − {ai} ( E(D|C − {ai}) ) is larger than E(D|C), which sug-
gests that the information required for distinguishing 
between each object is preserved in a discernibility matrix, 
where E(D�C) = ∑m

i=1

∑n

j=1

�Yj∩Xi�
�U�

�Yc
j
−Xc

i
�

�U�  , Yc
j
 and Xc

i
 are the 

complements of Yj ∈ U∕D and Xi ∈ U∕C , respectively. 
Therefore, it is possible to obtain all reducts of a decision 
table through its discernibility matrix. To obtain these 
reducts, the corresponding discernibility function in the con-
text  of  complement  entropy was def ined as 
 (�C

DT
) =

⋀�⋁
(mC

ij
) ∣ ∀x, y ∈ U,mC

ij
≠ �

�
.

2.3  Compacted decision table

To eliminate information redundancy in data sets aroused by 
these objects in an equivalence class having the same condi-
tion attribute values, Wei et al. [43] introduced the concept 
of a compacted decision table, which was defined as follows:

Definition 4 [43] Given a decision table DT = (U,C ∪ {d}) , 
U = {x1, x2,… , xn} , U∕C = {X1,X2,… ,Xm} , Vd

= {v
d1
, v

d2
,

… , v
d
l
} , then a compacted decision table is defined as 

CDT = (CU,C ∪ CD) , where CU = {cx1, cx2,… , cxm} , 
fCDT (cxi,C) = fDT (Xi,C)  (  fCDT (cxi, c) = fDT (Xi, c)  fo r 
∀c ∈ C ), CD = {cd1, cd2,… , cdl} and fCDT (cxj, cdi) = |{x ∣
fDT (x, d) = vdi , x ∈ Xj}|.

For a given compacted decision table CDT = (CU,C ∪ CD) , 
CU1 = {cxi ∣ |{cdk ∈ CD|fCDT (cxi, cdk) ≠ 0}| = 1}  i s 
regarded as its consistent part, and CU2 = CU − CU1 as its 
inconsistent part.

To facilitate an investigation of discernibility matrices 
for compacted decision tables in the context of the positive 
region, Shannon entropy, and complement entropy, com-
pacted decision tables are reviewed as follows.

Definition 5 [43] Given a decision table DT = (U,C ∪ D) 
and its compacted edition CDT = (CU,C ∪ CD) , B ⊆ C , 
CU∕B = {X�

1
,X�

2
,… ,X�

l
} , then the positive region of B with 

respect to CD in the compacted decision table is defined as
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where U�
POS

= {cxi|[cxi]C ∈ POSU
C
(D)} , and f (X, d

i
) =∑

cxj∈X
f (cxj, di).

And, the Shannon condition entropy of CD with respect 
to B in the compacted decision table is defined as

where f (X�
j
, di) =

∑
x�
k
∈X�

j

f (x�
k
, di).

And, the complement entropy of CD with respect to B in 
a compacted decision table is defined as

where f (X�
j
, di) =

∑
x�
k
∈X�

j

f (x�
k
, di).

Based on the definition reviewed above, in the follow-
ing section, three new types of discernibility matrices in the 
context of the positive region, Shannon entropy, and com-
plement entropy will be proposed to obtain all reducts of a 
compacted decision table, respectively.

3  Discernibility matrix for a compacted 
decision table

The discernibility matrix is an important tool for computing 
all reducts of a decision table. In this section, we introduce 
three new types of discernibility matrices to compute all 
reducts of a compacted decision table and demonstrate that 

(4)

POS
CU

B
(CD) = {cx ∈ X ∣ X ∈ CU∕B ∧ X

⊆ U
�
POS

∧ |{cd
i
∈ CD ∣ f (X, cd

i
) ≠ 0}| = 1},

(5)

HCU(CD�B) = −

m�
j=1

∑n

i=1
f (X�

j
, di)

�U��
n�
i=1

f (X�
j
, di)∑n

i=1
f (X�

j
, di)

log
f (X�

j
, di)∑n

i=1
f (X�

j
, di)

,

(6)

ECU(CD�B) =
m�
j=1

n�
i=1

f (X�
j
, di)

�U�
∑n

i=1
f (X�

j
, di) − f (X�

j
, di)

�U� ,

the reducts obtained through the discernibility matrices of a 
compacted decision table are the same as those based on the 
discernibility matrices of the original decision table. Based 
on these new types of discernibility matrices, we will inves-
tigate the relationship between the discernibility functions of 
a compacted decision table and those of the original decision 
table using the following Theorems 1–3. The relationship 
between the reducts acquired from a compacted decision 
table and those of the original decision table can then be 
easily revealed.

The discernibility matrices in the context of the positive 
region was first investigated. Similar to the discernibility 
matrix in the context of the positive region proposed in Defini-
tion 1, an attribute ai in which two objects ( cxp and cxq ) of a 
compacted decision table possess different values must be 
placed in the corresponding entry of the decision table when 
these two objects satisfy the following cases: (1) both cxp and 
cxq are in the consistent part ( CU1 ) of a compacted decision 
table and {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠ {cdk ∈ CD|
fCDT (cxq, cdk) ≠ 0} ; (2) cxp is in the consistent part ( CU1 ) and 
cxq is in the inconsistent part ( CU2 ) of the compacted decision 
table. The reason for distinguishing between the two objects in 
these two cases is that if the two objects ( xi and xj ) become one 
object in a new compacted decision table ( S� = (CU,C� ∪ CD) , 
C′ ⊂ C ), the positive region POSCU

C� (CD) will be smaller than 
the positive region POSCU

C
(CD) . However, the attribute ai has 

the ability to distinguish between xi and xj (i.e. 
POSCU

C�∪{ai}
(CD) = POSCU

C
(CD) ), and therefore it must be 

placed in the entry ( cmP
ij
 ) of the discernibility matrix ( MP

CDT
 ). 

Moreover, when both cxp and cxq do not conform to Case 1 and 
Case 2 mentioned above, they do not need be distinguished, 
and the entry corresponding to the two objects should be an 
empty set.

Based on the above discussion, it is easy to propose the 
following discernibility matrix in the context of the positive 
region.

Definition 6 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) . A discernibil-
ity matrix in the context of the positive region is defined as 
�

P
CDT

= {cmP
pq
} , where

(7)cmP
pq

=

⎧
⎪⎪⎨⎪⎪⎩

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)},

{cdk�fCDT (cxp, cdk) ≠ 0} ≠ {cdk�fCDT (cxq, cdk) ≠ 0} and

cxp, cxq ∈ CU1;

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)}, cxp ∈ CU1, cxq ∈ CU2;

�, otherwise;
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where CU1 is the consistent part of CDT, and CU2 is the 
inconsistent part of CDT.

