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Abstract
Graph-based semi-supervised learning (GSSL) is an important paradigm among semi-
supervised learning approaches and includes the two processes of graph construction and 
label inference. In most traditional GSSL methods, the two processes are completed inde-
pendently. Once the graph is constructed, the result of label inference cannot be changed. 
Therefore, the quality of the graph directly determines the GSSL’s performance. Most 
traditional graph construction methods make certain assumptions about the data distri-
bution, resulting in the quality of the graph heavily depends on the correctness of these 
assumptions. Therefore, it is difficult to handle complex and various data distribution for 
traditional graph construction methods. To overcome such issues, this paper proposes a 
framework named Graph-based Semi-supervised Learning via Improving the Quality of 
the Graph Dynamically. In it, the graph construction based on the weighted fusion of mul-
tiple clustering results and the label inference are integrated into a unified framework to 
achieve their mutual guidance and dynamic improvement. Moreover, the proposed frame-
work is a general framework, and most existing GSSL methods can be embedded into it 
so as to improve their performance. Finally, the working mechanism, the effectiveness 
in improving the performance of GSSL methods and the advantage compared with other 
GSSL methods based on dynamic graph construction methods of the proposal are verified 
through systematic experiments.
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1  Introduction

As the branch that best reflects the intelligence in the field of artificial intelligence, machine 
learning has attracted considerable attention in the past few decades (Michalski and Ander-
son 1984). Machine learning has achieved a huge success in a variety of tasks, especially in 
supervised learning tasks such as classification and regression. Most successful supervised 
learning, such as supervised deep learning (Lecun et al. 2015), requires sufficient labeled 
samples.

However. In many practical tasks, it is hard to obtain sufficient labeled samples because 
the labeling process is too costly, while a large number of unlabeled samples can be eas-
ily obtained. Although these unlabeled samples are unable to provide clear supervision 
information, they contain important information about the data distribution. Therefore, the 
unlabeled samples are helpful to improve the performance of the learner. It is the motiva-
tion and the ultimate goal of semi-supervised learning to enhance the generalization abil-
ity of learners by using a large number of inexpensive unlabeled samples. For this reason, 
semi-supervised learning has received much attention in the past few decades (Chapelle 
et al. 2006; Zhu and Goldberg 2009; Triguero et al. 2015; Van Engelen and Hoos 2020). 
Various types of semi-supervised learning methods have been proposed, forming four 
important semi-supervised learning paradigms: the generative semi-supervised learning 
method (Shahshahani and Landgrebe 1994; Cozman and Cohen 2002), the co-training 
style semi-supervised learning method (or the disagreement-based semi-supervised learn-
ing method) (Blum and Mitchell 1998; Wang and Zhou 2010), the semi-supervised SVM 
method (Joachims 1999; Chapelle et al. 2008) and the graph-based semi-supervised learn-
ing method (Zhu et al. 2003; Zhou et al. 2003). Meanwhile, semi-supervised learning has 
also been extensively studied in other fields such as regression (Zhou and Li 2005), cluster-
ing (Wagstaff et al. 2001; Basu et al. 2002; Zeng and Cheung 2012), dimensionality reduc-
tion (Zhang et al. 2007) and feature selection (Sheikhpour et al. 2017; Sechidis and Brown 
2018), etc.

In recent years, deep learning (Lecun et al. 2015) has also made great progress in the 
semi-supervised learning field, just as it does in the supervised learning field. On the one 
hand, the neural network method has been applied to the three semi-supervised learning 
paradigms: the generative method (Kingma et al. 2014; Dai et al. 2017; Li et al. 2017), the 
co-training style method (Chen et al. 2018) and the graph-based method (Kipf and Welling 
2017; Li et al. 2018; Jiang et al. 2019). On the other hand, the methodology of semi-super-
vised learning, using unlabeled samples to enhance the generalization performance of the 
learner, has also been applied to deep learning to train the deep neural networks (Li et al. 
2018; Weston et al. 2008; Lee 2013) or design new neural networks (Rasmus et al. 2015; 
Park et al. 2018; Berthelot et al. 2019). For more content, we recommend readers with the 
recent survey article (Van Engelen and Hoos 2020). These methods not only enrich the 
semi-supervised learning field but improve the performance of semi-supervised learning in 
the related tasks.

The graph-based semi-supervised learning (GSSL) is an important semi-supervised 
learning paradigm, and its core assumption is that similar samples on the graph should 
possess the same label. Due to the good flexibility (various relationships between sam-
ples can be captured by constructing a specific graph), the high interpretability and good 
generalization performance, many methods in this framework have been proposed and 
have some success (Zhu et al. 2003; Zhou et al. 2003; Belkin et al. 2006; Subramanya 
and Bilmes 2011). Moreover, it is still an active research area in semi-supervised 
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learning (Berton et al. 2017; Rustamov and Klosowski 2018). The study of GSSL meth-
ods can be divided into two aspects:

(1)	 Label inference

The label inference in GSSL mainly focuses on how to carry out label learning based 
on the supervised information provided by labeled samples and the similarities between 
samples provided by the graph. There are many successful methods, such as the tradi-
tional semi-supervised learning method using Gaussian fields and harmonic functions 
(Zhu et al. 2003), the graph label propagation method (Zhou et al. 2003), the LapSVM 
and LapRLS method based on manifold regularization (Belkin et al. 2006) and the class 
probability distribution measure propagation on the graph (Subramanya and Bilmes 
2011).

(2)	 Graph construction

For the GSSL method, it is critical and very difficult to construct high-quality graphs 
(De Sousa et al. 2013).

Recent research indicates that the key to the success of the GSSL is to construct 
high-quality graphs rather than design better label inference algorithms (Jebara et  al. 
2009; Berton and de Andrade Lopes 2014; Li et al. 2016). The GSSL’s core assumption 
is that similar samples on the graph should share the same class label. According to this 
criterion, if the similarities between samples on the graph are consistent with their true 
class labels, the class labels of the unlabeled samples can be correctly predicted through 
the smoothness constraint on the graph. Conversely, if the similarity on the graph are 
contrary to the true class labels of the samples, the unlabeled samples will be given the 
wrong class labels by the label inference. Related experimental results of such cases are 
found in the literature (Belkin and Niyogi 2008; Karlen et al. 2008). In these cases, the 
utilization of unlabeled samples will lead to a negative effect: deteriorating the perfor-
mance of the learner, an occurrence known as unsafe phenomena in semi-supervised 
learning (Li et al. 2016; Li and Zhou 2015; Wei et al. 2018). Therefore, the quality of 
the graph is extremely important for the performance of the GSSL method.

However, it is extremely difficult to construct a high-quality graph in GSSL because 
there are no operational metric for evaluating the quality of the graph. The quality of 
the graph can only be evaluated indirectly by the classification accuracy of the result 
of label inference on the graph, which is a post-mortem verification method and cannot 
provide any guidance to the graph construction. This is why the construction of a high-
quality graph is difficult in GSSL. Fortunately, this difficulty provides us with enlighten-
ment: why not let the graph construction and label inference guide each other to achieve 
their common improvement? Motivated by this insight. In this paper we integrate graph 
construction and label inference into an optimization model.

Before describing the details of the proposed method, we need to briefly review the 
existing graph construction methods in GSSL. The basic task of the graph construc-
tion is measuring the similarities between samples. According to how the similarities 
between samples are computed, the existing graph construction methods in GSSL can 
be roughly divided into two categories:
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	(2.1)	 Distance metric-based methods

The distance metric-based graph construction methods measure the similarities between 
samples by computing a certain distance between them, and intuitively, a pair of sample 
with a smaller distance should have a higher similarity. Among such methods, the most 
commonly used graph construction methods include the kNN graph and the �-ball neigh-
borhood graph (Zhu et al. 2003) based on the Euclidean distance. Meanwhile, the Gaussian 
kernel weighting method is also popular for graph construction in GSSL. In some cases on 
the kNN graph, the degree of the node varies greatly, which will deteriorate the quality of 
the graph. To solve this problem, the b-matching graph, in which the degree of each node 
is constrained to be b, was used in GSSL (Jebara et al. 2009).

Instead of using the Euclidean distance, the graph construction method based on the 
manifold hypothesis measure the similarities between samples through the geodesic dis-
tance. The key to this kind of method is how to compute the geodesic distances between 
samples accurately. The classic method uses the length of the shortest path on the Euclid-
ean distance-based kNN graph to approximate the geodesic distance (Tenenbaum et  al. 
2000). Nevertheless, this approximation method has the problems named “short circuit” 
and “open circuit” over manifolds due to the inherent defects of the kNN graph. For reliev-
ing the “short circuit” problem over manifolds, a method for detecting and correcting the 
weight of the “short circuit” edge was proposed in Ghazvininejad et  al. (2011) and was 
used to better compute the geodesic distances between samples.

In addition, some studies note that the valuable supervision information provided by 
the labeled samples should also be used for the graph construction in GSSL. In Berton 
and de Andrade Lopes (2014), the graph construction based on informativeness of labeled 
instance (GBILI) method was proposed. In which the distances between samples and the 
sum of distances between the sample and the all labeled samples are considered jointly to 
guide the edge generation on the graph. The GBILI method makes the labeled nodes tend 
to connect more edges so that the label information can spread to the unlabeled samples 
effectively. To further improve the robustness of the GBILI method, the literature (Berton 
et al. 2017) proposed a robust graph construction method considering the label information 
and proved that the graph constructed by this method is the optimal graph for modeling the 
smoothness hypothesis under certain conditions.

The basic principle of the distance metric-based graph construction methods is that a 
pair of sample with a smaller distance should have a higher similarity. In which the dis-
tance metric needs to be chosen in advance. If the distance metric is chosen inappropri-
ately, the corresponding graph will not correctly reflect the similarities between samples, 
resulting in performance deterioration of the subsequent GSSL. At the same time, the qual-
ity of the graph is also affected significantly by the choice of parameters (such as the num-
ber of neighbors and the distance threshold), which also affects the performance of the 
GSSL. Furthermore, once the distance metric and parameters are selected, the correspond-
ing graph will be fixed, thus it is unable to deal with various data distribution adaptively 
and poses difficulties in guaranteeing the performance of the GSSL.

	(2.2)	 Data representation-based methods

The data representation-based graph construction methods measure the similarities 
between samples by the representation coefficients between samples that are obtained 
by solving a certain data representation model. The literature (Wang and Zhang 2008) 
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reconstructed a sample using a convex combination of the sample’s k nearest neighbors, 
and designed the linear neighborhood propagation (LNP) algorithm to propagate the label 
on the graph. Inspired by the strong discriminating power of sparse representation (Wright 
et  al. 2009), the �1 graph (Yan and Wang 2009) was constructed by using the absolute 
value of linear representation coefficients learned by sparse representation to measure the 
similarities between samples. After that, the literature (Cheng et al. 2010) added a nonneg-
ative constraint on the sparse representation coefficients to better measure the similarity. In 
this literature, the representation coefficient matrix can be regarded as a graph for spectral 
clustering, subspace learning and GSSL. Since these above mentioned three methods all 
optimize each sample’s representation coefficients individually, the representation coeffi-
cient matrix cannot capture the global information of the data distribution.

Inspired by the low-rank representation of data (Liu et al. 2013), the literature (Zhuang 
et al. 2011) proposed a method that implements a sparse and low-rank representation learn-
ing simultaneously. In this method, the �1 norm and nuclear norm regularization term are 
both applied to the representation coefficient matrix of all samples to capture the local and 
global structure simultaneously. When the data representation coefficients are obtained, 
the absolute values of the representation coefficients are used to measure the similarities 
between samples. Similar to the distance metric-based graph construction methods, the 
supervision information is also applied in the data representation-based graph construc-
tion method. In literature (Zhuang et  al. 2017), semi-supervised low-rank representation 
(SSLRR) was proposed to construct a graph for GSSL. In which the representation coef-
ficients between two labeled samples with different class labels are constrained to 0.

The data representation-based methods can learn the adjacent structure and edge weight of 
the graph and have the robustness to the noise data. However, this kind of method will be unable 
to reveal the data distribution correctly when the data distribution does not satisfy the subspace 
hypothesis, resulting in the inability to guarantee the performance of the subsequent GSSL.

It can be seen from the above analysis that the distance metric-based and the data 
representation-based graph construction methods heavily depend on their corresponding 
assumptions. If the assumption is incorrect, the two kinds of methods mentioned above will 
be unable to correctly capture the similarity that is consistent with the data distribution, 
which could result in the deterioration of the performance of the subsequent GSSL. How-
ever, the data distribution is complex and varies from data to data in practice, so it is hard 
to measure the true similarities between samples adaptively by using a specific assumption. 
Thus, to build a high-quality graph, it is necessary to propose a graph construction method 
that can alleviate the issues caused by the complex and various data distribution and can 
discover the potential data distribution adaptively.

Considering the above requirements, in this paper, we turn to the domain of the cluster-
ing ensemble to find a solution. In the field of clustering, the clustering ensemble is a popu-
lar way to improve the quality and robustness of the final clustering results. By integrating 
multiple clustering results into a final clustering result, the clustering ensemble can obtain 
a stronger (Bai et al. 2018) or a more robust clustering result (Zhao et al. 2017). Among a 
large number of clustering ensemble methods, the similarity-based method, fusing many 
base clusterings to construct a sample similarity matrix (Fred and Jain 2005), is flexible 
and effective. The reason why this method is effective is that different types of base clus-
terings can capture different types of data distribution. Furthermore, by fusing multiple 
different clustering results, a robust similarity measure can be obtained for the subsequent 
clustering, which improves the quality and robustness of the final clustering result.

Inspired by this idea, we propose a graph construction method that measures the simi-
larities between samples by weighted fusion of multiple clustering results. First, different 
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clustering algorithms with different settings are run to obtain multiple clustering results, which 
can capture complex and various data distribution. Then, the weighted fusion of these cluster-
ing results is used for graph construction and the weights of the multiple clustering results are 
adjusted dynamically according to the “must link”y and “cannot link” constraints provided 
by the labeled samples and the result of label inference on the graph. During the process of 
learning, the dynamic graph construction and label inference on the graph are optimized alter-
nately, which achieves the dynamic improvement of the quality. In summary, the contributions 
of the proposal in this paper include the following three points: 

1.	 The weighted fusion of multiple clustering results is used to construct the graph in 
GSSL. By fusing multiple different clustering results, this method can alleviate the 
issues caused by complex and various data distribution effectively.

2.	 The graph construction and label inference on the graph are integrated into a unified 
optimization model, which realizes the mutual guidance between these two processes. 
In the optimization model, the supervision information and the iterative intermediate 
results are rationally utilized, which dynamically improves the quality of the graph dur-
ing the learning process.

3.	 The proposed method is a general framework and many existing GSSL methods can be 
embedded into this framework to improve their performance.

The rest of this paper is organized as follows. Section 2 introduces some basic notions and 
the related works. Including the general framework of GSSL and some representative graph 
construction methods. Section 3 provides the description of the GSSL-IQGD framework pro-
posed in this paper. In sect. 4, we explain why the proposal is effective by using three toy 
examples on artificial data sets and verify it’s effectiveness by comparing it with other classic 
GSSL methods on ten benchmark data sets. The conclusion and further work prospects are 
given in Sect. 5.

2 � Notations and related works

2.1 � Formalization of the problem

For a given semi-supervised classification task, let Dl = {(xi, yi)}
l
i=1

 denote the l labeled sam-
ples and Du = {xj}

n
j=l+1

 denote the u unlabeled samples, where n = l + u and xi ∈ ℝ
d is the 

d dimension description for the ith sample, and yi ∈ {1, 2,⋯ , c} is the class label of the ith 
labeled sample, and c is the number of categories.