To demonstrate that the same reducts as those obtained 
by the discernibility matrix in Definition 1 can be cap-
tured by our proposed discernibility matrix in the context 
of positive region (shown in Definition 6), we will need to 
investigate the relationship between the two discernibility 
functions based on these two discernibility matrices, which 
provides the theoretical foundation for acquiring the same 
reducts from a compacted decision table as those from its 
original version. The following theorem is applied for the 
investigation.

Theorem 1 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) . The relation-
ship between discernibility functions generated based on DT 
and CDT is

Proo f  S u p p o s e  t h a t  U = {x1, x2,… , xn}  a n d 
CU = {cx1, cx2,… , cxm} . From the definition of a compacted 
decision table, without loss of generality, we further suppose 
that U∕C = {X1,X2,… ,Xm} , and fDT (xpi ,C) = fCDT (cxp,C) 
for ∀xpi ∈ Xp.

1.  cxp, cxq ∈ CU  , {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠ {cdk
∈ CD|fCDT (cxq, cdk) ≠ 0} and cxp, cxq ∈ CU1

  In this case, it is easy to obtain cx
p
, cx

q
∈ CU1 ⇔ x

p
i
,

x
q
j
∈ U1, (xp

i
∈ X

p
, x

q
j
∈ X

q
) , and {cdk ∈ CD|fCDT (cxp,

cdk) ≠ 0} ⇔ fDT (xpi , d) ≠ fDT (xqj , d) . We therefore have 

mP
piqj

= cmP
pq

 for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

2. cxp ∈ CU1, cxq ∈ CU2

  In this case, we have cxp ∈ CU1 ⇔ xi ∈ U1 for 
∀xi ∈ Xp , and cxq ∈ CU2 ⇔ xq ∈ U2 for ∀xj ∈ Xq . We 
therefore have mP

piqj
= cmP

pq
 for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

3. Otherwise
  In this case, it is easy to see that mP

piqj
= cmP

pq
= � for 

∀xpi ∈ Xp , ∀xqj ∈ Xq.

  Furthermore, because of 
⋁
(mP

piqj
) = cmP

pq
 , we have

 (�P
DT
) =  (�P

CDT
).

(8)

 (�P
DT
) =

⋀{⋁
(mP

piqj
) ∣ ∀xpi , xqj ∈ U,mP

piqj
≠ �

}

=
⋀{⋁

(cmP
pq
) ∣ ∀cxp, cxq ∈ CU, cmP

pq
≠ �

}

=  (�P
CDT

).

  □

Theorem 1 states that the discernibility function of a com-
pacted decision table is the same as that of its original ver-
sion, from which it can be observed that all reducts acquired 
from a decision table are the same as those acquired from its 
compacted version.

Next, we investigate the relationship between reducts 
obtained from a decision table and those from its compacted 
version in the context of Shannon entropy. We therefore pro-
pose a discernibility matrix in the sense of Shannon entropy 
for a compacted decision table. Similar to the discernibility 
matrix in the context of Shannon entropy proposed in Defini-
tion 2, an attribute ai in which two objects ( cxp and cxq ) of a 
compacted decision table possess different values must be 
placed in the corresponding entry of the decision table when 
these two objects satisfy the following cases: (1) both cxp 
and cxq are in the consistent part (CU1) of a compacted deci-
sion table and {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠ {cdk ∈ CD|
fCDT (cxq, cdk) ≠ 0} ; (2) cxp is in the consistent part (CU1) 
and cxq is in the inconsistent part (CU2) of a compacted deci-
sion table; (3) both cxp and cxq are in the inconsistent part 
(CU2) of a compacted decision table, and ∃dk ∈ CD such that 

fCDT (cxp,dk)∑�CD�
k=1

fCDT (cxp,dk)
≠

fCDT (cxq,dk)∑�CD�
k=1

fCDT (cxq,dk)
 . The reason for distinguishing 

between them in these three cases is that if the two objects 
( xi and xj ) become one object in a new compacted  
decision table ( S� = (CU,C� ∪ CD) , C′ ⊂ C ), the Shannon 
entropy HCU

CDT
(CD|C�) will be smaller than the Shannon 

entropy HCU
CDT

(CD|C) . However, the attribute ai has the  
abil i ty to distinguish between xi  and xj  ( i .e. 
HCU(CD|C� ∪ {ai}) = HCU(CD|C�) ), and therefore it must 
be placed in the entry ( cmS

ij
 ) of the discernibility matrix 

( MS
CDT

 ). Moreover, when both cxp and cxq do not conform to 
Case 1, or Case 2, or Case 3 mentioned above, they do not 
need to be distinguished, and the entry corresponding to the 
two objects should be an empty set.

Based on the above discussion, we can propose the fol-
lowing discernibility matrix in the context of Shannon 
entropy.

Definition 7 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) , then a discern-
ibility matrix in the context of Shannon entropy is defined 
as �S

CDT
= {cmS

pq
} , where
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To demonstrate that the same reducts as those obtained by 
the discernibility matrix in Definition 2 can be captured by 
our proposed discernibility matrix in the context of Shannon 
entropy, we will need to investigate the relationship between 
the two discernibility functions based on these two discern-
ibility matrices, which provides the theoretical foundation 
for getting the same reducts from a compacted decision table 
as those from its original version. The following theorem is 
applied for the investigation.

Theorem 2 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) , the relation-
ship between discernibility functions generated from DT and 
CDT is

Proo f  S u p p o s e  t h a t  U = {x1, x2,… , xn}  a n d 
CU = {cx1, cx2,… , cxm} . From the definition of a compacted 
decision table, without loss of generality, we further assume 
that U∕C = {X1,X2,… ,Xm} , and fDT (xpi ,C) = fCDT (cxp,C) 
for ∀xpi ∈ Xp.

1. cxp, cxq ∈ CU  ,  {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠ {cdk
∈ CD|fCDT (cxq, cdk) ≠ 0} and cxp, cxq ∈ CU1.

  In this case, it is easy to obtain cx
p
, cx

q
∈ CU1 ⇔ x

p
i
,

x
q
j
∈ U1, (xp

i
∈ X

p
, x

q
j
∈ X

q
) , and {cdk ∈ CD|fCDT (cxp,

cdk) ≠ 0} ≠ {cdk ∈ CD|fCDT (cxq, cdk) ≠ 0} ⇔ fDT

(xpi , d) ≠ fDT (xqj , d). Therefore, we have mS
piqj

= cmS
pq

 for 

∀xpi ∈ Xp , ∀xqj ∈ Xq.

2. cxp ∈ CU1, cxq ∈ CU2

  In this case, it is easy to obtain cxp ∈ CU1 ⇔ xp ∈ U1 
for ∀xi ∈ Xp , and cxq ∈ CU2 ⇔ xq ∈ U2 for ∀xj ∈ Xq . We 
therefore have mS

piqj
= cmS

pq
 for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

3. f (cxi, cdk) = f (cxj, cdk)  f o r  ∀cdk ∈ CD  ,  a n d 
cxp, cxq ∈ CU2cxp, cxq ∈ CU2

  In this case, it is easy to obtain cx
p
, cx

q
∈ CU2 ⇔

x
p
, x

q
∈ U2 . From the definition of a compacted decision 

t a b l e ,  we  h ave  fCDT (cxp, cdk) = Xp ∩ Yk  a n d 

(9)cmS
pq

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)},

{cdk�fCDT (cxp, cdk) ≠ 0} ≠ {cdk�fCDT (cxq, cdk) ≠ 0} and

cxp, cxq ∈ CU1;

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)}, cxp ∈ CU1, cxq ∈ CU2;

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)},

∃cdk ∈ CD such that
fCDT (cxp,cdk)∑�CD�

k=1
fCDT (cxp,cdk)

≠
fCDT (cxq,cdk)∑�CD�

k=1
fCDT (cxq,cdk)

and

cxp, cxq ∈ CU2;

�, otherwise;

 (�S
DT
) =  (�S

CDT
).

fCDT (cxq, cdk) = Xq ∩ Yk  ,  thus f
CDT

(cx
i
, cd

k
) ≠ f

CDT

(cxj, cdk) for ∀cdk ∈ CD ⇔ �pk =
|Xp∩Yk|
|Xp| ≠

|Xq∩Yk|
|Xq| = �qk

�pk =
|Xp∩Yk|
|Xp| ≠

|Xq∩Yk|
|Xq| = �qk for ∀Yk ∈ U∕{d} . Therefore 

we have mS
piqj

= cmS
pq

 for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

4. Otherwise
  In this case, it can be observed that mS

piqj
= cmS

pq
= � 

for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

  Furthermore, because of 
⋁
(mS

piqj
) = cmS

pq
 , we have

  □

From Theorem 2, we can observe that the discernibility 
function of a compacted decision table is the same as that of 
its original version. Therefore, it is easy to observe that all 
reducts acquired from a decision table are the same as those 
acquired from its compacted version.

Finally, we analyze the relationship between reducts 
obtained from a decision table and from its compacted ver-
sion in the context of complement entropy. To this end, a 
new discernibility matrix in the context of complement 
entropy is introduced. Similar to the discernibility matrix 
in the context of complement entropy proposed in Defini-
tion 2, an attribute ai in which two objects ( cxp and cxq ) of 
a compacted decision table possess different values must  
be placed in the corresponding entry of the decision  
table when these two objects satisfy the following cases: (1) 
both cxp and cxq are in the consistent part ( CU1 ) of a com-
pacted decision table and {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠

{cdk ∈ CD|fCDT (cxq, cdk) ≠ 0} ; (2) cxp is in consistent part 
( CU1 ) and cxq is in the inconsistent part ( CU2 ) of a com-
pacted decision table; (3) both cxp and cxq are in the incon-
sistent part ( CU2 ) of a compacted decision table. The reason 

(10)

 (�S
DT
) =

⋀�⋁
(mS

piqj
) ∣ ∀pi, qj ∈ U,mS

piqj
≠ �

�

=
⋀�⋁

(cmS
pq
) ∣ ∀cxp, cxq ∈ CU, cmS

pq
≠ �

�

=  (�S
CDT

).
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for distinguishing between them in these two cases is that 
if the two objects ( xi and xj ) become one object in a new 
compacted decision table ( S� = (CU,C�,CD) , C′ ⊂ C ), the 
complement entropy ECU

CDT
(CD|C�) will be smaller than the 

complement entropy ECU
CDT

(CD|C) . However, the attribute 
ai has the ability to distinguish between xi and xj (i.e. 
ECU(CD|C� ∪ {ai}) = ECU(CD|C�) ), and therefore it must 
be placed in the entry ( cmC

ij
 ) of the discernibility matrix 

( CMC
CDT

 ). Moreover, when both cxp and cxq do not conform 
to Case 1, or Case 2, or Case 3 as mentioned above, the two 
objects do not need to be distinguished, and the entry cor-
responding to the two objects must be an empty set.

Based on the above discussion, we can propose the fol-
lowing discernibility matrix in the context of complement 
entropy.

Definition 8 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) , a discernibility 
matrix in the context of complement entropy is defined as 
�

C
CDT

= {cmC
pq
} , where

To demonstrate that the same reducts as those obtained 
by the discernibility matrix in Definition 3 can be captured 
by our proposed discernibility matrix in the context of com-
plement entropy (shown in Definition 8), we will need to 
investigate the relationship between the two discernibility 
functions based on these two discernibility matrices, which 
provides the theoretical foundation for getting the same 
reducts from a compacted decision table as those from its 
original version. The following theorem is applied for the 
investigation.

Theorem 3 Given a decision table DT = (U,C ∪ {d}) and 
its compacted version CDT = (CU,C ∪ CD) , the relation-
ship between discernibility matrices generated from DT and 
CDT is

Proof Suppose that U = {x1, x2,… , xn} and CU = {cx1,

cx2,… , cx
m
} . From the definition of a compacted decision 

table, without loss of generality, we further assume that 
U∕C = {X1,X2,… ,Xm} , and fDT (xpi ,C) = fCDT (cxp,C) for 
∀xpi ∈ Xp.

(11)
cmC

pq
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)},

{dk�fCDT (cxp, cdk) ≠ 0} ≠ {cdk�fCDT (cxq, cdk) ≠ 0} and

cxp, cxq ∈ CU1;

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)}, cxp ∈ CU1, cxq ∈ CU2;

{c ∈ C ∶ fCDT (cxp, c) ≠ fCDT (cxq, c)}, cxp, cxq ∈ CU2;

�, otherwise;

 (�C
DT
) =  (�C

CDT
).

Fig. 1  The relationships among DT, DT ′ , CDT, CDT ′ and DT ′
C

1. cxp, cxq ∈ CU  ,  {cdk ∈ CD|fCDT (cxp, cdk) ≠ 0} ≠{cd
k
∈

CD|fCDT (cxq, cdk) ≠ 0} and cxp, cxq ∈ CU1.