For convenience of discussion, the class label of the sample is described in the form of a 
matrix. Let F ∈ {0, 1}n×c be the label matrix, where

and let Z ∈ ℝ
n×c be the predicting label matrix, where zik represents the membership 

degree of the ith sample to the kth category. In the rest of this article, let fi and Zi be the ith 
row of the matrix F and Z , respectively. More notations are included in Table 1.

(1)fik =

{
1, if (1 ≤ i ≤ l) ∧ (yi = k)

0, otherwise
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2.2 � Graph smoothness term and label inference of GSSL

For a semi-supervised classification task described in Sect. 2.1, the GSSL method first con-
verts the data into a graph G = (V ,E,W) , where V = {vi}

n
i=1

 is the vertices set, and the vertex 
vi corresponds to the sample xi . Additionally, E is the edges set. The nonnegative matrix W 
represents the weight of each edge in E and wij = 0 means there is no edge between vertex vi 
and vj . For an undirected graph, we have W = W

T.
The graph smoothness term is an important component of the GSSL method. In general, 

the smoothness loss term on the graph can be written as:

where d(⋅, ⋅) is a certain distance or dissimilarity metric, d(Zi,Zj) measures the difference 
between the prediction results of sample xi and xj , and wij reflects the similarities between 
them. The effect of minimizing Eq. (2) can be explained as follows: the more similar the 
samples are on the graph, the closer their prediction labels should be. Based on the smooth-
ness assumption, GSSL learns labels for unlabeled samples.

In general, the GSSL framework (Zhou et al. 2003) can be written as:

(2)Lsmooth(Z) =
1

2

n∑
i=1

n∑
j=1

wijd(Zi,Zj),

(3)min
Z

L(Z) = �fitLfit(Z) + �smoothLsmooth(Z),

Table 1   Definition of main 
notations

Notations Domain Description

l, u and n ℕ # labeled, unlabeled and total samples
d and c ℕ # features and classes
F {0, 1}n×c Known label matrix, see formula (1)
fi {0, 1}1×c The ith row of matrix F
fik {0, 1} Entry in the ith row and the kth column of F
Z ℝ

n×c Predicting label matrix
Zi ℝ

1×c The ith row of matrix Z
zik ℝ Entry in the ith row and the kth column of Z
m ℕ # clustering results
R

(t) {0, 1}n×n Matrix representation of the tth clustering 
result, see formula (18)

r
(t)

i
{0, 1}1×n The ith row of matrix R(t)

r
(t)

ij
{0, 1} Entry in the ith row and the jth column of R(t)

W ℝ
n×n Edge weight matrix of graph

wi ℝ
1×n The ith row of matrix W

wij ℝ Entry in the ith row and the jth column of W
tr(⋅) ℝ Trace of the square matrix ⋅
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where Lfit(Z) is the fitting loss on the known class labels, and Lsmooth(Z) is the smoothness 
loss on the graph. �fit and �smooth are two hyper-parameters1 trading off the fitting loss and 
smoothness loss, respectively.

Accordingly, the prediction function for the unlabeled sample xj is:

It should be noted that. In essence, the model represented by (3) is the same as the regulari-
zation framework in Zhou et al. (2003). Most classical semi-supervised learning methods, 
such as the Harmonic (Zhu et al. 2003), LLGC (Zhou et al. 2003), LapRLS (Belkin et al. 
2006), LapSVM (Belkin et  al. 2006) and measure propagation (Subramanya and Bilmes 
2011), can be described by this framework.

2.3 � Semi‑supervised classification with graph convolutional networks

Among all deep neural network based semi-supervised learning methods, the SSC-GCN 
(semi-supervised classification with graph convolution networks) proposed in 2017 (Kipf 
and Welling 2017) and its extensions (Li et al. 2018; Jiang et al. 2019) are closest to the 
GSSL. In addition to the input data described in Sect. (2.1), the graph G = (V ,E,W) is also 
given in advance in the SSC-GCN.

In the method, first, the symmetric and normalized graph Laplacain matrix Ŵ is com-
puted as:

where W̄ = W + I and D̄ = diag
(
d̄1, d̄2,⋯ , d̄n

)
 is the degree matrix with 

d̄i =
∑n

j=1
w̄ij, i = 1, 2,⋯ , n . Then, the spatial-based graph convolution is applied to the 

output of each layer of the neural network to obtain smooth hidden representations, i.e. the 
hidden representations of similar samples on the graph are close. At last, a two layers SSC-
GCN model used in literature (Kipf and Welling 2017) is expressed in the following form:

where X =
(
xT
1
, xT

2
,⋯ , xT

n

)T
∈ ℝ

n×d is the matrix arranged by the description vectors of n 
samples, W(0) ∈ ℝ

d×h and W(1) ∈ ℝ
h×c are parameters of the graph convolution network, h 

is the number of hidden neural units, ReLU (⋅) = max(⋅, 0) is the nonlinear activation func-
tion. And

is applied to the final output of the network, so that the ith row of the predicting label 
matrix Z corresponds to the membership degrees of the ith sample to all the categories. 
After getting the predicting label matrix Z, the fitting loss

(4)yj = arg max
k=1,2,⋯,c

zjk.

(5)Ŵ = D̄
−1∕2

W̄D̄
−1∕2

,

(6)Z = softmax
(
Ŵ ReLU

(
ŴXW

(0)
)
W

(1)
)
,

∀u ∈ ℝ
c, softmax (u) =

�
exp(u1)∑c

k=1
exp(uk)

,
exp(u2)∑c

k=1
exp(uk)

,⋯ ,
exp(uc)∑c

k=1
exp(uk)

�

1  For the convenience of discussion in this article, we added a hyper-parameter for every term of the objec-
tive function. Actually, one hyper-parameter is enough to balance the trade-off between two terms.
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is evaluated over l labeled samples, then parameters W(0) and W(1) are trained by gradient 
descent.

In this paper we focus on how to construct a better graph to improve the performance of 
GSSL. In the SSC-GCN method, although the graph is given in advance, it can still be easily 
embedded in the proposed framework and its performance can be improved.

2.4 � Graph construction method

The study of the GSSL method is mainly divided into two parts: graph construction and label 
inference. Recent research shows that the key to the success of the GSSL method is construct-
ing a high-quality graph instead of designing a better label inference algorithm (Berton et al. 
2017; De Sousa et  al. 2013; Jebara et  al. 2009; Zhuang et  al. 2017). Therefore, this paper 
focuses on the graph construction method. The classical graph construction methods used in 
GSSL are briefly reviewed as follows.

2.4.1 � Nearest neighbor graph

The “0–1” kNN graph and the weighted kNN graph are the most commonly used methods in 
GSSL (Zhu et al. 2003; Zhou et al. 2003). Formally, the entry of the edge weight matrix W is 
defined as

or

Apart from these forms, there are some other kinds of the nearest neighbor graph that are 
also frequently used in GSSL, such as the �-ball nearest neighbor graph, the mutual kNN 
graph and so on.

2.4.2 � b −matching graph

To avoid the situation where the degree of some vertices in the kNN graph are very large while 
others is very small, the b-matching graph was proposed in the literature (Jebara et al. 2009), 
where the degree of each vertex is constrained to b. The corresponding optimization problem 
is as follows.

(7)Lfit(Z) = −

l∑
i=1

c∑
k=1

fik log zik

(8)wij =

{
1, xi ∈ kNN(xj)

0, otherwise

(9)wij =

�
e

−‖xi−xj‖22
2�2 , xi ∈ kNN(xj)

0, otherwise
.
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where d(xi, xj) is the distance between sample xi and xj . This optimization problem can be 
solved efficiently by the loopy belief propagation algorithm (Huang and Jebara 2007).

2.4.3 � Linear neighbor graph

Unlike the method that directly uses the distances between samples to measure the similar-
ity, the literature (Wang and Zhang 2008) proposed a linear representation-based similarity 
measure. In detail, for the sample xi , its k nearest neighbors kNN(xi) are computed. And it is 
reconstructed by a convex combination of its kNN(xi) . The combination coefficients is used as 
the weights of the edges connected to node vertex vi:

2.4.4 � �
1
 graph

To mine the subspace structure of data. In the literature (Cheng et al. 2010), the �1 graph was 
used to learn the adjacency structure and the edge weights simultaneously. The similarities 
between samples are measured by the absolute value of the linear combination coefficients 
learned by the sparse representation. In detail, the ith sample is reconstructed by the remaining 
n − 1 samples:

where Xī =
(
x1, x2,⋯ , xi−1, xi+1,⋯ , xn

)
∈ ℝ

d×(n−1) is a matrix of all samples except the 
ith sample. In addition, the identity matrix I ∈ ℝ

d×d is used as the basis for reconstructing 
the noise on xi , which can improve the robustness of the model. Actually, the combination 
coefficient vector can be split into two segments:

Accordingly, we have xi = Xī�samp + I�noise = Xī�samp + �noise ; that is, the segment 
�samp ∈ ℝ

n−1 contains the coefficients for reconstructing the ith sample with the rest of the 

(10)

min
W

n∑
i=1

n∑
j=1

wijd(xi, xj)

s.t. wij ∈ {0, 1}, wij = wji, i, j = 1, 2,⋯ , n

n∑
j=1

wij = b, wii = 0, i = 1, 2,⋯ , n

(11)

min
W

n∑
i=1

‖‖‖‖‖‖
xi −

∑
xj∈kNN(xi)

wijxj

‖‖‖‖‖‖

2

2

s.t. wij ≥ 0, i, j = 1, 2,⋯ , n

n∑
j=1

wij = 1, i = 1, 2,⋯ , n

wij = 0, i = 1, 2,⋯ , n, xj ∉ kNN(xi).

(12)min
�

‖�‖1 s.t.
�
Xī, I

�
� = xi

(13)� =

(
�samp

�noise

)
∈ ℝ

(n−1)+d.
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samples. Based on the above analysis, let �∗ be the optimal solution of problem (12); then, 
the weights of the edges connected to vertex vi are calculated by

2.4.5 � LRR graph and SSLRR graph

The low-rank representation is a robust subspace structure recovery method proposed in 
the literature (Liu et  al. 2013). Unlike the sparse representation model that learns each 
sample representation coefficients individually. In which the representation coefficients of 
all samples lack global constraint, the low-rank representation can better capture the global 
structure of the data by applying low-rank regularization to the representation coefficient 
matrix. Usually, the nuclear norm ‖ ⋅ ‖∗ is used to approximate the rank of a matrix, and the 
low-rank representation model can be written as follows.

After obtaining the optimal representation matrix R∗ , the weight of the edge between ver-
tex vi and vj can be calculated by the following formula (Zhuang et al. 2011)

where r∗
ij
 is the element in the ith row and the jth column of the matrix R∗.

To better use the supervised information to improve the quality of the graph, a semi-
supervised graph construction method based on the LRR graph (SSLRR) is proposed in 
literature (Zhuang et al. 2017). In the SSLRR method, the “cannot link” constraint is added 
into the low-rank representation model to enforce the representation coefficients between 
samples with different class labels to be 0:

Similar to the LRR graph, the weight of the edge between vertex vi and vj is calculated by 
the formula (16).

It can be seen from the above discussion that the quality of the graph depends heavily 
on the assumptions used in these methods, whether it is for graph construction methods 
based on the distance metric or data representation (some kind of distance metric for the 
former and subspace structure for the latter). If the data distribution does not meet the cor-
responding assumptions, the quality of the graph will be seriously degraded, resulting in 
the performance deterioration of the subsequent GSSL. Indeed, the data distribution tends 

(14)wij =

⎧
⎪⎨⎪⎩

�𝛼∗
j
�, j < i

0, j = i

�𝛼∗
j−1

�, j > i

.

(15)min
R,E

‖R‖∗ + �‖E‖2,1 s.t. X = XR + E.

(16)wij =
∣ r∗

ij
∣ + ∣ r∗

ji
∣

2
,

(17)

min
R,E

‖R‖∗ + �‖E‖2,1
s.t. X = XR + E

n�
j=1

rji = 1, i = 1, 2,⋯ , n

rij = 0, i, j = 1, 2,⋯ , l, yi ≠ yj.
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to be complex and various, so the graph construction method based on specific assumption 
encounters difficulty in adaptively capturing the similarities between samples that is con-
sistent with the data distribution.

Motivated by the above analysis, a graph construction method by fusing multiple clus-
tering results is proposed for the following reasons: 

1.	 Clustering is a classic method to mine the structure of a data distribution, and different 
clustering algorithms are good at mining different data distribution structures. Thus we 
can use different clustering algorithms to capture various data distribution structures.

2.	 We can construct a high-quality graph by integrating multiple clustering results reason-
ably.

3 � GSSL via improving the quality of the graph dynamically

From the above discussion, we can see that the quality of the graph directly affects the per-
formance of the GSSL method. Traditional methods are based on certain specific assump-
tion, so it is difficult to capture the complex and various data distribution. To address this 
problem, the method of fusing multiple clustering results is employed to elevate the quality 
of the graph, which can improve the performance of the GSSL method.

3.1 � Measuring similarity via the weighted co‑association matrix

In practice, the potential data distribution tends to be complex and varies from data to data. 
Clustering is a classical unsupervised learning method that aims to discover the data dis-
tribution structure. Many classical clustering algorithms (Jain 2010) have been proposed, 
and different algorithms are expert in dealing with different data distribution. Therefore, 
different clustering algorithms with different settings (for more implementation details, see 
the experimental section) can be used to obtain a candidate set that covers various data 
distribution.

Assume that the clustering process produces m clustering results Π = {�t}
m
t=1

 , where �t 
is the tth clustering result, and let R(t) ∈ {0, 1}n×n be the matrix derived from �t , where

The co-association matrix (Fred and Jain 2005) is defined as:

The element m(co)

ij
 of matrix M(co) can be used to measure the similarity between xi and xj . 

It is widely accepted that the importance of different clustering result should be different. 
Thus the weighted co-association matrix can measure the similarity better:

(18)r
(t)

ij
=

{
1, if xi andxj belong to the same cluster in �t
0, otherwise

.

(19)M
(co) =

1

m

m∑
t=1

R
(t).

(20)W =

m∑
t=1

�tR
(t) s.t. � ∈ convm,
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where � = (�1, �2,⋯ , �m)
T is the weights vector of m clustering results, and 

convm = {��� ∈ ℝ
m, �t ≥ 0, t = 1, 2,⋯ ,m,

∑m

t=1
�t = 1} is the simplex. Obviously, 

wij ∈ [0, 1] , and the larger the value is, the greater the similarity between xi and xj is.
The difference between formula (19) and (20) is that the weight of each clustering result 

in formula (19) is equal, while in formula (20) the weights are obtained by optimization 
(which will be shown in the subsequent discussion). From the perspective of the clustering 
ensemble, the quality of each clustering result is different. Naturally, they should be given 
different weights in the fusion process. However. In unsupervised scenario, how to evaluate 
the quality of the clustering result is an open problem. Therefore, the equal weight strategy 
adopted by formula (19) is not a bad choice. In this paper, some criteria are used to evalu-
ate the quality of the clustering results. First, the supervision information provided by the 
labeled samples can be used to evaluate the quality of each clustering result (see Sect. 3.2), 
making higher quality clustering results obtain greater weights. Second, the result of label 
inference can be used as the pseudo label to evaluate the quality of each clustering result, 
which can dynamically adjust the weights of clustering results (see Sect. 3.3).

3.2 � Refining the weights by means of supervision information

Unlike the clustering ensemble, the supervision information provided by the labeled sam-
ples can be used to evaluate the clustering result in semi-supervised learning. We can 
directly obtain the “must link” and “cannot link” constraint (Wagstaff et al. 2001; Zeng and 
Cheung 2012) through the labeled samples. Let ML and CL be the sets of “must link” sam-
ple pairs and “cannot link” sample pairs, respectively. The definitions of ML and CL are

and

For the sake of the this discussion, their matrix representations are defined as

and

If the sample pair 
(
xi, xj

)
 meets the “must link” constraint, then on the graph G their cor-

responding weight wij should be large. We can use the following optimization problem to 
achieve this goal.

If the sample pair 
(
xi, xj

)
 meets the “cannot link” constraint, then on the graph G, their cor-

responding node pair should ideally be disconnected. However, this goal corresponds to a 
discrete optimization problem that is very difficult to implement by numerical optimization 

(21)ML =
{(

xi, xj
)| i, j = 1, 2,⋯ , l, yi = yj

}
,

(22)CL =
{(

xi, xj
)| i, j = 1, 2,⋯ , l, yi ≠ yj

}
.

(23)M ∈ {0, 1}n×n, mij =

{
1,

(
xi, xj

)
∈ ML

0, otherwise
,

(24)C ∈ {0, 1}n×n, cij =

{
1,

(
xi, xj

)
∈ CL

0, otherwise
.

(25)min
�

−
∑

(xi,xj)∈ML

wij s.t. W =

m∑
t=1

�tR
(t), � ∈ convm.
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techniques. In this paper, we use the following optimization problem to approximate the 
necessary condition for achieving this goal.

From formula (20) we know that the weight wij on the graph G is nonnegative. There-
fore, the inner product of the weight vectors wiw

T
j
 is also nonnegative. The inner prod-

uct wiw
T
j
= 0 means that the intersection of the set of nodes that directly connect 

to the ith node and the set of nodes that directly connect to the jth node is empty, i.e., 
{vk� wik ≠ 0, k = 1, 2,⋯ , n}

⋂
{vk� wjk ≠ 0, k = 1, 2,⋯ , n} = � , which is a necessary 

condition for that the node vi and vj are disconnected on the graph G.
Combining optimization problems (25) and (26), we obtain the following optimization 

problem.

where the �ml and �cl are two nonnegative trade-off hyper-parameters.

3.3 � Optimizing the quality of the graph and the class label iteratively

In this section, the most commonly used squared loss is chosen as an example to show how 
to integrate the graph construction by fusing multiple clustering results and the label infer-
ence into a unified framework to achieve their mutual guidance and dynamic improvement. 
Formally, the squared fitting loss and smoothness terms can be written as follows.

It should be noted that the method proposed in this paper is a general framework for 
improving the quality of the graph dynamically in GSSL. Other GSSL methods, such as 
the Harmonic method (Zhu et  al. 2003) (in which the squared loss is used as the fitting 
and smoothness loss), LLGC (Zhou et al. 2003) (in which the squared loss is used as the 
fitting and smoothness loss), LapSVM (Belkin et al. 2006) (in which the hinge loss is used 
as the fitting loss and the squared loss is used as the smoothness loss) and measure propa-
gation (Subramanya and Bilmes 2011) (in which the KL divergence is used as the fitting 
and smoothness loss), can be embedded in this framework without modification and their 
performance can be improved.

By integrating formula (27), (28) and (29), the final form of the proposed model is given 
below.

(26)min
�

∑
(xi ,xj)∈CL

wiw
T
j

s.t. W =

m∑
t=1

�tR
(t), � ∈ convm.

(27)

min
�

− �ml

∑
(xi,xj)∈ML

wij + �cl

∑
(xi,xj)∈CL

wiw
T
j

s.t. W =

m∑
t=1

�tR
(t), � ∈ convm.

(28)Lfit(Z) =

n�
i=1

‖fi − Zi‖22,

(29)Lsmooth(Z) =
1

2

n�
i=1

n�
j=1

wij‖Zi − Zj‖22.
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In the rest of this paper, the method corresponding to the above formula is named 
SLLI-IQGD (Squared Loss Label Inference via Improving the Quality of the Graph 
Dynamically).

In formula (30), label inference and graph construction are integrated into an optimiza-
tion model. In this model, the graph is constructed by fusing multiple clustering results, 
and the fusion weights are learned iteratively under the joint guidance of three kinds of 
information: “must link”, “cannot link” and the pseudo label generated by label infer-
ence. As a result, the quality of the graph and the result of label inference are improved 
dynamically.

3.4 � Model solution

The alternating optimization method is used to solve the optimization problem (30), which 
contains fixing � and updating Z , and fixing Z and updating �.

3.4.1 � Fixing � and updating Z

When � is fixed, the optimization problem (30) can be written as follows.

where L = D −W is the Laplacian matrix of graph G and D = diag(d1, d2,⋯ , dn) is the 
diagonal matrix with di =

∑n

j=1
wij, i = 1, 2,⋯ , n . The differential of L(Z) w.r.t Z is:

Let the differential be 0 , and we can obtain the following formula for updating Z.

Since the matrix L is a positive semidefinite matrix and both �fit and �smooth are greater than 
0, the matrix (�smoothL + �fitI) is a invertible matrix.

The optimization problem (31) is actually a label propagation algorithm on the graph 
under the regularization framework proposed in Zhou et al. (2003). Different from the liter-
ature (Zhou et al. 2003), the weight matrix W is the weighted fusion of multiple clustering 
results. It can be seen from the solving process of the above subproblem that the weighted 
co-association matrix obtained by the previous iteration guides the learning of the label of 
the unlabeled samples through the smoothness loss term.

(30)

min
Z,�

L(Z,�) = �fit

n�
i=1

‖fi − Zi‖22 +
�smooth

2

n�
i=1

n�
j=1

wij‖Zi − Zj‖22
− �ml

�
(xi,xj)∈ML

wij + �cl

�
(xi,xj)∈CL

wiw
T
j

s.t. W =

m�
t=1

�tR
(t), � ∈ convm.

(31)
min
Z

L(Z) = �fit

n�
i=1

‖Zi − fi‖22 +
�smooth

2

n�
i=1

n�
j=1

wij‖Zi − Zj‖22
= �fit tr ((Z − F)(Z − F)T ) + �smooth tr (Z

T
LZ),

(32)
�L(Z)

�Z
= 2�fitZ − 2�fitF + 2�smoothLZ.

(33)Z
∗ = �fit(�smoothL + �fitI)

−1F.
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3.4.2 � Fixing Z and updating �

When Z is fixed, the optimization problem (30) can be written as follows.

By substituting the first constraint, the matrix representation of the “must link” constraint 
defined in formula (23) and the “cannot link” constraint defined in (24) into the above 
objective function, the optimization problem (34) can be converted equivalently into the 
following form.

Let

(34)

min
�

L(�) =
�smooth

2

n�
i=1

n�
j=1

wij‖Zi − Zj‖22 − �ml

�
(xi,xj)∈ML

wij

+ �cl

�
(xi,xj)∈CL

wiw
T
j

s.t. W =

m�
t=1

�tR
(t), � ∈ convm.

(35)

min
�

L(�) =

m�
t=1

�t
�smooth

2

�
n�
i=1

n�
i=1

r
(t)

ij
‖Zi − Zj‖22

�

−

m�
t=1

�t�ml

�
l�

i=1

l�
i=1

r
(t)

ij
mij

�

+ �cl

l�
i=1

l�
i=1

cij

⎛⎜⎜⎜⎜⎝
�
T

⎛⎜⎜⎜⎜⎝

r
(1)

i

r
(2)

i

⋮

r
(m)

i

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
�
T

⎛⎜⎜⎜⎜⎝

r
(1)

j

r
(2)

j

⋮

r
(m)

j

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

T

s.t. � ∈ convm

(36)

vsmooth = (vsmooth
1

, vsmooth
2

,⋯ , vsmooth
m

)T ∈ ℝ
m,

vsmooth
t

=

n�
i=1

n�
j=1

r
(t)

ij
‖Zi − Zj‖22, t = 1, 2,⋯ ,m,

(37)

vml = (vml
1
, vml

2
,⋯ , vml

m
)T ∈ ℝ

m,

vml
t

=

l∑
i=1

l∑
j=1

r
(t)

ij
mij, t = 1, 2,⋯ ,m,

(38)v =
�smooth

2
vsmooth − �mlv

ml ∈ ℝ
m,

(39)S = �cl

l∑
i=1

l∑
j=1

cijS
(ij),
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Obviously, S is a symmetric matrix.
By using formula (36–39), the optimization problem (35) can be equivalently written as the 

following form.

The optimization problem (41) is a standard quadratic programming problem whose con-
vexity depends on whether the matrix is a positive semidefinite matrix. Because S is a sym-
metric matrix, all of its eigenvalues are real. Let �min be the smallest eigenvalue of S.

If �min ≥ 0 , then S is a positive semidefinite matrix, and the optimization problem (41) 
turns out to be a convex quadratic programming (CQP) problem, which can be solved by 
using a convex quadratic programming algorithm (Boyd and Vandenberghe 2004).

If 𝜇min < 0 , then S is not a positive semidefinite matrix, and the optimization problem (41) 
is not a convex quadratic programming problem. In this case, the optimization problem (41) 
can be converted into the following equivalent form.

where S+ = S − �minI is a positive semidefinite matrix, and the first term of the objective 
function in problem (42) is convex w.r.t � . The second term vT� is linear w.r.t � . The third 
term �min�

TI� is concave w.r.t � since 𝜇min < 0 . Therefore, the optimization problem (42) 
is concave-convex quadratic programming (CCQP) problem. Such a problem can be solved 
by transforming the concave part of the objective function into a series of convex quadratic 
programming problems, for details, see the literature (Yuille and Rangarajan 2003).

As seen from subproblem (41), three factors jointly guide the learning of the weights of 
clustering results. 

1.	 Through the graph smoothness term, the predicting label matrix Z obtained in the last 
iteration provides guidance information that is encoded in vsmooth.

2.	 The supervision information expressed by the “must link” constraint provides guidance 
information that is encoded in vml.

3.	 The supervision information expressed by the “cannot link” constraint also provides 
guidance information that is encoded in S.

3.5 � The framework of the GSSL‑IQGD algorithm

In this section, the framework of the GSSL-IQGD algorithm is described in Algorithm 1.

(40)S
(ij) =

⎛
⎜⎜⎜⎜⎝

r
(1)

i

r
(2)

i

⋮

r
(m)

i

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

r
(1)

j

r
(2)

j

⋮

r
(m)

j

⎞
⎟⎟⎟⎟⎠

T

∈ ℝ
m×m.

(41)min
�

L(�) = �
TS� + vT� s.t. � ∈ convm

(42)min
�

L(�) = �
TS+� + vT� + �min�

TI� s.t. � ∈ convm,
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3.6 � Computational complexity analysis

In this section, we provide the analysis on the computational complexity of the Algo-
rithm 1, which consists of three phases, preparation phase (line 1–3), learning phase (line 
4–13) and predicting phase (line 14).

In the preparation phase (line 1–3), assume that the time complexity on the cluster-
ing algorithm is O

(
Tcluster

)
 , then the time complexity on generating m clustering results 

is O
(
mTcluster

)2. The time complexity on calculating vml (see formula (37)) and S (see 
formula (39)) are O

(
l2m

)
 and O

(
l2m2n

)
 respectively. And the time complexity on cal-

culating the smallest eigenvalue �min of S is O
(
m3

)
 . At last, the time complexity on ini-

tializing the W is O
(
mn2

)
 . To sum up, the time complexity of the preparation phase is 

O
(
mTcluster + l2m + l2m2n + m3 + mn2

)
 . In semi-supervised learning, usually l is a small 

number and l << n , so it can be simplified to be O
(
mTcluster + m2n + m3 + mn2

)
.

In the learning phase (line 4–13), the loop body contains four main steps: updating the 
predicting label matrix Z , updating the v , updating the weights of m clustering results and 
updating the edge weight matrix W . The time complexity of these four steps is as follows. 

1.	 The time complexity on updating Z is depending on the label inference algorithm 
Alabel inference . Assume that it’s time complexity is O

(
Tlabel inference

)
.

2.	 When Z is given, the time complexity on updating v (see formula (38)) is O
(
mn2

)
.

3.	 When v is given, the time complexity on updating � is depending on whether the S is a 
positive semi-definite matrix. 

(a)	 If the S is a positive semi-definite matrix, then updating process of � is a convex 
quadratic programming and it can be solved by ellipsoid method in polynomial 
time. So the time complexity is O(P(m)) , where P(⋅) is a polynomial function.

2  In practice, we can use different clustering methods to generate different clustering results. In this case, 
the time complexity of the this stage can be written as O

(
m1Tcluster1 + m2Tcluster2 +⋯

)
 .
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(b)	 If the S is not a positive semi-definite matrix, then � is updated through a series 
of convex quadratic programming, so the time complexity is O

(
nqpP(m)

)
 , where 

nqp is the number of quadratic programming problems involved in the process. 
Usually nqp can be treated as a constant, so we have O

(
nqpP(m)

)
= O(P(m)).

	    As a result, the time complexity on updating � is O(P(m)).
4.	 When � is given, the time complexity on updating W is O

(
mn2

)
.

Assuming that the number of iteration is nite , the time complexity of learning phase 
is O

(
nite

(
Tlabel inference + mn2 + P(m) + mn2

))
 . In practice, we can specify a maxi-

mum number of iterations as the stopping condition of the algorithm, so nite can 
be treated as a constant, and the time complexity of this phase can be simplified to be 
O
(
Tlabel inference + mn2 + P(m)

)
.

In the predicting phase (line 14), the time complexity on calculating the predicting labels 
of u unlabeled samples is O(uc) . Notice that u < n and c << n , we have O(uc) = O(n).

To sum up, the time complexity of Algorithm 1 is

4 � Experiments

In this section, systematic experiments are conducted to illustrate the working mechanism 
and the effectiveness of the proposed GSSL-IQGD framework.

4.1 � Experiments on artificial data sets

To illustrate the working mechanism of the proposed GSSL-IQGD framework, as a spe-
cific algorithm under the framework, the SLLI-IQGD algorithm described in formula (30) 
is selected to perform experiments on the 3 artificial data sets.

4.1.1 � Artificial data sets

There are 3 artificial data sets used in this experiment. These data sets can be downloaded 
from https://​github.​com/​deric/​clust​ering-​bench​mark. The basic information of the three 
artificial data sets is given in Table 2.

O
(
mTcluster + m2n + m3 + mn2

)
+ O

(
Tlabel inference + mn2 + P(m)

)
+ O(n)

= O
(
mTcluster + Tlabel inference + P(m) + m2n + mn2

) .

Table 2   Basic information of 
three artificial data sets

Data set # Samples # Features # Classes

Xclara 3000 2 3
Chainlink 1000 3 2
Spiralsquare 1500 2 6

https://github.com/deric/clustering-benchmark
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These three data sets are all 2-dimensional or 3-dimensional data. Thus, we can 
observe their distribution via the visualization. Figure 1 shows the distribution of the 
three artificial data sets.

As seen from Fig. 1a, the Xclara data set is a typical mixed Gaussian distribution 
containing three components, and each of them corresponds to a class. From Fig. 1b, 
we can observe that the Chainlink data set contains two typical manifold structures, 
and each of them corresponds to a class. In Fig. 1c, there are two kinds of data distri-
bution on the Spiralsquare data set. Including four mixed Gaussian clusters and two 
manifold structures. Therefore, there are in total six classes on the Spiralsquare data 
set. We randomly selected two samples in each class as labeled samples for each data 
set, which are marked with the dark cross in Fig. 1.