  In this case, it is easy to obtain cx
p
, cx

q
∈ CU1 ⇔ x

p
i
,

x
q
j
∈ U1, (xp

i
∈ X

p
, x

q
j
∈ X

q
)  ,  a n d  {cd

k
∈ CD

|fCDT (cxp, cdk) ≠ 0} ≠ {dk ∈ CD|fCDT (cxq, cdk) ≠ 0} ⇔

fDT (xpi , d) ≠ fDT (xqj , d). Therefore, we have mC
piqj

= cmC
pq

 

for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

2. cxp ∈ CU1, cxq ∈ CU2

  In this case, it is easy to obtain cxp ∈ CU1 ⇔ xi ∈ U1 
for ∀xi ∈ Xp , and cxq ∈ CU2 ⇔ xq ∈ U2 for ∀xj ∈ Xq. 
Therefore we have mC

piqj
= cmC

pq
 for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

3. cxp, cxq ∈ CU2

  In this case, it is easy to obtaincx
p
, cx

q
∈ CU2 ⇔

cx
p
, x

q
∈ U2 for ∀xi ∈ Xp. Therefore we have mC

piqj
= cmC

pq
 

for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

4. Otherwise
  In this case, it is easy to observe that mC

piqj
= cmC

pq
= � 

for ∀xpi ∈ Xp , ∀xqj ∈ Xq.

  Furthermore, because of 
⋁
(mC

piqj
) = cmC

pq
 , we have

  □

(12)

 (�C
DT
) =

⋀�⋁
(mC

piqj
) ∣ ∀pi, qj ∈ U,mC

piqj
≠ �

�

=
⋀�⋁

(cmC
pq
) ∣ ∀cxp, cxq ∈ CU, cmC

pq
≠ �

�

=  (�C
CDT

).
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This theorem indicates that the discernibility function of 
a decision table is identical with that of its compacted ver-
sion. Because of its discernibility function, all reducts of a 
decision table can be captured, and the reducts derived from 
a compacted decision table are the same as those derived 
from its original version.

4  Relationship between the reducts 
of an updated compacted decision table 
(CDT′ ) and its corresponding updated 
decision table (DT′)

After adding a new object into a compacted decision table, 
are the reducts acquired from the updated compacted table 
the same as those derived from the updated original table 
or not? If so, we can compute reducts of an updated deci-
sion table by means of its corresponding updated com-
pacted decision table. And how to compute the new reducts 
of the updated compacted decision table is also becoming 
an important question. To answer these questions, we first 
investigate changes in a compacted decision table after add-
ing a new object into it.

4.1  An updated compacted decision table

In this section, we investigate what an updated compacted 
decision table (CDT′ ) is like. In other words, we investigate 
the new compacted decision table generated by adding a 
new object into a compacted decision table (CDT), which 
provides the necessary context for the next section.

For facilitating the following analysis, we assume 
that CDT = (CU,C ∪ CD) is a compacted decision 
table, where CU = {cx1, cx2, ..., cxu} ( u = |U∕C| ) and 
CD = {cd1, cd2, ..., cds} (  s = |U∕{d}| ) .  Suppose that 
CDT � = (CU�,C ∪ CD�) is an updated compacted decision 
table generated by adding a new object xnew into CDT, where 
CU� = {cx�

1
, cx�

2
, ..., cx�

v
} , and CD� = {cd�

1
, cd�

2
, ..., cd�

t
} . For 

the new object xnew , we use f (xnew,C) to indicate the values 

Table 1  Data sets used in 
experiments

ID Datasets Abbreviation Samples Attributes Consistent Type

1 Monk’s problem Monk 1711 7 No Categorical
2 Wine Wine 178 13 Yes Numerical
3 Breast Cancer Wisconsin(Original) BCW 683 9 Yes Categorical
4 Banknote authentication BA 1372 4 No Numerical
5 Blood Transfusion Service Center BTSC 748 4 No Numerical
6 Image segmentation IS 2310 18 No Numerical
7 Page blocks classification PBC 5473 10 No Numerical
8 Seismic-bumps SB 2584 11 No Numerical
9 Wine quality WQ 4898 11 No Numerical

of xnew on the condition attribute set C and f (xnew, d) to indi-
cate the decision value of xnew.

From Definition 4 and the relationships among a new 
object and the objects in a compacted decision table, we 
investigate the incremental change mechanism of a com-
pacted decision table in the following four cases:

1. ∃cxp ∈ CU  such that f (xnew,C) = fCDT (cxp,C) , and 
f (xnew, d) ∈ Vd.

  In this case, because ∃cxp ∈ CU  such that 
f (xnew,C) = fCDT (cxp,C) and f (xnew, d) ∈ Vd , it can be 
observed that |CU�| = |CU| = u and |CD�| = |CD| = s . 
Without loss of generality, we can assume that 
fCDT � (cx�

i
,C) = fCDT (cxi,C) ( 1 ≤ i ≤ u ), and f (x

new
, d) =

v
d
r
 ( vdr ∈ Vd ). Therefore, we have fCDT � (cx�p, cd

�
r
) =

fCDT (cxp, cdr) + 1 , fCDT � (cx�p, cd
�
j
) = fCDT (cxp, cdj)(1 ≤

j ≤ s, j ≠ r ), and fCDT � (cx�
i
, cd�

j
) = fCDT (cxi, cdj) ( 1 ≤ i ≤ u , 

i ≠ p , 1 ≤ j ≤ s).
2. ∃cxp ∈ CU  such that f (xnew,C) = fCDT (cxp,C) , and 

f (xnew, d) ∉ Vd.
  In this case, because ∃cxp ∈ CU  such that 

f (xnew,C) = fCDT (cxp,C) and f (xnew, d) ∉ Vd , it can be 
observed that |CU�| = |CU| = u and |CD�| = |CD| + 1

= s + 1 . Without loss of generality, we can assume that 
fCDT � (cx�

i
,C) = fCDT (cxi,C) ( 1 ≤ i ≤ u ) and f

CDT � (cx�
i
,

cd�
j
) = fCDT (cxi, cdj) ( 1 ≤ i ≤ u , 1 ≤ j ≤ s ), fCDT � (cx�p,

cd
�
s+1

) = 1 , and fCDT � (cx�
i
, cd�

s+1
) = 0 ( 1 ≤ i ≤ u, i ≠ p).

3. ∀cx
p
∈ CU , f (xnew,C) ≠ fCDT (cxp,C) , and f (x

new
, d) ∈ V

d
.