For the first two data sets shown in Fig.  1a and b, we can construct high-quality 
graphs that are consistent with the true data distribution by using the appropriate dis-
tance metric and parameters. For the Xclara data set, the Euclidean distance should be 
the best choice, while for the Chainlink data set, the geodesic distance would be better. 
However. In practical applications, the true data distribution is usually unknown and 
cannot be visualized since the data’s dimension is much larger than three; therefore, 
the correct distance metric is unknown. Even if we fortuitously choose the correct dis-
tance metric, there is still a lack of theoretical guidance on how to choose the graph 
construction parameters. If the parameters are set improperly, the quality of the graph 
will still be poor.

For the third Spiralsquare data set shown in Fig. 1c, the situation will be worse. If 
we use the Euclidean distance, the similarities between samples on the four Gaussian 
clusters can be calculated correctly, while the similarity on the manifolds will be cal-
culated incorrectly. Moreover, if we switch to the geodesic distance, the situation will 
be reversed. In this case, it is difficult to construct a high-quality graph by using only 
one particular distance metric.

From the above analysis, the data distribution in practice is usually unknown, com-
plex and varies from data to data. Most traditional graph construction methods make 
specific assumptions about the data distribution, so it is difficult to adaptively measure 
the similarities between samples and build a high-quality graph. The next section elab-
orates how the SLLI-IQGD algorithm proposed in this paper can adaptively discover 
the data distribution via fusing multiple clustering results, and then coping with the 
complexity and variety of the unknown data distribution.
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Fig. 1   Three artificial data sets and the selected labeled samples in each class (marked in a dark cross)
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4.1.2 � Experimental setting

For each data set, the k-means (Jain 2010) and DBSCAN (Ester et  al. 1996) algo-
rithms are used to obtain different clustering results. For the k-means algorithm, 
the number of clusters is fixed to the number of classes c, and the initial class cent-
ers are selected randomly. For each data set, the algorithm repeats five times to obtain 
five clustering results. For the DBSCAN algorithm, the parameter MinPts is fixed to 
be 3 and the parameter Eps is determined by the given different noise ratios of sam-
ples. By setting different noise ratios ( {0%, 0.01%, 0.03%, 0.05%, 0.07%} for Xclara and 
{0%, 0.1%, 0.3%, 0.5%, 0.7%} for Chainlink and Spiralsquare), five different cluster-
ing results are obtained for ecah data set. According to the above settings, a total of 
5 + 5 = 10 different clustering results are obtained for each data set.

In these three toy examples, the hyper-parameters of the SLLI-IQGD algorithm are 
set to be �fit = �smooth = �ml = �cl = 0.5.

-40 -20 0 20 40 60 80 100 120
-40

-20

0

20

40

60

80

100

Cluster 0
Cluster 1
Cluster 2

-40 -20 0 20 40 60 80 100 120
-40

-20

0

20

40

60

80

100

Cluster 0
Cluster 1
Cluster 2
Cluster 4

(a) k-means (b) DBSCAN

Fig. 2   k-means and DBSCAN clustering results on Xclara data set
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4.1.3 � Experimental results and analysis

The representative clustering results on the three data sets are given in Figs. 2–4.
As seen from Fig.  2, for the Xclara data set, the k-means algorithm can discover 

the data distribution structure correctly, while the DBSCAN algorithm does not work 
effectively. For the Chainlink data set, the situation is reversed (see Fig.  3), i.e., the 
DBSCAN algorithm can discover the data distribution structure correctly, while the 
k-means algorithm does not work well. For the Spiralsquare data set, neither of the two 
clustering algorithms can discover the true data distribution structure (see Fig. 4). How-
ever, each clustering algorithm can discover a part of the data distribution structure.

It can be seen from the above results that different clustering algorithms are good 
at mining different data distribution. Therefore, different data distribution can be dis-
covered by using different clustering algorithms. By fusing multiple clustering results 
reasonably, the similarities between samples can be measured adaptively, and then the 
constructed graph will be of high quality.

The classification error rate and the learned weight vector �∗ of the clustering results 
on three artificial data sets are given in Table 3. In the last column of Table 3, the former 
five numerical values are the weights of the clustering results obtained by the k-means 
algorithm, and the latter five numerical values are the weights of the clustering results 
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Fig. 4   k-means and DBSCAN clustering results on Spiralsquare data set, Note that only the top 6 biggest 
clusters of the 72 clusters obtained by DBSCAN algorithm are given in sub-figure b 

Table 3   The classification error rate and the weight vector �∗ on three artificial data sets

Data set Error rate �
∗

Xclara 2.34 × 10−3 (0.20, 0.20, 0.20, 0.20, 0.20, 
1.45 × 10−24, 1.45 × 10−24, 1.24 × 10−24, 1.65 × 10−24, 1.65 × 10−24)T

Chainlink 0 (1.29 × 10−26, 1.29 × 10−26, 1.29 × 10−26, 1.29 × 10−26, 1.29 × 10−26, 
0.50, 0.50, 2.91 × 10−26, 2.58 × 10−26, 2.58 × 10−26)T

Spiralsquare 2.02 × 10−3 (1.21 × 10−27, 1.21 × 10−27, 1.62 × 10−27, 1.62 × 10−27, 1.62 × 10−27, 
6.06 × 10−28, 1.41 × 10−27, 1.92 × 10−27, 1.92 × 10−27, 1)T
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obtained by the DBSCAN algorithm. The largest element in the weight vector is marked 
in bold.

It can be seen from Table  3 that these clustering results that contain the true data 
distribution are given the largest weight on all data sets (marked in bold) in the learned 
weight vector �∗ . Specifically, on the Xclara data set, the five clustering results obtained 
by k-means are given the largest weight 0.20, while the other five clustering results 
obtained by DBSCAN are given the weight very close to 0. On the Chainlink data set, 
the first two clustering results obtained by DBSCAN are given the largest weight 0.50, 
while the five clustering results obtained by k-means and the other three clustering 
results obtained by DBSCAN are given weight close to 0. On the Spiralsquare data set, 
the largest weight 1 is given to the last clustering result obtained by DBSCAN, while 
the other nine clustering results are given the weight close to 0. This result is consist-
ent with the clustering results shown in Figs. 2–4. As a result, the graph constructed by 
the weighted fusion of multiple clustering results can measure the similarities between 
samples correctly, and the classification error rate of the SLLI-IQGD algorithm is very 
low on all three data sets.

To further illustrate that the quality of the graph is gradually improved during the 
iterative learning process, Table 4 records the classification error rate of the unlabeled 
samples after each iteration of the SLLI-IQGD algorithm and the �2 norm of the differ-
ence between the weight vectors � obtained by two successive iterations on three artifi-
cial data sets.

It can be seen from Table 4 that on artificial data sets, after a few iterations, the �2 norm 
of the difference between the weight vectors obtained by successive iterations is rapidly 
reduced to 0 or very close to 0, i.e., the weight vector converges to the final result �∗.

As seen from the first row of Table 4, on the Xclara data set, when the weight of each 
cluster is initialized to be equal, the classification error rate of the result of label infer-
ence on the corresponding graph is 2.34 × 10−3 , that is very close to 0. With the increases 
of the number of iteration, the weights of the former five clustering results generated by 
the k-means algorithm are continuously increased, the weights of the latter five clustering 
results generated by the DBSCAN algorithm are continuously reduced. In the process of 
iterative learning, the classification error rate does not decrease significantly. This result is 
related to the clustering results. The former five clustering results generated by the k-means 
algorithm on the Xclara data set can correctly capture the data distribution, while the lat-
ter five clustering results generated by the DBSCAN algorithm assign almost all the sam-
ples into one cluster, which is trivial and cannot capture any data distribution information. 
Therefore, the classification error rate does not change significantly during the iteration. 
It can be seen from the second row and the third row of Table 4 that as the number of 

Table 4   Classification error rate and change of � after each iteration on three artificial data sets

Number of iterations: i 0 1 2 3 4

Xclara Error rate 2.34 × 10−3 2.34 × 10−3 2.34 × 10−3 2.34 × 10−3 2.34 × 10−3

‖�(i) − �
(i−1)‖2 N/A 3.16 × 10−1 6.21 × 10−17 4.14 × 10−25 0

Chainlink Error rate 3.47 × 10−1 0 0 0 0

‖�(i) − �
(i−1)‖2 N/A 6.32 × 10−1 1.99 × 10−14 3.98 × 10−14 7.96 × 10−15

Spiralsquare Error rate 4.70 × 10−3 2.69 × 10−3 2.02 × 10−3 2.02 × 10−3

‖�(i) − �
(i−1)‖2 N/A 9.49 × 10−1 2.29 × 10−26 0
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iterations increases, the weights of the clustering results is continuously adjusted, and the 
classification error gradually decreases to 0 or very close to 0.

Recall that the error rate of the result of the label inference is the most credible criterion 
to evaluate the quality of the graph. Therefore, we can conclude that in the three toy exam-
ples, the quality of the graph is gradually improved during the iterative process.

These three toy examples illustrate the effectiveness of the proposed framework and 
explain why it works well. In the next section, we will evaluate three algorithms under the 
proposed framework through a large number of comparative experiments on benchmark 
data sets.

4.2 � Compared with GSSL based on static graph construction methods

In this section, a large amount of comparison experiments are conducted to verify the 
effectiveness of the proposal from two perspectives. Specifically, the experiments in this 
section are designed based on the following two questions. Compared with the commonly 
used static graph construction methods, can the proposed IQGD method construct better 
graphs so as to obtain better GSSL results? Whether the proposed GSSL-IQGD framework 
is a general framework, i.e. can different GSSL methods be embedded into it to improve 
their performances?

4.2.1 � Data sets

A total of 10 data sets are used in this experiment. The basic information of them is shown 
in Table 5. Among these 10 data sets, the number of samples ranges from several hundred 
to thirty-five thousand. The number of features ranges from several to more than seven 
hundred. Both binary and multi-class classification tasks are included.

Table 5   Basic information of 10 benchmark data sets

a http://​archi​ve.​ics.​uci.​edu/​ml/​index.​php
bhttp://​olivi​er.​chape​lle.​cc/​ssl-​book/​bench​marks.​html
chttps://​linqs-​data.​soe.​ucsc.​edu/​public/
d There are 70,000 samples in the original data set. In this experiments, 35,000 samples are randomly 
selected so as to complete the experiments at affordable time and space costs.
e http://​yann.​lecun.​com/​exdb/​mnist/

ID Data set # Samples # Features # Classes Source

D1 Iris 150 4 3 UCI a

D2 Wine 178 13 3 UCI a

D3 Glass 214 9 7 UCI a

D4 Mammographic Mass 961 5 2 UCI a

D5 Image Segmentation 2310 19 7 UCI a

D6 Waveform 2746 21 3 UCI a

D7 Set = 5(g241c) 1500 241 2 SSL-book benchmarks b

D8 Set = 7(g241n) 1500 241 2 SSL-book benchmarks b

D9 Pubmed 19717 500 3 linqs-datac

D10 MNIST 35000d 784 10 Yann LeCun’s home pagee

http://archive.ics.uci.edu/ml/index.php
http://olivier.chapelle.cc/ssl-book/benchmarks.html
https://linqs-data.soe.ucsc.edu/public/
http://yann.lecun.com/exdb/mnist/
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For the first 8 data sets, 10 different ratios {1%, 2%,⋯ , 10%} of samples are selected as 
labeled samples. And for the last 2 data sets, 5 different number {1, 5, 10, 15, 20} of sam-
ples are selected randomly from each class as labeled samples. The rest of the samples are 
used as the unlabeled samples. It should be pointed out that the number of samples on D9 
and D10 is relatively large (an order of magnitude larger than the first 8 data sets). If the 
ratio of labeled samples is still set to {1%, 2%,⋯ , 10%} , then the total number of labeled 
samples will be relatively large, which is contradictory to the idea of semi-supervised 
learning. For every ratio (or number) of labeled samples, the labeled samples are randomly 
selected whose class proportion is equal (or approximately equal) to the whole data set. 
These experiments are repeated 10 times.

4.2.2 � Comparison methods and experimental setting

A.	 Label inference methods for comparison

The focus of this paper is how to construct a high-quality graph to improve the perfor-
mance of the GSSL method. For this goal, this paper proposes a framework for dynami-
cally improving the quality of the graph for GSSL. In order to verify the effectiveness of 
the proposed IQGD methods. In this experiment, three of the most representative label 
inference methods in GSSL, the Harmonic (Zhu et al. 2003), LLGC (Zhou et al. 2003) and 
SSC-GCN (Kipf and Welling 2017) are selected as the comparison methods. These GSSL 
methods are selected for two purposes. First, they are combined with various representa-
tive graph construction methods to serve as comparison methods. Second, they are embed-
ded into the proposed framework to verify whether the proposed framework can construct 
higher quality graphs to get better label inference results.

The first two are traditional methods, and the third method is based on graph neural 
networks. The Harmonic method can only deal with the binary classification problem. In 
this experiment, the “One vs Rest” strategy is employed to extend the Harmonic method 
to multi-class classification tasks. For the LLGC method, the hyper-parameter � is set to 
be 0.99 throughout this experiment, which is recommended in the literature (Zhou et al. 
2003). For the SSC-GCN method, a two-layer neural network is used in the experiment 
which is the same as literature (Kipf and Welling 2017). Unlike the literature (Kipf and 
Welling 2017), no validation set is used to assist training, because the number of labeled 
samples is limited in semi-supervised learning.

B.	 Graph construction methods for Comparison

As mentioned above, the focus of this paper is how to construct a high-quality graph. In 
order to verify the effectiveness of the proposed IQGD method. In this experiment 4 differ-
ent common used graph construction methods. Including the kNN graph, see formula (8), 
the b − matching graph, see formula (10), the �1 graph, see formula (12, 14) and the LRR 
graph, see formula (15, 16) are selected as the comparison methods.

Among the 4 methods, the former 2 methods are both graph construction methods based 
on the distance metric. The kNN graph is the simplest but most frequently used graph con-
struction method in GSSL. In addition, the b − matching graph is a regularized neighbor 
graph such that every node has the same degree equal to b, which can overcome the adverse 
effects of the due to the large differences between node degrees. The latter 2 methods are 
based on data representation. They can simultaneously learn the adjacency structure and 
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the edge weight matrix of the graph. The �1 graph learns the linear representation coeffi-
cients for every sample individually with a sparse regularization term, while the LRR graph 
learns the linear representation coefficients for all samples at the same time with a low-rank 
regularization term.

The parameter settings for the 4 kinds of graph construction methods are given in 
Table 6. As seen from the table, there are a total of 3 + 3 + 1 + 1 = 8 graph construction 
methods. Combined with the 3 label inference methods, we obtain 3 × 8 = 24 comparison 
methods in the experiment. For the last two data sets, only 3 kinds of kNN graphs are used 
for comparison, because the construction of the remaining 5 kinds of graphs is very time-
consuming, each graph cannot be constructed within 15 days.3

C.	 The proposed methods

The setting of the proposed method in this paper includes three aspects, i.e., the selec-
tion of the label inference algorithm, the way to generate clustering results and the setting 
of the hyper-parameters.

First, for the selection of the label inference algorithm Alabel inference , 3 label inference 
algorithms, including the Harmonic (Zhu et al. 2003), LLGC (Zhou et al. 2003), and SSC-
GCN (Kipf and Welling 2017) are selected and embedded in the GSSL-IQGD framework. 

Table 6   The setting of four graph construction methods

a It was recommended in the literature (Liu et al. 2013)

Method Hyper-parameter Distance metric Abbreviation

kNN graph k = 3 {Euclidean, Manhattan, Cosine} {E3NN, M3NN, C3NN}

b − matching graph b = 3 {Euclidean, Manhattan, Cosine} {E3M, M3M, C3M}

�1 graph N/A N/A �1 − G

LRR graph � = 4a N/A LRR − G

Table 7   The setting of k-means 
and DBSCAN

a Where c is the number of categories. In unsupervised clustering, it 
is hard to determine the correct number of clusters. However. In semi-
supervised learning the c is known in advance

Algorithm # Clustering results Setting

k-means 5 × 10 = 50 k: {c, 2c, 3c, 4c, 5c}a initial 
cluster centers: randomly 
selected and repeat 10 
times

DBSCAN 2 × 6 = 12 MinPts: {3, 5} Eps: 
determined by 6 dif-
ferent noise ratios 
{0%, 1%,⋯ , 5%}

3  We run these experiments on a PC with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.1 GHz and 512 GB 
RAM.
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As a result, 3 corresponding methods, Harmonic-IQGD, LLGC-IQGD, SSC-GCN-IQGD 
and SLLI-IQGD are obtained. By comparing the Harmonic-IQGD, LLGC-IQGD and 
SSC-GCN-IQGD with the Harmonic, LLGC and SSC-GCN respectively, the effectiveness 
of IQGD method can be directly observed.

Second, k-means (Jain 2010) and DBSCAN (Ester et al. 1996) are employed for gener-
ating clustering results. And the setting of them is shown in the Table 7. According to the 
setting, there are total 50 + 12 = 62 clustering results that are obtained for each data set, 
i.e. in Algorithm 1, m = 62 . These clustering results are fused for graph construction, and 
their fusion weights are dynamically adjusted to improve the quality of the graph.

In practice, if there is more prior knowledge about the data distribution, choosing the 
appropriate clustering method can achieve better results. If there is little prior knowledge 
of the data distribution, different kinds of clustering algorithms can be used to cover as 
many kinds of data distribution as possible. Regardless of how the clustering results are 
generated, the proposed method can adaptively fuse them to construct a high-quality graph 
for GSSL. In this experiment, only two kinds of classical clustering methods are selected to 
discover the potential data distribution, and they are enough to verify the effectiveness of 
the proposed GSSL-IQGD framework.

Third, the simplest settings are used for the hyper-parameters throughout this 
experiment4. In the Harmonic-IQGD, LLGC-IQGD and SSC-GCN-IQGD methods, 
�smooth = �ml = �cl = 0.5 is employed for updating the weight vector � . The relative mag-
nitudes between �fit and �smooth in Harmonic-IQGD and LLGC-IQGD methods are set to be 
the same as their counterparts, i.e. the Harmonic and LLGC, respectively.

4.2.3 � Experimental results and analysis

Tables 8–15 show the classification error rate for the proposed methods and comparison 
methods on the first 8 data sets.

In Tables 8–15, there are 10 columns in every table, and each column corresponds to a 
labeled samples ratio. Each row in the table corresponds to a method and there are a total 
of 27 methods that are used for comparison.

These 27 methods can be divided into 3 groups. In the first group, the 1st-9th rows in 
the table, show the methods obtained by combining the Harmonic with different graph con-
struction methods. In the second group, the 10th–18th rows in the table, show the methods 
obtained by combining the LLGC with different graph construction methods. In the third 
group, the 19th–27th rows in the table, show the method obtained by combining the SSC-
GCN with different graph construction methods.

In the three groups, the Harmonic-IQGD, LLGC-IQGD and SSC-GCN-IQGD are 
obtained by embedding the corresponding GSSL methods into the proposed GSSL-IQGD 
framework. In each group, the method of graph label inference is the same, and the only 
difference is in the method of graph construction. Therefore, it is straightforward to demon-
strate the effectiveness of the proposal by comparing the Harmonic-IQGD, LLGC-IQGD 
and SSC-GCN-IQGD with their counterparts, respectively.

4  Generally, some strategies such as cross-validation can be used to tune hyper-parameters. However it is 
impractical in semi-supervised learning because the number of labeled samples is limited.
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In each table, the ranks of the 3 methods under the proposed GSSL-IQGD framework 
and the top 3 methods are marked with digital superscripts. The rank of each method is 
used to compare the performance of each method directly.

Table 8 records the classification error rate of the 27 methods on D1 data set. The fol-
lowing results can be drawn from this table directly. 

1.	 At labeled ratios of 2% , 6% , 7% , 8% and 9% , the Harmonic-IQGD method defeats its 
counterparts with 8 different graph construction methods; At labeled ratios of 1% , 4% , 
5% and 10% , the Harmonic-IQGD defeats its 7 counterparts and is defeated by the Har-
monic method with the C3M graph; At the labeled ratio of 3% , the Harmonic-IQGD 

Table 8   Data set D1 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 50.27 52.04 45.97 46.74 40.57 36.67 34.86 35.07 31.93 29.11
M3NN 47.42 48.44 45.00 40.28 35.39 36.03 35.65 34.86 30.96 32.59
C3NN 59.52 60.14 53.68 53.33 49.65 46.31 42.61 43.33 39.48 42.59
E3M 32.18 32.24 26.94 27.71 20.21 18.51 18.26 17.54 17.63 18.44
M3M 28.23 23.33 19.03 20.00 17.45 14.75 11.52 12.90 10.59 11.70
C3M 19.18 18.91 12.083 15.97 10.78 11.13 10.00 11.67 7.78 7.412

�1 − G 52.99 54.01 57.01 52.36 54.47 45.82 43.91 43.12 38.00 34.52
LRR − G 60.75 64.22 65.07 61.11 60.43 53.76 50.36 46.09 48.00 47.33
IQGD 22.865 15.443 30.1410 16.045 15.675 10.213 5.001 10.003 7.333 11.195

LLGC
E3NN 32.99 35.92 28.47 26.46 27.02 24.89 21.59 18.91 14.00 17.41
M3NN 33.54 35.10 34.03 30.83 20.35 23.48 20.65 23.04 14.52 19.63
C3NN 42.18 48.44 36.04 29.17 34.61 26.24 23.19 20.94 24.74 23.33
E3M 31.16 31.70 25.63 25.56 23.62 19.15 18.19 18.62 18.15 17.93
M3M 28.84 24.76 20.07 20.63 19.93 17.31 13.19 16.88 12.89 13.85
C3M 15.993 19.80 14.10 14.443 10.072 10.64 9.06 11.38 10.22 10.67
�1 − G 49.25 55.51 60.35 54.93 60.07 61.70 62.97 58.33 55.04 55.48
LRR − G 61.22 64.22 64.65 60.97 66.45 64.40 58.70 57.83 64.89 63.04
IQGD 12.242 10.612 10.562 13.472 10.072 8.302 5.513 9.572 5.852 8.073

SSC-GCN
E3NN 46.33 41.84 44.24 43.26 41.84 34.40 47.75 44.49 35.41 38.44
M3NN 42.93 41.97 38.47 48.06 41.14 38.30 35.36 39.20 34.15 40.00
C3NN 31.63 53.67 38.13 45.14 35.60 51.06 48.70 44.57 44.22 54.44
E3M 44.76 45.99 46.25 43.33 42.55 40.50 50.15 45.22 50.74 48.82
M3M 59.93 37.76 46.18 43.75 30.57 49.22 41.45 34.86 35.19 31.26
C3M 46.87 33.61 52.64 34.51 32.13 47.87 47.10 45.36 28.44 39.11
�1 − G 55.31 51.09 50.97 33.40 59.22 52.77 59.93 48.33 53.70 46.30
LRR − G 54.90 58.98 52.99 51.67 48.30 58.16 55.80 50.73 54.44 53.93
IQGD 7.821 6.871 7.151 5.071 7.801 5.821 5.001 6.091 4.221 3.481
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defeats its 5 counterparts and is defeated by the Harmonic method with the b − matching 
graph using 3 different distance metrics. To sum up, when the label inference method is 
fixed to Harmonic, the Harmonic-IQGD method obtained by embedding the Harmonic 
into the proposed GSSL-IQGD framework can achieve better performance compared 
with the Harmonic method using 8 different graphs in most cases. These results show 
that the proposed IQGD method can indeed construct a higher-quality graph compared 
with 8 different graph construction methods.

2.	 The LLGC-IQGD method defeats its counterparts with 8 different graph construction 
methods at 10 different labeled ratios. These results indicate that when the label infer-
ence method is fixed to LLGC, compared with the 8 different graph construction meth-
ods, the IQGD method can construct a better graph and then the better label inference 
performance can be achieved.

3.	 At 10 different labeled ratio, the SSC-GCN-IQGD defeats its 8 counterparts with sig-
nificant advantage. These results indicate that when the label inference method is fixed 
to SSC-GCN, compared with the 8 different graph construction methods, the proposed 
IQGD method can also construct a better graph, and then the better label inference per-
formance can be achieved. It can also be seen from these results that as one of the most 
advanced methods at present, the performance of SSC-GCN also heavily depends on the 
quality of the graph. And by embedding it into the proposed framework, its performance 
can also be improved significantly.

4.	 The Harmonic-IQGD, LLGC-IQGD and SSC-GCN-IQGD methods take the top 3 places 
among the 27 methods at labeled ratios of 2% , 6% , 7% , 8% and 9% , and in the remain-
ing 5 labeled ratios, two of them ranked in the top 3 places. These results show that by 
embedding the Harmonic, LLGC and SSC-GCN into the proposed GSSL-IQGD frame-
work respectively, the performance of all three methods can be improved significantly. 
That is to say, the proposed method is a general framework.

The comparison results on D2, D3, D4 and D5 data sets, as shown in Tables 9, 10, 11 
and 12, are similar to the result on D1 data set and are summarized as follows. The results 
on each data set are no longer described separately. 

1.	 When the label inference method is fixed to Harmonic, the Harmonic-IQGD method 
obtained by embedding the Harmonic into the proposed GSSL-IQGD framework can 
achieve better performance compared with the Harmonic method using 8 different 
graphs in most cases. The results on LLGC and SSC-GCN methods are virtually the 
same as on the Harmonic. These results show that, compared with the 8 representative 
graph construction methods, the proposed IQGD method is an effective graph construc-
tion method.

2.	 The Harmonic-IQGD, LLGC-IQGD and SSC-GCN-IQGD methods take the top 3 places 
or two of them ranked in the top 3 places among the 27 methods in almost all cases. 
These results show the proposed method is a general framework since different GSSL 
methods can improve their performance by embedding them into it.

For the D6, D7 and D8 data sets, as shown in Tables 13, 14 and 15, the comparison 
results are summarized as follows. 
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1.	 The Harmonic-IQGD, LLGC-IQGD and SSC-GNC-IQGD methods defeat their coun-
terparts the Harmonic, LLGC and SSC-GCN with 8 different graphs at 10 different 
ratios of labeled samples, respectively. These results show that compared with the 8 
representative graph construction methods, the proposed IQGD method can construct 
a better graph, as a result, the performance of the corresponding GSSL is improved.

2.	 The 3 methods, Harmonic-IQGD, LLGC-IQGD and SSC-GCN-IQGD under the GSSL-
IQGD framework take the top 3 places among the 27 methods at 10 different ratios of 
labeled samples. These results show that the proposed framework can be applied to both 
the three GSSL methods and the expected performance gains are achieved.

Table 9   Data set D2 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 61.77 60.81 56.08 56.47 53.39 53.13 52.32 47.24 48.50 47.30
M3NN 62.74 61.50 53.74 55.47 49.46 51.81 50.98 47.61 46.69 47.67
C3NN 61.77 58.84 52.75 55.12 50.83 51.69 47.99 45.89 46.63 44.84
E3M 47.31 47.34 37.54 42.35 40.24 38.19 36.16 32.82 35.13 37.36
M3M 50.69 47.28 38.30 38.65 37.68 37.83 34.82 32.763 33.813 36.10
C3M 44.46 40.403 37.78 37.242 36.01 36.08 34.332 34.85 35.13 34.28
�1 − G 64.34 60.06 53.04 48.65 48.87 49.64 42.62 41.35 38.19 46.42
LRR − G 63.71 66.36 58.95 67.06 62.02 58.43 67.07 66.87 65.31 50.88
IQGD 48.9711 56.0716 36.022 42.5910 35.893 44.9411 34.393 34.728 35.568 35.797

LLGC
E3NN 59.37 58.32 50.23 52.18 48.93 48.86 46.95 42.76 46.75 42.08
M3NN 58.91 58.27 49.36 52.00 45.18 49.76 47.99 43.93 44.63 41.51
C3NN 55.43 49.36 36.78 41.76 40.95 42.59 40.79 36.56 37.81 38.05
E3M 47.37 46.47 38.19 43.18 39.35 36.81 36.59 32.82 35.31 35.66
M3M 48.97 44.80 36.373 39.12 36.96 35.603 35.18 33.44 34.44 35.03
C3M 46.06 41.85 38.25 38.18 38.51 39.64 36.40 33.01 36.94 33.523

�1 − G 61.94 61.04 59.82 56.88 59.40 59.04 57.50 56.44 59.63 60.38
LRR − G 63.54 67.05 60.23 67.06 61.43 55.96 67.07 62.88 60.31 57.86
IQGD 46.408 41.104 36.784 34.241 34.402 36.395 36.228 31.902 32.442 33.212

SSC-GCN
E3NN 52.38 48.44 46.11 50.56 52.13 50.14 49.20 63.12 57.63 44.44
M3NN 50.88 58.37 56.25 57.08 48.09 52.91 55.44 51.45 50.44 49.33
C3NN 44.08 54.01 42.36 63.19 49.01 48.58 56.23 47.32 45.11 59.56
E3M 43.953 43.20 49.72 51.46 52.84 55.75 54.93 53.12 57.48 50.44
M3M 49.12 52.11 44.31 57.57 65.53 47.31 66.96 62.83 56.37 72.89
C3M 56.40 64.76 45.76 48.96 53.48 73.33 63.55 49.71 63.70 48.22
�1 − G 37.281 38.782 37.36 39.79 38.01 33.191 36.09 42.75 44.59 40.07
LRR − G 42.182 44.76 51.88 46.53 47.73 51.28 50.65 54.28 49.93 43.78
IQGD 44.345 37.691 35.731 38.003 34.351 33.922 34.331 30.981 31.061 32.451
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Tables 16 and 17 show the classification error rate for the proposed methods and com-
parison methods on the last 2 data sets. Each table contains 5 columns and 12 rows. Each 
column corresponds to a labeled number and each row corresponds to a method. Similar to 
Tables 8–15, these 12 methods can also be divided into 3 groups.

Table 16 shows the classification error rate of the 12 methods on D9 data set. The fol-
lowing conclusions can be drawn from the table. 