  In this case, because ∀cxp ∈ CU , f (x
new

,C) ≠ f
CDT

(cx
p
,C) and f (xnew, d) ∈ Vd , it can be observed that 

|CU�| = |CU| + 1 = u + 1 and |CD�| = |CD| = s . With-
out loss of generality, we can assume that f

CDT ′

(cx�
i
,C) = f

CDT
(cx

i
,C) ( 1 ≤ i ≤ u ),  f

CDT � (cx�
u+1

,C) =

f (x
new

,C) , and f (xnew, d) = vdr (vdr ∈ Vd) . We therefore 
have fCDT � (cx�

i
, cd�

j
) = fCDT (cxi, cdj) ( 1 ≤ i ≤ u , 1 ≤ j ≤ s ), 

and fCDT � (cx�
u+1

, cd�
r
) = 1 and fCDT � (cx�

u+1
, cd�

j
) = 0 

( 1 ≤ j ≤ u, j ≠ r).
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4. ∀cx
p
∈ CU , f (xnew,C) ≠ fCDT (cxp,C) , and f (x

new
, d)∉ V

d
.

  In this case, because of ∀cxp ∈ CU  , f (x
new

,C) ≠

fCDT (cxp,C) and f (xnew, d) ∉ Vd , it can be observed that 
|CU�| = |CU| + 1 = u + 1 and |CD�| = |CD| + 1 = s + 1 . 
Without loss of generality, assume that f

CDT � (cx�
i
,C) =

f
CDT

(cx
i
,C) ( 1 ≤ i ≤ u ), fCDT � (cx�

u+1
,C) = f (xnew,C) . 

Moreover, we have fCDT � (cx�
i
, cd�

j
) = fCDT (cxi, cdj) 

( 1 ≤ i ≤ u , 1 ≤ j ≤ s ), fCDT � (cx�
u+1

, cd�
s+1

) = 1 , and 
fCDT � (cx�

u+1
, cd�

j
) = 0 ( 1 ≤ j ≤ s ), and fCDT � (cx�

i
, cd�

s+1
) = 0 

( 1 ≤ i ≤ u).

The analysis mentioned above illustrates all the possible 
changes to a compacted decision table after a new object 
is added into it, which facilitates our investigation of the 
reducts obtained from an updated decision table after a new 
object is added into it.

4.2  Relationship between CDT′ and DT′C

In this section, we examine the relationship between reducts 
obtained from an updated compacted decision table (CDT′ ) 
and its corresponding updated decision table (DT′ ), which 
can demonstrate the effectiveness of the proposed discern-
ibility matrices. In Sect. 3, we demonstrated that the reducts 
acquired from a compacted decision table (CDT) are identi-
cal to those acquired from its original version (DT). We can 
leverage this conclusion if an updated compacted decision 
table (CDT′ ) and a compacted updated decision table (DT′ C) 
are proven to be the same as each other. Therefore, we first 
analyze the relationship between an updated compacted deci-
sion table (CDT′ ) and a compacted updated decision table 
(DT’C) (Shown in Fig. 1) using the following theorem.

Theorem 4 Given a decision table DT = {U,C ∪ {d}} and 
its compacted version CDT = {CU,C ∪ CD} , then DT ′C is 
identical to CDT ′ , where DT ′C is a compacted table con-
structed by compacting DT ′ , and DT ′ and CDT ′ are the deci-
sion table and the compacted decision table generated by 
adding the object xnew into DT and CDT, respectively.

Table 2  The number of objects 
in each data set

Data sets BDS X1 X2 X3 X4 X5

Monk 1031 136 272 408 544 680
Wine 108 14 28 42 56 70
BCW 413 54 108 162 216 270
BA 827 109 218 327 436 545
BTSC 453 59 118 177 236 295
IS 1390 184 368 552 736 920
PBC 3288 437 874 1311 1748 2185
SB 1554 206 412 618 824 1030
WQ 2943 391 782 1173 1564 1955

Proof Suppose that U∕C = ∪u
i=1

Xi , Xi = ∪1≤j≤|Xi|{xij} , 

U∕{d} = ∪s
i=1

Yi . There are two cases that should be consid-
ered as follows:

(1) ∃xpw ∈ U such that f (xnew,C) = fDT (xpw ,C).
We suppose that U�∕C = ∪u

i=1
X�
i
 , X�

i
= ∪1≤j≤|X�

i
|{x�ij} , 

fDT � (x�
ij
,C) = fDT (xij ,C) (  i ≠ p, 1 ≤ j ≤ |X�

i
| = |Xi| )  and 

fDT � (x�pj
,C) = fDT (xpw ,C) = f (xnew,C) ( 1 ≤ j ≤ |X′

p
| , X�

p
=

X
p
∪ {x

new
} ). From Definition 6, we can obtain a com-

pacted updated decision table DT �C = {U�C,C,D�C} by 
c o m p a c t i n g  DT ′  a n d  fDT �C(x

�ci,C) = fDT � (x�
ij
,C) =

fDT (xij ,C) = fCDT (cxi,C)(1 ≤ i ≤ u, 1 ≤ j ≤ |Xi|) ,  where 

x�c ∈ U�C . From the result of case (1) in Sect. 4.1, we 
have fDT �C(x

�ci,C) = fCDT � (cx�
i
,C) . According to the rela-

tionship between f (xnew, d) and Vd , the following analysis 
is divided into two subcases:

• f (xnew, d) ∈ Vd . In this case, we suppose f (xnew, d) = vdr , 
Y �
r
= Yr ∪ {xnew} . By Definition 6, it is easy to obtain  

fDT �C(cx
�
p
, d�cr) = |X�

p
∩ Y �

r
| = |(Xp ∩ Yr) ∪ xnew| = |X

p
∩ Y

r
|

+1 = fCDT (cxp, cdr) + 1 ,  fDT �C(cx
�
p
, d�cj) = |X�

p
∩ Y �

j
| =

fCDT (cxp, cdj)|X�
p
∩ Y �

j
| = fCDT (cxp, cdj)(1 ≤ j ≤ s, j ≠ r  ) , 

and fDT �C(cx
�
i
, d�cj) = |X�

i
∩ Y �

j
| = fCDT (cxi, cdj) ( 1 ≤ i ≤ u , 

i ≠ p , 1 ≤ j ≤ s ). By the result of case (1) in Sect. 4.1, we 
have fDT �C(cx

�
i
, d�cj) = fCDT � (cxi, cd

�
j
) ( 1 ≤ i ≤ u , 1 ≤ j ≤ s).