Table 10   Data set D3 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 66.92 64.03 65.29 59.36 58.46 62.53 59.49 53.78 56.41 55.97
M3NN 61.682 60.68 59.46 55.69 55.07 59.19 54.23 51.04 52.03 53.51
C3NN 64.81 62.33 63.43 57.38 54.83 60.15 55.51 52.28 54.01 53.25
E3M 73.27 61.99 59.07 55.64 52.59 57.02 53.01 48.19 49.38 47.02
M3M 67.16 60.10 60.10 55.20 54.38 57.12 50.41 50.41 49.06 48.95
C3M 67.69 58.88 56.42 55.25 49.803 53.64 48.323 49.38 46.09 45.24
�1 − G 72.07 64.95 59.46 53.47 52.44 53.38 49.03 49.74 49.69 48.27
LRR − G 80.00 63.93 63.77 64.36 63.48 63.23 64.29 63.32 61.98 64.29
IQGD 62.694 53.503 52.352 49.512 48.411 50.152 45.312 43.732 45.893 42.092

LLGC
E3NN 70.58 63.93 68.43 56.78 55.77 63.28 56.12 54.30 54.22 53.87
M3NN 66.59 58.11 61.27 51.243 52.34 58.74 49.39 50.57 48.39 50.89
C3NN 70.72 60.05 62.70 54.95 53.73 59.60 53.21 50.36 50.63 50.21
E3M 72.07 64.81 59.90 57.77 55.77 56.57 52.45 52.90 50.00 49.95
M3M 68.41 62.28 60.00 54.21 56.57 57.88 51.48 54.40 50.42 52.20
C3M 65.77 56.21 55.78 53.86 50.40 52.73 48.78 47.203 44.582 44.193

�1 − G 78.89 63.88 62.99 60.74 61.54 62.27 60.87 60.47 62.08 63.14
LRR − G 84.09 64.22 64.90 64.36 63.73 64.65 64.29 64.25 63.54 64.40
IQGD 58.891 53.062 53.633 45.501 48.562 48.941 44.641 42.801 42.141 39.631

SSC-GCN
E3NN 68.85 70.29 69.17 66.44 60.95 69.90 65.36 63.06 61.46 57.70
M3NN 67.50 66.70 65.83 59.55 62.19 66.67 64.90 66.32 61.35 61.36
C3NN 70.34 66.17 63.87 64.80 61.69 66.26 61.53 61.71 63.07 62.72
E3M 73.41 68.69 66.67 60.84 59.65 67.98 60.61 55.13 65.42 60.84
M3M 72.55 64.85 64.76 59.90 57.31 60.61 63.88 64.25 60.26 60.58
C3M 72.21 69.56 58.09 62.57 58.76 60.00 59.44 59.69 61.51 57.33
�1 − G 73.75 65.49 63.38 59.80 63.23 60.56 64.90 59.90 63.13 57.75
LRR − G 79.81 69.85 66.72 67.92 63.38 64.85 64.69 60.21 62.29 63.35
IQGD 62.123 52.771 51.761 53.615 51.745 50.813 51.739 53.0613 52.6013 50.4210
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1.	 At 5 different numbers of labeled samples, the Harmonic-IQGD, LLGC-IQGD and 
SSC-GCN-IQGD under the GSSL-IQGD framework take the top 3 places among the 
12 methods.

2.	 As a direct result, the Harmonic-IQGD, LLGC-IQGD and SSC-GNC-IQGD methods 
defeat the Harmonic, LLGC and SSC-GCN using the other three graph construction 
methods, respectively. These results show that compared with the three kNN graphs, 
the proposed IQGD method can construct a better graph so as to obtain a better GSSL 
result.

Table 11   Data set D4 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 52.32 50.98 50.10 49.20 47.96 47.46 46.67 46.01 45.51 44.61
M3NN 52.34 51.01 50.12 49.26 48.09 47.60 46.82 46.18 45.66 44.85
C3NN 52.40 51.35 50.41 49.71 48.73 48.06 47.30 46.57 45.85 45.31
E3M 48.71 46.88 44.86 44.13 42.07 42.18 40.49 39.21 37.90 37.77
M3M 50.88 48.34 45.89 44.65 43.53 43.10 42.20 41.60 40.79 39.79
C3M 46.64 46.14 44.74 43.56 42.24 41.86 41.50 40.60 39.48 38.96
�1 − G 43.08 47.43 40.02 39.37 39.07 36.15 33.373 30.091 27.931 27.131

LRR − G 46.32 47.07 44.81 42.04 38.87 38.79 39.75 40.52 38.60 38.94
IQGD 43.8412 42.9312 36.683 38.157 36.774 34.843 34.935 35.476 33.794 33.614

LLGC
E3NN 43.96 43.71 41.68 40.33 38.39 37.64 37.20 36.81 35.25 34.70
M3NN 43.88 43.74 41.64 40.22 38.26 37.60 37.24 36.78 34.91 34.31
C3NN 44.16 43.66 42.50 41.50 39.78 39.15 38.53 37.94 37.07 36.93
E3M 39.98 40.63 38.05 37.39 36.033 34.91 34.41 35.32 34.35 34.33
M3M 41.86 40.49 38.17 37.98 37.02 36.58 37.00 37.61 36.22 36.41
C3M 46.58 46.66 43.51 42.67 41.11 40.76 39.99 39.64 38.57 38.31
�1 − G 47.69 46.81 43.99 40.30 43.26 38.15 39.07 38.75 36.98 41.22
LRR − G 46.32 46.33 46.29 46.31 46.27 46.29 46.30 46.32 46.28 46.30
IQGD 37.733 36.113 34.141 34.032 33.502 33.482 33.332 33.182 33.533 33.313

SSC-GCN
E3NN 44.08 42.25 48.50 40.02 40.53 42.75 36.83 38.69 39.70 41.00
M3NN 34.731 33.051 42.65 37.40 47.17 46.86 47.71 41.88 41.72 44.34
C3NN 45.85 41.52 46.85 40.42 38.67 45.71 40.01 44.04 49.31 41.97
E3M 41.77 43.57 41.43 34.153 44.25 40.16 48.53 35.39 46.90 35.34
M3M 39.56 37.75 40.46 43.74 40.04 47.14 41.22 39.97 39.53 40.80
C3M 43.53 39.00 39.40 44.91 37.94 37.02 40.09 41.29 42.58 41.42
�1 − G 40.92 38.43 40.63 40.54 40.67 46.96 38.25 39.75 42.98 40.67
LRR − G 40.90 41.31 44.52 42.05 38.49 40.18 43.92 43.18 37.33 40.68
IQGD 36.082 34.652 34.502 33.311 33.221 33.241 33.231 33.263 33.262 33.242
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Table 17 shows the classification error rate of the 12 methods on D10 data set. The fol-
lowing conclusions can be drawn from the table. 

1.	 For the Harmonic-IQGD, although it ranks in the top 3 only once among the 12 meth-
ods, it ranks first in its group and is significantly better than other methods in the same 
group. These results show that when the label inference method is fixed to Harmonic, 
the proposed IQGD method can construct a better graph compared with the three kNN 
graph construction methods.

2.	 The methods in the second group have a good performance on this data set. When 
the number of labeled samples is 10 and 50, the LLGC-IQGD method ranks first in 

Table 12   Data set D5 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 77.50 73.37 68.02 63.88 61.26 57.91 55.29 52.99 51.20 49.34
M3NN 78.97 74.03 68.77 64.59 60.43 58.82 55.58 54.03 51.68 48.22
C3NN 77.76 71.63 67.23 62.03 59.07 56.12 53.81 50.97 48.73 47.44
E3M 44.70 39.92 33.28 28.63 27.62 26.90 22.05 21.90 20.74 20.13
M3M 42.48 34.92 27.093 25.853 23.073 22.063 19.143 18.242 17.331 16.331

C3M 42.39 36.41 30.83 26.45 24.82 23.10 19.48 19.34 17.372 17.73
�1 − G 81.67 68.39 58.17 46.75 49.00 35.71 37.19 30.56 29.28 26.96
LRR − G 84.48 85.36 84.95 83.58 82.42 84.72 81.31 79.07 76.03 78.90
IQGD 46.039 31.862 23.232 19.792 21.022 19.762 18.942 18.413 18.644 17.232

LLGC
E3NN 64.53 54.18 45.58 42.45 37.23 33.63 30.88 29.87 28.06 27.30
M3NN 65.34 56.29 48.40 41.61 36.34 36.26 31.21 30.14 27.31 25.47
C3NN 66.03 55.71 49.33 42.33 38.06 35.34 30.94 29.66 27.85 26.73
E3M 44.32 40.35 32.30 29.71 28.50 28.08 25.35 23.57 23.88 24.16
M3M 39.913 34.64 29.75 26.17 26.08 24.25 23.31 23.32 22.57 22.04
C3M 40.92 37.18 30.06 26.19 25.52 25.87 20.29 21.03 19.17 20.43
�1 − G 75.84 64.20 64.33 64.31 66.97 58.78 61.35 58.75 55.21 54.02
LRR − G 83.64 84.77 85.71 85.66 84.92 85.71 85.70 85.69 85.69 85.71
IQGD 29.381 23.381 20.241 19.671 19.521 19.291 18.371 18.031 17.583 17.283

SSC-GCN
E3NN 79.36 76.13 78.00 81.76 76.32 76.97 77.37 79.32 78.01 76.77
M3NN 77.02 75.87 75.51 75.57 76.75 76.53 80.69 78.58 76.73 75.50
C3NN 75.94 79.21 79.20 78.74 78.28 78.60 77.25 79.45 76.53 75.66
E3M 78.95 79.49 78.73 75.69 79.52 78.48 78.53 82.23 75.20 73.03
M3M 77.85 78.87 77.69 80.42 76.62 76.95 77.35 75.51 74.04 75.44
C3M 76.00 76.41 77.15 77.88 75.50 78.42 69.83 85.39 74.66 77.41
�1 − G 82.55 77.09 80.34 83.52 74.08 80.02 82.55 78.99 76.13 80.20
LRR − G 80.62 77.48 79.24 80.47 79.74 79.65 80.05 78.13 83.68 82.59
IQGD 34.462 33.123 31.397 30.199 27.047 28.779 28.099 29.459 27.5910 28.1613
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this group. And for the remaining number of labeled samples, the LLGC method with 
three different kNN graphs performs better. These results show that when the number 
of labeled samples is smaller, the proposed IQGD method outperforms the other three 
graph construction methods for GSSL.

3.	 For the SSC-GCN-IQGD method, it ranks first in its group at first 4 different numbers 
of labeled samples and ranks second in the last case. These results show that when the 
label inference method is fixed to SSC-GCN, the proposed IQGD method can construct 
a better graph so as to improve the performance of the SSC-GCN method.

Table 13   Data set D6 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 56.18 49.11 49.24 47.78 46.58 45.99 44.11 44.29 44.07 44.72
M3NN 54.79 47.77 48.43 44.90 44.67 43.21 44.01 42.57 42.71 41.87
C3NN 50.51 46.80 47.12 45.25 45.02 44.23 43.40 43.78 43.17 43.23
E3M 27.79 25.65 25.24 23.63 23.33 23.35 22.71 22.63 22.74 22.40
M3M 29.76 27.21 25.06 24.19 23.99 23.53 23.73 23.03 23.22 23.13
C3M 28.33 26.24 25.14 22.94 23.09 23.14 22.70 22.83 22.89 22.42
�1 − G 65.54 64.86 62.31 60.88 59.89 56.19 54.94 55.72 54.19 51.80
LRR − G 64.85 65.17 64.81 64.14 64.92 65.10 65.12 64.99 65.16 65.03
IQGD 24.372 21.482 20.031 19.622 19.102 18.832 18.452 18.302 18.601 18.322

LLGC
E3NN 42.15 37.84 40.21 33.28 35.24 32.79 30.91 33.68 30.22 31.29
M3NN 43.54 36.21 37.75 35.34 35.45 34.41 34.29 35.52 32.82 33.34
C3NN 42.67 40.74 47.24 42.84 39.94 40.26 38.88 39.78 39.06 40.83
E3M 26.74 25.14 24.93 23.38 23.53 23.12 22.42 22.50 22.94 22.41
M3M 28.08 26.44 25.10 23.69 23.76 23.38 23.10 23.26 22.60 22.40
C3M 26.66 25.87 24.59 22.47 22.81 22.57 21.69 22.36 22.35 21.85
�1 − G 65.37 63.27 63.60 64.27 63.41 63.85 63.16 62.63 64.97 62.80
LRR − G 65.16 65.17 65.15 65.16 65.15 65.16 65.14 65.15 65.16 65.14
IQGD 22.191 20.101 20.102 19.261 18.361 18.701 18.341 18.111 18.732 18.301

SSC-GCN
E3NN 30.18 26.43 25.23 25.96 25.18 23.30 25.26 23.72 23.75 23.15
M3NN 31.93 29.18 26.79 24.57 25.49 24.55 23.78 24.21 23.55 24.33
C3NN 29.46 30.35 26.56 27.35 25.31 23.78 24.42 25.05 24.08 24.96
E3M 32.61 26.52 25.73 25.14 24.81 24.64 22.41 21.99 22.66 23.03
M3M 32.09 27.52 26.44 25.54 24.61 23.55 22.82 22.78 23.06 22.90
C3M 32.68 27.20 25.87 25.31 24.85 23.80 23.81 22.88 23.54 23.10
�1 − G 37.67 33.32 36.42 29.21 30.71 28.42 28.49 27.73 25.74 29.23
LRR − G 42.01 41.09 44.95 38.66 38.76 41.68 41.17 35.99 37.49 36.30
IQGD 25.613 23.353 24.363 20.743 22.063 20.433 19.923 20.243 19.783 19.663
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To more intuitively exhibit the performance of each method, Fig.  5 shows the mean and 
standard deviation of the rankings of the 27 methods in the whole experiment. The mean and 
standard deviation of the ranking of each method are computed through 8 × 10 = 80 rank-
ingp results (the first 8 data sets and 10 different labeled ratios on each data set). In Fig. 5, 
each method corresponds to a line segment, the midpoint of the line segment represents the 
mean of this method’s rank, the length of the line segment represents twice the standard devi-
ation. And the methods in the 3 groups are marked with 3 different colors and shapes.

As seen from Fig. 5, among all the 27 methods, the LLGC-IQGD, SSC-GCN-IQGD 
and Harmonic-IQGD are the top 3 methods, and are significantly better than the rank 
in the 4th method LLGC-C3M. On the other hand, the Harmonic-IQGD, LLGC-IQGD 

Table 14   Data set D7 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 48.34 48.64 48.06 48.46 47.96 48.17 47.83 47.67 47.40 47.10
M3NN 50.05 49.83 49.46 49.38 49.45 49.16 49.00 49.24 48.92 48.21
C3NN 48.58 48.12 47.42 46.41 46.14 44.46 44.71 43.30 43.06 42.69
E3M 49.82 47.77 46.34 44.94 44.63 42.60 43.24 42.75 41.67 42.21
M3M 49.25 47.12 46.37 45.73 46.29 44.74 44.58 44.30 43.78 43.04
C3M 49.41 46.90 44.64 44.40 44.28 42.95 43.13 42.30 41.37 42.01
�1 − G 49.93 50.30 50.13 50.12 50.04 50.30 49.55 49.94 50.04 50.90
LRR − G 50.05 50.25 50.20 50.43 50.22 50.43 49.91 50.36 50.68 51.01
IQGD 27.583 24.123 25.883 24.062 24.702 23.393 23.692 23.862 24.022 23.643

LLGC
E3NN 49.99 49.99 49.17 48.76 49.12 49.48 50.00 49.65 48.95 49.09
M3NN 50.07 49.90 49.65 49.79 49.82 49.18 49.69 49.62 48.92 47.70
C3NN 48.88 48.68 47.39 46.78 45.86 44.55 44.79 46.17 44.76 44.35
E3M 49.95 46.99 45.93 44.42 44.48 42.52 43.22 42.88 41.44 42.04
M3M 49.32 46.66 46.42 45.49 46.30 45.26 44.39 44.44 43.94 43.30
C3M 49.16 46.64 44.37 44.29 44.22 42.81 43.45 42.09 41.22 41.44
�1 − G 50.26 50.29 50.17 50.34 49.97 50.18 49.25 50.16 50.04 50.29
LRR − G 50.46 50.30 50.39 50.13 50.12 49.99 49.76 50.38 50.34 50.27
IQGD 23.572 23.152 25.012 24.403 24.713 23.262 23.692 23.862 24.022 23.342

SSC-GCN
E3NN 49.35 47.06 45.74 45.43 42.56 42.60 44.27 42.22 41.95 40.64
M3NN 50.04 47.37 45.25 44.24 44.87 41.50 42.20 40.36 40.50 39.70
C3NN 48.74 48.12 45.47 43.12 43.01 41.84 42.27 39.97 40.67 40.76
E3M 48.58 45.06 45.72 44.68 43.62 44.85 41.21 41.96 41.44 40.50
M3M 45.90 45.38 44.72 44.77 43.20 42.19 42.48 39.95 41.75 40.10
C3M 48.92 45.39 45.32 44.99 44.14 43.26 41.84 42.86 40.42 40.50
�1 − G 46.89 44.83 43.55 43.22 41.16 41.45 40.33 40.32 40.73 39.18
LRR − G 45.11 40.85 37.26 35.68 33.37 32.91 31.89 30.43 30.29 29.82
IQGD 15.531 13.951 13.651 13.151 13.131 12.911 13.041 12.931 12.921 13.021



1380	 Machine Learning (2021) 110:1345–1388

1 3

and SSC-GCN-IQGD methods are the best methods and are significantly better than the 
rank in the 2nd methods in the three groups respectively.

Based on the above experimental results, it can be concluded that compared with the 
common used graph construction methods, the proposed IQGD method can construct a 
better graph for GSSL. At the same time, the proposed GSSL-IQGD is a general frame-
work and the performance of different GSSL methods can be improved by embedding 
them into it.

Table 15   Data set D8 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

Harmonic
E3NN 50.44 50.18 49.95 49.73 49.21 49.48 49.34 48.91 49.33 48.84
M3NN 49.18 48.96 48.43 48.12 48.05 47.59 47.53 47.13 47.18 46.50
C3NN 45.79 45.36 43.60 43.43 42.46 41.90 40.76 40.52 40.95 39.56
E3M 47.59 45.94 43.87 42.36 41.49 41.68 40.35 40.46 39.17 38.87
M3M 47.68 45.28 43.87 43.69 43.37 43.26 41.49 41.23 41.24 40.57
C3M 48.79 47.13 44.78 43.79 42.21 43.02 41.44 41.19 39.92 39.62
�1 − G 49.63 50.03 49.61 49.34 49.07 49.17 49.12 49.60 49.41 49.18
LRR − G 49.98 49.90 49.88 49.92 49.22 49.59 49.33 49.18 49.84 49.66
IQGD 15.273 11.222 13.033 11.603 11.242 11.492 11.512 11.933 11.072 11.702

LLGC
E3NN 49.41 49.69 50.03 48.99 49.08 48.82 49.71 49.29 49.85 48.80
M3NN 49.90 49.71 49.41 49.38 49.59 48.90 49.55 49.03 48.47 48.85
C3NN 48.58 49.28 48.93 49.56 49.28 48.96 48.87 49.78 49.52 49.75
E3M 47.54 46.37 44.29 42.90 41.29 41.81 40.64 41.04 39.38 39.56
M3M 46.95 44.91 43.80 43.84 43.27 43.07 41.36 41.30 40.95 40.93
C3M 48.19 4724 44.66 43.77 42.23 43.13 41.79 41.54 40.06 39.79
�1 − G 49.65 49.90 49.68 49.89 49.73 49.81 50.27 49.79 49.48 49.97
LRR − G 49.78 49.90 49.72 49.90 49.69 49.89 49.99 49.89 49.73 49.89
IQGD 10.422 11.993 12.422 11.322 11.253 11.492 11.512 11.652 11.333 11.702

SSC-GCN
E3NN 47.73 45.96 45.70 44.17 44.80 43.40 42.09 42.38 39.10 39.81
M3NN 48.52 49.16 44.35 44.41 43.76 44.54 42.02 41.97 40.57 40.08
C3NN 48.38 47.60 44.43 44.22 42.99 42.26 39.92 39.94 40.11 38.61
E3M 48.81 45.68 45.46 41.86 43.15 41.36 39.14 40.65 40.41 39.56
M3M 47.39 46.39 45.92 43.36 42.96 41.54 37.86 40.15 39.75 39.30
C3M 47.37 47.02 44.35 42.65 42.61 42.04 39.26 40.45 39.25 37.78
�1 − G 47.18 45.45 43.07 41.24 40.77 40.80 39.59 40.21 38.97 37.54
LRR − G 42.57 39.57 38.11 35.53 33.76 32.63 30.86 31.01 29.41 28.62
IQGD 5.121 5.021 4.791 5.071 4.751 4.881 4.411 4.421 4.501 4.701
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4.3 � Compared with GSSL based on dynamic graph construction methods

4.3.1 � Date sets

In this section, the first 8 data sets5 shown in Table 5 are used in the experiment. The ratio 
of the labeled samples and the division of labeled and unlabeled samples are the same as 
the experiment in Sect. 4.2.

Table 16   Data set D9 
classification error rate (%)

Method # Labeled samples: l

1 × 3 5 × 3 10 × 3 15 × 3 20 × 3

Harmonic
E3NN 78.86 77.89 76.88 75.57 74.47
M3NN 74.07 74.36 72.77 72.27 70.37
C3NN 74.37 74.74 74.94 74.20 72.86
IQGD 61.273 50.973 45.733 45.113 43.273

LLGC
E3NN 77.15 73.66 63.99 62.02 55.68
M3NN 67.87 60.44 55.14 51.28 50.05
C3NN 68.50 62.10 64.09 63.88 56.87
IQGD 52.662 47.502 45.352 44.752 42.822

SSC-GCN
E3NN 79.20 79.20 79.22 79.23 79.24
M3NN 79.20 79.20 79.22 79.24 79.24
C3NN 79.20 79.18 79.14 79.29 79.17
IQGD 34.121 25.541 28.781 39.991 22.451

Table 17   Data set D10 
classification error rate (%)

Method # Labeled samples: l

1 × 10 5 × 10 10 × 10 15 × 10 20 × 10

Harmonic
E3NN 81.08 58.87 50.43 45.62 42.17
M3NN 77.53 56.55 50.88 45.90 44.80
C3NN 81.15 60.15 57.11 52.14 49.59
IQGD 71.922 47.925 26.744 25.245 23.485

LLGC
E3NN 74.92 37.893 23.091 17.882 15.482

M3NN 74.813 41.70 27.38 21.173 22.47
C3NN 79.46 37.842 23.722 16.391 12.391

IQGD 50.901 28.491 25.843 24.694 22.093

SSC-GCN
E3NN 82.66 61.10 51.10 43.33 38.35
M3NN 82.20 60.43 50.80 43.14 39.69
C3NN 81.03 61.79 47.35 40.73 36.83
IQGD 76.965 53.746 44.976 38.606 37.187

5  Because of the high time complexity of the comparison method. In this section, we did not carry out the 
comparison experiment on the last two data sets.
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4.3.2 � Comparison methods and experimental setting

In this experiment, 3 different GSSL methods based on dynamic graph construction meth-
ods are selected for comparison. The 3 methods and their settings are described as follows.

The STSSL-S3 R (Semi-Supervised Sparse Representation) and the STSSL-S2LRR 
(Semi-Supervised Low Rank Representation) are two specific methods based on the frame-
work proposed in literature (Li et al. 2015). In the STSSL-S3 R (STSSL-S2LRR) method, 
the semi-supervised sparse (low rank) representation based graph construction and the 
Harmonic likewise label inference are integrated into a unified optimization framework. 
The alternating minimization algorithm is used to solve the optimization problem. In the 
process of model solving, the graph constructed by semi-supervised sparse (low rank) rep-
resentation is updated dynamically. In this experiment, the model hyper-parameters [ � and 
� , see formula (13) in literature (Li et  al. 2015)] and the optimization hyper-parameters 
[ � and �1 see Algorithm 1 in the literature (Li et al. 2015)] are set to the default values in 
author’s code6.

The MGR-GGMC (Multiple Graph Regularized graph transduction via Greedy Gra-
dient Max-Cut) method was proposed in literature (Xiu et al. 2018). In this method, the 
weighted sum of multiple graph smoothness terms and multiple greedy gradient max-cut 
based label inference are integrated into a unified optimization framework. In the process 
of model solving, the weights of multiple graph smoothness terms and the multiple label 
inference results are updated alternatively. In this method, the graph construction process 
essentially is a dynamic weighted fusion of multiple base graphs. And these base graphs 
are constructed by common used methods, for example the kNN graph. In this experiment, 
the hyper-parameters are set to the recommended values in the article, i.e. � = 0.99 and 
� = 0.1 [see Sect. 3.2 in the literature (Xiu et al. 2018)]. At the same time, the multiple base 
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Fig. 5   Mean and standard deviation of rankings of 27 methods on the first 8 data sets

6  http://​www.​pris.​net.​cn/​intro​ducti​on/​teach​er/​lichu​nguang

http://www.pris.net.cn/introduction/teacher/lichunguang
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graphs used in MGR-GGMC method are same as the 8 different graphs used in Sect. 4.2, 
see Table 6 for details.

At last, the SLLI-IQGD method described in formula (30), one of the simplest methods 
in the proposed framework, is used for comparison. In this experiment, the hyper-parame-
ters of SLLI-IQGD method are set to �fit = �smooth = �ml = �cl = 0.5 , which is the same as 
the setting in Sect. 4.1. At the same time, the multiple clustering results used in the SLLI-
IQGD method are those used in the Harmonic-IQGD method in section 4.2 (see Table 7).

4.3.3 � Experimental results and analysis

Tables 18 and 19 show the classification error of the 3 comparison methods and the pro-
posed SLLI-IQGD method on the D1-D4 data sets and the D5-D8 data sets respectively. 
For each comparison experiment (given a data set and a labeled ratio), the bold marks rep-
resent the best results of the four methods.

The following conclusions can be drawn from Tables 18 and 19. 

1.	 On the 6 data sets (D1 and D4–D8), the performance of the proposed SLLI-IQGD 
method significantly outperforms that of the other 3 comparison methods at 10 different 
ratios of labeled sample.

Table 18   Data sets D1- D4 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

D1
STSSL-S3R 42.72 42.31 41.46 37.01 42.41 37.94 32.32 30.22 28.74 29.85
STSSL-S2LRR 37.48 36.60 30.83 35.56 31.99 29.50 30.80 28.41 29.41 30.59
MG-GGMC 45.03 40.75 43.13 38.54 40.71 41.13 35.80 36.23 43.85 42.89
SLLI-IQGD 8.98 10.34 9.03 10.14 9.79 8.65 5.00 9.42 5.70 5.26
D2
STSSL-S3R 55.03 49.48 42.22 36.94 42.02 42.53 30.24 23.01 27.56 30.69
STSSL-S2LRR 58.46 54.39 45.26 48.18 40.89 40.84 48.11 35.71 44.75 37.80
MG-GGMC 62.29 63.93 59.42 59.18 55.48 62.11 56.28 56.07 57.94 59.31
SLLI-IQGD 40.11 38.73 34.44 36.18 32.80 35.42 34.09 31.72 32.19 33.02
D3
STSSL-S3R 66.88 62.67 55.49 49.36 48.61 52.12 49.08 45.96 48.07 44.55
STSSL-S2LRR 58.56 65.63 64.95 64.36 63.78 62.53 64.29 64.25 64.64 64.40
MG-GGMC 71.73 75.68 73.43 71.63 71.44 71.82 71.84 71.71 73.65 72.57
SLLI-IQGD 60.29 55.19 53.24 47.28 49.01 46.92 43.37 43.11 42.92 39.69
D4
STSSL-S3R 46.32 46.33 46.29 46.31 46.27 46.29 46.30 46.32 46.28 46.30
STSSL-S2LRR 40.28 44.54 42.58 37.74 37.72 35.26 35.20 34.98 34.81 32.11
MG-GGMC 45.27 47.09 47.83 48.74 47.79 48.01 47.60 50.19 49.27 49.85
SLLI-IQGD 37.73 36.11 34.14 34.03 33.50 33.48 33.33 33.18 33.53 33.31
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2.	 On the D2 data set, the performance of the proposed SLLI-IQGD method outperforms 
that of the other 3 comparison methods at the first 6 labeled ratios and its performance 
is better than the STSSL-S2LRR and MGR-GGMC methods at the last 4 labeled ratios.

3.	 On the D3 data set, the performance of the proposed SLLI-IQGD method outperforms 
that of the other 3 comparison methods at the 8 different labeled ratios (except for 1% 
and 5% ). At labeled ratio 1% , the STSSL-S2LRR method obtains a better result than the 
proposed SLLI-IQGD method. And at labeled ratio 5% , the performance of the STSSL-
S3 R method is better than the proposed SLLI-IQGD method.

4.	 To sum up, the proposed SLLI-IQGD method is significantly superior to the 3 compari-
son methods in most cases. The advantages of the proposed SLLI-IQGD method are 
more significant when the labeled ratio is small.

Although the STSSL-S3 R (STSSL-S2LRR) method realizes the mutual guidance 
between sparse (low rank) representation based graph construction and graph based 
label inference. But they still make a strong assumption about the data distribution, that 
is, assuming that the data distribution satisfies the subspace structure. These two methods 
alternately optimize the label inference result and sparse (low-rank) representation coef-
ficient matrix. When the assumption is not satisfied, it makes the model go further and 
further in the wrong direction. Therefore. In this experiment, these two methods are diffi-
cult to achieve a good result. Different from them, the SLLI-IQGD uses different clustering 

Table 19   Data sets D5–D8 classification error rate (%)

Method Ratio of labeled samples: l∕n (%)

1 2 3 4 5 6 7 8 9 10

D5
STSSL-S3R 36.35 30.78 27.71 23.51 24.62 22.55 21.49 19.27 18.68 19.39
STSSL-S2LRR 79.88 69.42 61.15 54.20 53.14 48.29 49.72 43.39 44.24 38.56
MG-GGMC 63.81 50.25 52.47 42.00 48.26 48.56 48.59 49.00 46.64 55.60
SLLI-IQGD 31.04 24.67 21.46 20.29 20.63 19.36 18.59 18.68 18.11 17.53
D6
STSSL-S3R 63.55 62.19 58.96 57.60 56.23 52.97 51.97 52.20 51.23 49.43
STSSL-S2LRR 62.55 65.17 63.74 63.52 63.18 65.01 65.08 63.73 65.15 64.97
MG-GGMC 47.14 51.59 50.88 54.47 55.33 54.79 54.80 56.06 61.58 54.87
SLLI-IQGD 21.87 19.99 19.81 19.59 18.47 18.84 18.34 18.12 18.70 18.24
D7
STSSL-S3R 50.15 50.37 50.16 49.83 50.18 50.31 50.03 49.85 49.93 50.25
STSSL-S2LRR 49.96 50.00 49.90 50.06 49.89 50.02 50.02 49.99 50.03 50.22
MG-GGMC 49.89 49.71 48.67 48.43 49.63 49.52 49.51 50.45 50.26 50.77
SLLI-IQGD 26.00 23.55 25.48 25.27 25.02 23.64 23.67 23.75 24.02 23.34
D8
STSSL-S3R 49.57 50.01 49.54 49.25 49.28 49.23 49.27 49.49 49.55 49.08
STSSL-S2LRR 49.72 49.90 49.91 49.95 50.79 49.86 50.28 49.50 50.07 49.84
MG-GGMC 49.91 49.97 48.19 48.76 47.77 49.00 48.80 50.07 49.50 49.73
SLLI-IQGD 12.20 11.74 12.70 12.15 11.09 11.49 11.51 11.91 11.29 11.71
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methods to mine a variety of possible data distribution structures, which weakens the 
dependence on data distribution assumptions. At the same time, by designing a reasonable 
learning scheme of the weights of multiple clustering results, the dynamic improvement of 
the graph quality is achieved, so a better result can be obtained.