• f (xnew, d) ∉ Vd  .  In  t h i s  case ,  we  suppose 
Y �
i
= Yi(1 ≤ i ≤ s) , Y �

s+1
= {xnew} . By Definition 6, it is 

easy to see that fDT �C(x
�cp, dc

�
s+1

) = |X�
p
∩ Y �

s+1
| = 1 , 

fDT �C(x
�cp, d

�cj) = |X�
p
∩ Y �

j
| = fCDT (cxp, cdj)(1 ≤ j ≤ s ), 

fDT �C(x
�ci, d

�cj) = |X�
i
∩ Y �

j
| = fCDT (cxi, cdj) ( 1 ≤ i ≤ u , 

i ≠ p , 1 ≤ j ≤ s ), and fDT �C(x
�ci, d

�cs+1) = 0 ( 1 ≤ i ≤ u , 
i ≠ p ). By the result of case (1) in Sect. 4.1, we have 
fDT �C(x

�ci, d
�cj) = fCDT � (cx�

i
, cd�

j
) ( 1 ≤ i ≤ u , 1 ≤ j ≤ s + 1).

(2) ∀xij ∈ U , f (xnew,C) ≠ fDT (xij ,C)
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We assume that U�∕C = ∪u+1
i=1

X�
i
 , X�

i
= ∪1≤j≤|X�

i
|{x�ij} , 

fDT � (x�
ij
,C) = fDT (xij ,C) ( 1 ≤ i ≤ u, 1 ≤ j ≤ |X�

i
| = |Xi| ) and 

fDT � (x�(u+1)j
,C) = f (xnew,C) ( j = |X�

u+1
| = 1 ). By Definition 

6 ,  we have fDT �C(x
�ci,C) = fDT � (x�

ij
,C) = fDT (xij ,C) =

fCDT (cxi,C)(1 ≤ i ≤ u, 1 ≤ j ≤ |Xi|) and fDT �C(x
�c(u+1)j ,C)

= f (x
new

,C) . By the result of case (1) in Sect. 4.1, we have 
fDT �C(x

�ci,C) = fCDT � (cx�
i
,C) . According to the relationship 

between f (xnew, d) and fDT (xpw , d) , the following analysis is 
divided into two subcases:

(a) Monk (b) Wine (c) BCW

(d) BA (e) BTSC (f) IS

(g) PBC (h) SB (i) WQ

Fig. 2  A comparison of the time taken by DMIAR-DT-P and DMIAR-CDT-P a Monk b Wine c BCW d BA d BTSC e IS f PBC g SB h WQ

• f (xnew, d) ∈ Vd . Similar to Case (1), based on the results 
of Case (3) in Sect.  4.1, we have fDT �C(x

�ci, d
�cj) =

fCDT � (cx�
i
, cd�

j
) ( 1 ≤ i ≤ u + 1 , 1 ≤ j ≤ s).

• f (xnew, d) ∉ Vd . Similar to case (1), based on the results 
of Case (4) in Sect.  4.1, we have fDT �C(x

�ci, d
�cj) =

fCDT � (cx�
i
, cd�

j
) ( 1 ≤ i ≤ u + 1 , 1 ≤ j ≤ s + 1).

  □

From Theorem 4, we can observe that an updated com-
pacted decision table (CDT′ ) is identical to a compacted 
updated decision table (DT′C), it is easy to be seen in Fig. 1.
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4.3  Relationship between reducts obtained 
by a CDT′ and its corresponding DT′

According to Theorem 4, it is easy to infer the following 
two corollaries to indicate the relationship between reducts 
obtained by a CDT′ and its corresponding DT′.

Corollary 1 Given a decision table DT = {U,C ∪ {d}} 
and its compacted version CDT = {CU,C ∪ CD} , if DT ′ is 
a decision table generated by adding a new object xnew into 
DT, and CDT ′ is a compacted decision table generated by 
adding the object xnew into CDT, then

(a) Monk (b) Wine (c) BCW

(d) BA (e) BTSC (f) IS

(g) PBC (h) SB (i) WQ

Fig. 3  A comparison of the time taken by DMIAR-DT-S and DMIAR-CDT-S a Monk b Wine c BCW d BA e BTSC f IS g PBC h SB i WQ

Proof From the results of Theorem 4, it can be observed that 
DT ′C is the same as CDT ′ . Furthermore, we can conclude 
 (�P

DT � ) =  (�P
CDT � ) using Theorem 1.   □

Corollary 1 demonstrates that when a new object is added 
into a decision table and its compacted version, the discern-
ibility function in the context of the positive region derived 
from an updated decision table is identical to that derived 
from the updated compacted table, which indicates that 
one can obtain the same reducts through the updated com-
pacted version of a decision table as through the updated 

 (�P
DT � ) =  (�P

CDT � ).
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decision table itself. We can also prove the equality of the 
discernibility functions of an updated decision table and an 
updated compacted decision table in the context of Shannon 
entropy and complement entropy based on the following two 
corollaries.

Corollary 2 Given a decision table DT = {U,C ∪ {d}} 
and its compacted version CDT = {CU,C ∪ CD} , if DT ′ is 
a decision table generated by adding a new object xnew into 
DT, and CDT ′ is a compacted decision table generated by 
adding the object xnew into CDT, then

 (�S
DT � ) =  (�S

CDT � ),  (�C
DT � ) =  (�C

CDT � ).

(a) Monk (b) Wine (c) BCW

(d) BA (e) BTSC (f) IS

(g) PBC (h) SB (i) WQ

Fig. 4  A comparison of the time taken DMIAR-DT-C and DMIAR-CDT-C a Monk b Wine c BCW d BA e BTSC f IS g PBC h SB i WQ

The proof of this corollary is similar to that of Corollary 1 
and so the proof has been omitted.

5  Algorithms and experimental analysis

Several experiments were performed to demonstrate the 
effectiveness of our proposed algorithm for dynamic data 
sets with dynamic object sets. In the experiments, nine data 
sets downloaded from the UCI Machine Learning Database 
Repository and a synthetic data set were chosen as bench-
mark data sets for performance tests. To ensure that the 
data set is suitable for our algorithms, which aim to analyze 
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categorical data sets, we discretize each numerical attribute 
into three equilength intervals and assign each interval a 
symbol to ensure that the attributes of the numerical data-
sets in Table 1 hold three categorical values. Experimental 
results were then collected on a personal computer equipped 
with an Intel Core i7 processor and 8 GB memory, and all 
code was programmed in C#.