The MGR-GGMC method integrates the smoothing terms on multiple base graphs and 
multiple greedy gradient max-cut based label inference into a unified optimization prob-
lem. Compared with the proposed SLLI-IQGD method, there are three differences. First, 
the base graphs used in MGR-GGMC are obtained by conventional graph construction 
methods, while the base graphs in the proposal are obtained by different clustering meth-
ods. Compared with the conventional graph construction methods, the clustering method 
can mine the potential data distribution structure more effectively. Second. In the MGR-
GGMC method, label inference is performed on every base graph. In the proposed method, 
it is carried out on the fused graph. In this way, the graph obtained by fusion of multiple 
clustering results can guide graph-based label propagation more effectively. Third. In the 
MGR-GGMC method, the the learning process of weights of multiple base graph is only 
guild by the intermediate label inference result. In the proposed method, the the learning 
process of weights of multiple clustering results is jointly guild by three factors: the inter-
mediate label inference result, the “must link” supervision information and the “cannot 
link” supervision information. So the proposed method can learn better weights so as to 
construct a better graph. Therefore, compared with the MGR-GGMC method, the method 
in this paper can achieve a better result.

Through the experiments in this section, the following conclusions can be drawn. Com-
pared with the existing GSSL methods. Including adopting the dynamic graph construction 
method based on data representation and multiple graphs fusion, the method proposed in 
this paper can construct a better graph so as to obtain a better performance.

5 � Conclusions and future work

This paper proposes a general framework named GSSL-IQGD for improving the quality 
of the graph in GSSL and the performance of existing GSSL methods. In this framework, 
the two processes, graph construction based on the weighted fusion of multiple clustering 
results and label inference are integrated into a unified optimization problem. In the model 
solving, these two processes are alternately executed and guided by each other, which real-
izes the dynamic improvement of the quality of the graph and the result of label infer-
ence. In the experiment, firstly, three toy examples illustrate the working mechanism of the 
method. Then, a large number of comparative experiments verify the effectiveness of the 
proposed IQGD for improving the quality of the graph in GSSL. Meanwhile, these experi-
mental results also indicate that the proposed GSSL-IQGD method is a general method, 
i.e. it can be used to improve the performance of existing different GSSL methods. Finally, 
the advantage of the proposed GSSL-IQGD method compared with other existing GSSL 
methods based on dynamic graph construction is verified through a large number of com-
parative experiments.

The method proposed in this paper is a general framework. In the experiment, three 
classic GSSL methods were chosen to be embedded into the framework and the desired 
performance gains were achieved. In the future, embedding other classic GSSL methods 
into the framework proposed in this paper to improve the performance of these methods 
is a worthwhile research work. In addition, similar to most GSSL methods, the method 
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proposed in this paper belongs to the transductive learning method. How to extend it to 
inductive learning is also a meaningful research direction.

Acknowledgements  This work is supported by the National Key Research and Development Program 
of China (under Grant 2020AAA0106100) and the National Natural Science Foundation of China (Nos. 
61876103, 61772323).

References

Bai, L., Liang, J. Y., & Guo, Y. (2018). An ensemble clusterer of multiple fuzzy k-means clusterings to rec-
ognize arbitrarily shaped clusters. IEEE Transactions on Fuzzy Systems, 26(6), 3524–3533.

Basu, S., Banerjee, A. & Mooney, R. J. (2002). Semi-supervised clustering by seeding. In: Proceedings of 
the 19th International Conference on Machine Learning (pp. 27–34). Sydney, Australia.

Belkin, M., & Niyogi, P. (2008). Towards a theoretical foundation for laplacian-based manifold methods. 
Journal of Computer and System Sciences, 74(8), 1289–1308.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learn-
ing from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399–2434.

Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N., Oliver, A., & Raffel, C. (2019). Mixmatch: a 
holistic approach to semi-supervised learning. In: B. C. Vancouver (Ed.), Advances in neural informa-
tion processing systems 32. Annual conference on neural information processing systems (pp. 5050–
5060). Canada.

Berton, L. & de Andrade Lopes, A. (2014). Graph construction based on labeled instances for semi-super-
vised learning. In: Proceedings of the 22nd international conference on pattern recognition (pp. 2477–
2482). Stockholm, Sweden.

Berton, L., de  Paulo  Faleiros, T.,   Valejo, A., Valverde-Rebaza, J.  C., &   de  Andrade  Lopes, A. (2017). 
RGCLI: Robust graph that considers labeled instances for semi-supervised learning, Neurocomputing 
226,  238–248.

Blum, A. & Mitchell, T. M. (1998). Combining labeled and unlabeled data with co-training. In: Proceedings 
of the 11th Annual Conference on Computational Learning Theory (pp. 92–100). Madison, Wisconsin, 
USA.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: The MIT Press.
Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support 

vector machines. Journal of Machine Learning Research, 9, 203–233.
Chen, D., Wang, W., Gao, W. & Zhou, Z. H. (2018). Tri-net for semi-supervised deep learning. In: Proceed-

ings of the 27th international joint conference on artificial intelligence (pp. 2014–2020). Stockholm, 
Sweden.

Cheng, B., Yang, J., Yan, S., Fu, Y., & Huang, T. S. (2010). Learning with �
1
-graph for image analysis. 

IEEE Transactions on Image Processing, 19(4), 858–866.
Cozman, F. G. & Cohen, I. (2002). Unlabeled data can degrade classification performance of generative 

classifiers. In: Proceedings of the 15th international florida artificial intelligence society conference 
(pp. 327–331). Pensacola, FL.

Dai, Z., Yang, Z., Yang, F., Cohen, W. W., & Salakhutdinov, R. (2017). Good semi-supervised learning that 
requires a bad GAN. Advances in neural information processing systems 30. In: Annual conference on 
neural information processing systems (pp. 6510–6520). Long Beach, CA, USA.

De Sousa, C. A. R., Rezende, S. O. & Batista, G. E. (2013). Influence of graph construction on semi-super-
vised learning. In: Proceedings of joint european conference on machine learning and knowledge dis-
covery in databases (pp. 160–175). Springer.

Ester, M., Kriegel, H., Sander, J. & Xu, X. (1996). A density-based algorithm for discovering clusters in 
large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge 
discovery and data mining (pp. 226–231). Portland, Oregon, USA.

Fred, A. L. N., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.

Ghazvininejad, M., Mahdieh, M., Rabiee, H. R., Roshan, P. K. & Rohban, M. H. (2011). Isograph: Neigh-
bourhood graph construction based on geodesic distance for semi-supervised learning. In: Proceedings 
of the 11th IEEE international conference on data mining (pp. 191–200). Vancouver, BC, Canada.



1387Machine Learning (2021) 110:1345–1388	

1 3

Huang, B. C. & Jebara, T. (2007). Loopy belief propagation for bipartite maximum weight b-matching. In: 
Proceedings of the 11th international conference on artificial intelligence and statistics (pp.  195–
202). San Juan, Puerto Rico.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.
Jebara, T., Wang, J. & Chang, S. F. (2009). Graph construction and b-matching for semi-supervised learn-

ing. In: Proceedings of the 26th International conference on machine learning (pp. 441–448). Mon-
treal, Quebec, Canada.

Jiang, B., Zhang, Z., Lin, D., Tang, J. & Luo, B. (2019). Semi-supervised learning with graph learning-
convolutional networks. In: Proceedings of the 32nd IEEE conference on computer vision and pattern 
recognition (pp. 11313–11320).  Long Beach, CA, USA.

Joachims, T. (1999). Transductive inference for text classification using support vector machines. In: Pro-
ceedings of the 16th international conference on machine learning (pp. 200–209). Bled, Slovenia.

Karlen, M., Weston, J., Erkan, A. & Collobert, R. (2008). Large scale manifold transduction. In: Proceed-
ings of the 25th International conference on machine learning (pp. 448–455). Helsinki, Finland.

Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep 
generative models. Advances in Neural Information Processing Systems 27. In: Annual conference on 
neural information processing systems (pp. 3581–3589). Montreal, Quebec, Canada.

Kipf, T. N. & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In: 
The 5th international conference on learning representations, Toulon, France.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep neu-

ral networks. In: Proceedings of the 30th international conference on machine learning, Atlanta, GA, 
USA.

Li, Q., Han, Z. & Wu, X. (2018). Deeper insights into graph convolutional networks for semi-supervised 
learning. In: Proceedings of the 32nd aaai conference on artificial intelligence (pp.3538–3545). New 
Orleans, Louisiana, USA.

Li, C., Lin, Z., Zhang, H. & Guo, J. (2015). Learning semi-supervised representation towards a unified 
optimization framework for semi-supervised learning. In: Proceedings of the 15th IEEE international 
conference on computer vision (pp. 2767–2775). Santiago, Chile.

Li, Y. F., Wang, S. B. & Zhou, Z. H. (2016). Graph quality judgement: A large margin expedition. In: Pro-
ceedings of the 25th International joint conference on artificial intelligence (pp. 1725–1731). New 
York, NY, USA.

Li, C., Xu, T., Zhu, J., & Zhang, B. (2017). Triple generative adversarial nets. Advances in neural infor-
mation processing systems 30. In: Annual conference on neural information processing systems (pp. 
4088–4098). Long Beach, CA, USA.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-
rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184.

Li, Y. F., & Zhou, Z. H. (2015). Towards making unlabeled data never hurt. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 37(1), 175–188.

Michalski, R. S., & Anderson, J. R. (1984). Machine learning—an artificial intelligence approach, symbolic 
computation. Berlin: Springer.

Park, S., Park, J., Shin, S. & Moon, I. (2018). Adversarial dropout for supervised and semi-supervised learn-
ing. In: Proceedings of the 32nd AAAI conference on artificial intelligence (pp. 3917–3924).  New 
Orleans, Louisiana, USA.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., & Raiko, T. (2015). Semi-supervised learning with 
ladder networks. Advances in neural information processing systems 28. In: Annual conference on 
neural information processing systems (pp. 3546–3554). Montreal, Quebec, Canada.

Rustamov, R. M. & Klosowski, J. T. (2018). Interpretable graph-gased semi-supervised learning via flows. 
In: Proceedings of the 22nd AAAI conference on artificial intelligence  (pp. 3976–3983). New Orleans, 
Louisiana, USA.

Sechidis, K., & Brown, G. (2018). Simple strategies for semi-supervised feature selection. Machine Learn-
ing, 107(2), 357–395.

Shahshahani, B. M., & Landgrebe, D. A. (1994). The effect of unlabeled samples in reducing the small 
sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geoscience and 
Remote Sensing, 32(5), 1087–1095.

Sheikhpour, R., Sarram, M. A., Gharaghani, S., & Chahooki, M. A. Z. (2017). A survey on semi-supervised 
feature selection methods. Pattern Recognition, 64, 141–158.

Subramanya, A., & Bilmes, J. (2011). Semi-supervised learning with measure propagation. Journal of 
Machine Learning Research, 12, 3311–3370.



1388	 Machine Learning (2021) 110:1345–1388

1 3

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear 
dimensionality reduction. Science, 290(5500), 2319–2323.

Triguero, I., García, S., & Herrera, F. (2015). Self-labeled techniques for semi-supervised learning: Tax-
onomy, software and empirical study. Knowledge and Information Systems, 42(2), 245–284.

Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Maching Learning, 
109(2), 373–440.

Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. (2001). Constrained k-means clustering with background 
knowledge. In: proceedings of the 18th international conference on machine learning (pp. 577–584). 
Williams College, Williamstown, MA, USA,.

Wang, W. & Zhou, Z. H. (2010). A new analysis of co-training. In: Proceedings of the 27th international 
conference on machine learning (pp. 1135–1142). Haifa, Israel.

Wang, F., & Zhang, C. S. (2008). Label propagation through linear neighborhoods. IEEE Transactions on 
Knowledge and Data Engineering, 20(1), 55–67.

Wei, T., Guo, L., Li, Y., & Gao, W. (2018). Learning safe multi-label prediction for weakly labeled data. 
Machine Learning, 107(4), 703–725.

Weston, J., Ratle, F. & Collobert, R. (2008). Deep learning via semi-supervised embedding. In: Proceedings 
of the 25th international conference on machine learning (pp. 1168–1175). Helsinki, Finland.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse repre-
sentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

Xiu, Y., Shen, W., Wang, Z., Liu, S., & Wang, J. (2018). Multiple graph regularized graph transduction via 
greedy gradient max-cut. Information Sciences, 423, 187–199.

Yan, S. & Wang, H. (2009). Semi-supervised learning by sparse representation. In: Proceedings of the SIAM 
international conference on data mining (pp. 792–801). Sparks, Nevada, USA.

Yuille, A. L., & Rangarajan, A. (2003). The concave-convex procedure. Neural Computation, 15(4), 
915–936.

Zeng, H., & Cheung, Y. M. (2012). Semi-supervised maximum margin clustering with pairwise constraints. 
IEEE Transactions on Knowledge and Data Engineering, 24(5), 926–939.

Zhang, D., Zhou, Z. H. & Chen, S. (2007). Semi-supervised dimensionality reduction. In: Proceedings of 
the 7th SIAM International conference on data mining (pp. 629–634).   Minneapolis, Minnesota, USA.

Zhao, X. W., Liang, J. Y., & Dang, C. Y. (2017). Clustering ensemble selection for categorical data based on 
internal validity indices. Pattern Recognition, 69, 150–168.

Zhou, Z. H. & Li, M. (2005). Semi-supervised regression with co-training. In: Proceedings of the 19th 
international joint conference on artificial intelligence (pp. 908–916). Edinburgh, Scotland, UK.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning with local and global 
consistency. Advances in neural information processing systems 16. In: Annual Conference on neural 
information processing systems (pp. 321–328). British Columbia, Canada.

Zhu, X., Ghahramani, Z. & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and har-
monic functions. In: Proceedings of the 20th International conference on machine learning (pp. 912–
919). Washington, DC, USA.

Zhuang, L., Gao, H., Huang, J. & Yu, N. (2011). Semi-supervised classification via low rank graph. In: 
Proceedings of the 6th International conference on image and graphics (pp. 511–516). Hefei, Anhui, 
China.

Zhuang, L., Zhou, Z., Gao, S., Yin, J., Lin, Z., & Ma, Y. (2017). Label information guided graph gonstruc-
tion for semi-supervised learning. IEEE Transactions on Image Processing, 26(9), 4182–4192.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning, synthesis lectures on artificial 
intelligence and machine learning. San Rafael: Morgan & Claypool Publishers.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Graph-based semi-supervised learning via improving the quality of the graph dynamically
	Abstract
	1 Introduction
	2 Notations and related works
	2.1 Formalization of the problem
	2.2 Graph smoothness term and label inference of GSSL
	2.3 Semi-supervised classification with graph convolutional networks
	2.4 Graph construction method
	2.4.1 Nearest neighbor graph
	2.4.2  graph
	2.4.3 Linear neighbor graph
	2.4.4  graph
	2.4.5 LRR graph and SSLRR graph


	3 GSSL via improving the quality of the graph dynamically
	3.1 Measuring similarity via the weighted co-association matrix
	3.2 Refining the weights by means of supervision information
	3.3 Optimizing the quality of the graph and the class label iteratively
	3.4 Model solution
	3.4.1 Fixing  and updating 
	3.4.2 Fixing  and updating 

	3.5 The framework of the GSSL-IQGD algorithm
	3.6 Computational complexity analysis

	4 Experiments
	4.1 Experiments on artificial data sets
	4.1.1 Artificial data sets
	4.1.2 Experimental setting
	4.1.3 Experimental results and analysis

	4.2 Compared with GSSL based on static graph construction methods
	4.2.1 Data sets
	4.2.2 Comparison methods and experimental setting
	4.2.3 Experimental results and analysis

	4.3 Compared with GSSL based on dynamic graph construction methods
	4.3.1 Date sets
	4.3.2 Comparison methods and experimental setting
	4.3.3 Experimental results and analysis


	5 Conclusions and future work
	Acknowledgements 
	References