Table 3  Comparison of 
non-empty entries in the 
discernibility matrix in the 
context of positive region

Data set Algorithm BDS + X1 BDS + X2 BDS + X3 BDS + X4 BDS + X5

Monk DMIAR-DT-P 154741 169841 168791 172255 158448
DMIAR-CDT-P 55851 52098 49411 46791 41944

Wine DMIAR-DT-P 4826 6008 7324 8756 10299
DMIAR-CDT-P 2499 2990 3624 4201 4715

BCW DMIAR-DT-P 51799 63832 76467 90744 104784
DMIAR-CDT-P 28704 33432 38430 44550 49629

BA DMIAR-DT-P 54514 66905 79289 95695 110483
DMIAR-CDT-P 330 331 331 331 349

BTSC DMIAR-DT-P 43 44 44 44 44
DMIAR-CDT-P 24 24 24 24 25

IS DMIAR-DT-P 597264 729082 853493 1024383 1211070
DMIAR-CDT-P 29827 32786 35180 38833 41229

PBC DMIAR-DT-P 11318 13970 16106 19062 21580
DMIAR-CDT-P 741 857 898 907 985

SB DMIAR-DT-P 1912 2130 2317 2539 2700
DMIAR-CDT-P 1293 1355 1386 1457 1491

WQ DMIAR-DT-P 26568 30083 35002 37354 38870
DMIAR-CDT-P 15126 17213 19685 21079 22388

Table 4  Comparison of 
non-empty entries in the 
discernibility matrix in the 
context of Shannon entropy

Data set Algorithm BDS + X1 BDS + X2 BDS + X3 BDS + X4 BDS + X5

Monk DMIAR-DT-S 178288 203596 209235 217706 214393
DMIAR-CDT-S 63393 65807 67778 69114 71246

Wine DMIAR-DT-S 4826 6008 7324 8756 10299
DMIAR-CDT-S 2499 6008 3624 4201 4715

BCW DMIAR-DT-S 51799 63832 76467 90744 104784
DMIAR-CDT-S 28704 33432 38430 44550 49629

BA DMIAR-DT-S 54469 66860 79244 95650 110438
DMIAR-CDT-S 314 314 314 314 332

BTSC DMIAR-DT-S 23 23 23 23 23
DMIAR-CDT-S 15 15 15 15 15

IS DMIAR-DT-S 596991 728785 853145 1024008 1210693
DMIAR-CDT-S 29770 32699 35042 38668 41063

PBC DMIAR-DT-S 11213 13865 16001 18942 21460
DMIAR-CDT-S 716 831 871 865 943

SB DMIAR-DT-S 1686 1903 2089 2287 2447
DMIAR-CDT-S 1226 1286 1316 1362 1393

WQ DMIAR-DT-S 20869 23592 28015 29506 30372
DMIAR-CDT-S 14232 15534 17532 18070 18735

5.1  Incremental attribute reduction algorithms

To computing all reducts of a decision table, we design an 
incremental attribute reduction algorithm based on discern-
ibility matrices in Wei et al. [42]. 
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Fig. 5  Comparison of elapsed times on a synthetic data set

Table 5  Comparison of 
non-empty entries in the 
discernibility matrix in the 
context of complement entropy

Data set Algorithm BDS + X1 BDS + X2 BDS + X3 BDS + X4 BDS + X5

Monk DMIAR-DT-C 182236 205086 209261 21770 214393
DMIAR-CDT-C 82680 85065 86955 88260 90372

Wine DMIAR-DT-C 4826 6008 7324 8756 10299
DMIAR-CDT-C 2499 2990 3624 4201 4715

BCW DMIAR-DT-C 51799 63832 76467 90744 104784
DMIAR-CDT-C 28704 33432 38430 44550 49629

BA DMIAR-DT-C 54514 66905 79289 95695 110483
DMIAR-CDT-C 359 359 359 359 377

BTSC DMIAR-DT-C 44 44 44 44 44
DMIAR-CDT-C 36 36 36 36 36

IS DMIAR-DT-C 597267 729085 853496 1024386 1211071
DMIAR-CDT-C 30046 32999 35393 39046 41441

PBC DMIAR-DT-C 11318 13970 16106 19062 21580
DMIAR-CDT-C 821 936 976 985 1063

SB DMIAR-DT-C 1917 2134 2320 2540 2700
DMIAR-CDT-C 1457 1517 1547 1615 1646

WQ DMIAR-DT-C 26647 30147 35036 37381 38887
DMIAR-CDT-C 20010 22089 24553 25945 27250

Table 6  Comparison of reducts 
for BDS+X5 acquired by 
DMIAR-DT and DMIAR-CDT

Data sets DMIAR-DT-P DMIAR-
CDT-P

DMIAR-DT-S DMIAR-
CDT-S

DMIAR-DT-C DMIAR-
CDT-C

Monk ( BDS + X5) 1 1 1 1 1 1
Wine ( BDS + X5) 64 64 64 64 64 64
BCW ( BDS + X5) 20 20 20 20 20 20
BA ( BDS + X5) 1 1 1 1 1 1
BTSC ( BDS + X5) 2 2 2 2 2 2
IS ( BDS + X5) 1 1 1 1 1 1
PBC ( BDS + X5) 1 1 1 1 1 1
SB ( BDS + X5) 2 2 2 2 2 2
WQ ( BDS + X5) 1 1 1 1 1 1
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where ��
n+1

 and ��
pw

 are two n-dimension row vectors, �pw
�

 

and �n+1
�

 are two n-dimension column vectors, � ∈ {P, S,C} . 
For convenience, we denote DMIAR-DT-P, DMIAR-DT-S, 
and DMIAR-DT-C as different versions of algorithm 

is O(2|C|) . Therefore, Algorithm 1’s time complexity is 
O
(|U|2 × |C| + 2|C|

)
.

To accelerate the incremental attribute reduction algo-
rithm, an incremental attribute reduction algorithm are 
designed based on a compacted decision table. A detailed 
description of the algorithm is given below. 

where ���
n+1

 and ���
p
 are two n-dimension row vec-

tors, ��p

�
 and ��n+1

�
 are two n-dimension column vectors, 

� = {P, S,C} . For convenience, we denote DMIAR-CDT-P, 
DMIAR-CDT-S, and DMIAR-CDT-C as different versions 
of algorithm DMIAR-CDT based on the positive region, 
Shannon entropy, and complement entropy, respectively.

Time complexity of Algorithm 2 is as follows: When a 
new object xnew is added to a decision table CDT, the number 
of possible items that vary with the change in a discernibility 

DMIAR-DT based on the positive region, Shannon entropy, 
and complement entropy, respectively.

Time complexity of Algorithm 1 is as follows: When a 
new object xnew is added to a decision table DT, the number 
of possible items that vary with the change in a discern-
ibility matrix is 2(|[xp]C| + 1) × |U| × |C| + 2|U| × |C| . 
Thus, the complexity of updating a discernibility matrix 
is O

(|U|2 × |C|) . It is common to know that the complex-
ity of obtaining all reducts from a discernibility matrix 



2371International Journal of Machine Learning and Cybernetics (2019) 10:2355–2373 

1 3

existence of similar relationships between the numbers of 
non-empty entries in the discernibility matrices of DMIAR-
CDT-S and of DMIAR-DT-S and between the numbers of 
non-empty entries in the discernibility matrices of DMIAR-
CDT-C and of DMIAR-DT-C. Moreover, as we all know, all 
the reducts of a decision table or of a compacted decision 
table can be acquired through its discernibility matrix [42]. 
Therefore, it is obvious that the smaller the number of non-
empty set entries in a discernibility matrix generated by an 
incremental attribute reduction algorithm, the more efficient 
is the algorithm.

From the experimental analysis mentioned above, we 
learn that the non-empty entries in a discernibility matrix 
seem to be a key factor for a discernibility matrix based 
attribute reduction algorithm. In fact, for a compacted table, 
the number of non-empty entries is closely related to the 
compaction ratio (the ratio of the number of objects in a 
compacted decision table to the number of objects in its 
original version). To better illustrate that the performance 
of our proposed algorithm evolves with the compaction 
ratio, we conducted experiments on a synthetic dataset. For 
the synthetic dataset, the basic data set comprised of 200 
objects, and the additional first to fifth parts include 200, 
400, 600, 800, and 1000 objects, respectively. After each 
of these parts was added into the basic dataset of a com-
pacted decision table and its original decision table, their 
corresponding compaction ratios were 80% , 75% , 70% , 
65% and 60% , respectively. From Fig. 5, we can observe 
that the smaller the compaction ratio, the more significant 
advantages our proposed incremental attribute reduction 
algorithms (DMIAR-CDT-P, DMIAR-CDT-S and DMIAR-
CDT-C) possess.

5.3  Effectiveness analysis

To verify the effectiveness of our proposed algorithms, we 
first conducted experiments to compare the reducts obtained 
by DMIAR-DT-� and DMIAR-CDT-� on all the data sets 
in Table 1. Table 6 shows the number of attributes in each 
reduct derived from each data set through DMIAR-DT-P and 
DMIAR-CDT-P, DMIAR-DT-S and DMIAR-CDT-S, and 
DMIAR-DT-C and DMIAR-CDT-C. It can be observed from 
Table 6 that for each data set in Table 1, the reducts acquired 
through DMIAR-CDT-� are identical to those acquired 
through DMIAR-DT-� , which is consistent with the theoreti-
cal results in Sect. 4. Instead of listing each reduct acquired 
from each data set in Table 1, only the number of attributes 
in each reduct derived from each data set is shown in Table 6 
because of the word count limitations of this paper. In fact, 
we have compared all reducts derived from each data set and 
its compacted version in this experiment and determined that 
the reducts are identical to each other.

matrix is 2|CU| × |C| + 2|CU| × |C| . Thus, the complex-
ity of updating a discernibility matrix is O(|CU| × |C|) . It 
is well known that the complexity of obtaining all reducts 
by using a discernibility matrix is O(2|C|) . Therefore, Algo-
rithm 2’s time complexity is O

(|CU| × |C| + 2|C|
)
.

Note that, according to the results of Corollaries 1–2, it 
is easy to know the same reducts as those of an updated 
decision table can be captured by its compacted version. 
Thus, we can obtain the same reducts by Algorithm 1 and 
by Algorithm 2.

5.2  Efficiency analysis

To illustrate the efficiency of the algorithms based on com-
pacted decision tables, for each data set in Table 1, we ran-
domly chose 60% of the objects in the data set as the basic 
data set (BDS), and we divided other objects into five equal 
parts, denoted by xi (i ∈ {1, 2,… , 5}) . Let Xi = ∪i

j=1
xi rep-

resent the object sets added into the basic data set. The con-
crete partition of each data set is shown in Table 2.

When each object in Xi was added to the basic data set, 
the two types of incremental reduction algorithms (DMIAR-
DT-� and DMIAR-CDT-� ) were employed to compute all 
the reducts of a decision table and a compacted decision 
table, respectively. The runtimes of the algorithms are used 
to evaluate their performance from the perspective of effi-
ciency, and Figs. 2, 3, 4 illustrate these runtimes of DMIAR-
DT-P and DMIAR-CDT-P, DMIAR-DT-S and DMIAR-
CDT-S, and DMIAR-DT-C and DMIAR-CDT-C. From 
Fig. 2, we can observe that the runtime of DMIAR-CDT-P 
is much smaller than that of DMIAR-DT-P on all the UCI 
data sets in Table 1. The experimental results illustrate that 
our proposed algorithm DMIAR-CDT-P is more efficient 
than DMIAR-DT-P. Figures 3 and 4 demonstrate similar 
results to those in Fig. 2 and indicate that DMIAR-CDT-
S and DMIAR-CDT-C are also faster than DMIAR-DT-S 
and DMIAR-DT-C, respectively. It is worth noting that the 
performance of these proposed algorithms improves as the 
number of added objects increases. In other words, the larger 
the new data set that is input into the basic data set, the more 
efficient the algorithms DMIAR-CDT-P, DMIAR-CDT-S, 
and DMIAR-CDT-C are.

However, it can be observed that the advantages of 
DMIAR-CDT over DMIAR-DT are insignificant on the data 
set Harberman’s Survival (HS), which raises the question of 
how can these updated reducts be computed more quickly by 
DMIAR-CDT-P than DMIAR-DT-P. To answer this ques-
tion, Table 3 is employed, from which we can determine 
that for each dataset in Table 1, the number of non-empty 
set entries in the discernibility matrix generated by Algo-
rithm DMIAR-CDT-P is much smaller than those generated 
by Algorithm DMIAR-DT-P. Tables 4 and 5 illustrate the 
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6  Conclusion

In this paper, to mitigate the problems associated with the 
efficiency of the incremental attribute reduction algorithms 
based on the discernibility matrices of a decision table, we 
introduced three new types of discernibility matrices for a 
compacted decision table. We theoretically demonstrated 
that all the reducts obtained by the algorithms based on these 
proposed discernibility matrices of a compacted decision 
table are identical to those based on its original version. 
Extensive experiments were then conducted to illustrate 
that the algorithms based on a compacted decision table are 
much more efficient than those based on its original version 
while the same reducts can be captured by these two kinds 
of incremental attribute reduction algorithms. Experiments 
were also performed to reveal the real reason that enables 
the proposed algorithms to much more efficiently capture all 
the reducts of a dynamic data set. In the future, it would be 
promising to investigate the incremental attribute reduction 
algorithms for some complex decision information system, 
such as multi-source information systems [47] and multi-
scale information systems [44].
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