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Abstract
In most of the existing metric learning methods, the relation is fixed throughout the metric learning process. However, the 
fixed relation may be harmful to learn a good metric. The adversarial metric learning implements a dynamic update of the 
pairwise constraints. Inspired by the idea of dynamically updating constraints, we propose in this paper a metric learning 
model with clustering-based constraints (ML-CC), wherein the triple constraints of large margin are iteratively generated 
with the clusters of data points. The proposed method can overcome the shortage of the fixed triple constraints constructed 
under the Euclidian distance. The experimental results on synthetic and real datasets indicate that the performance of the 
ML-CC is superior to that of the existing state-of-the-art metric learning methods.

Keywords Metric learning · Triple constraints · Clustering · Large margin · Dynamic constraint

1 Introduction

In many machine learning tasks [1–3], describing whether 
two samples are similar is a core problem. Some standard 
metrics are for describing the similarity between two sam-
ples, which include Euclidean distance, Cosine distance [4], 
Hamming distance [5] and Wasserstein distance [6]. How-
ever, these distances only consider specific relationships 
between the data and are difficult to widely apply to different 
learning tasks. Therefore, it is necessary to adaptively mine 
the corresponding similarity metric based on the character-
istics of the data.

Mahalanobis distance has been widely used in metric 
learning owing to its useful properties and excellent gener-
alization ability. Among the metric learning methods with 
Mahalanobis distance, the methods based on pairwise con-
straints play an important role in metric learning [7–13]. 
The DML-eig [14] proposes that the constraints should 
only include the minimal cannot-link pairs and all must-
link pairs, where the optimization model can be converted 
into a simple eigenvalue optimization problem. However, 
the model is extremely sensitive to noise and outliers. The 
RVML [15] presents an efficient metric learning model, 
which moves the points toward predefined virtual points and 
reduces point pairs from quadratic to linear. Nevertheless, 
the quality of the virtual points has a significant impact on 
the performance of the learned metric. In [16], it is believed 
that the distance between the must-link pairs should be less 
than a threshold, and the distance between the cannot-link 
pairs should be greater than the threshold. The pairwise con-
straints attempt to make the distance between must-link pairs 
(cannot-link pairs) smaller than (larger than) a threshold, but 
some datasets have large differences in similarity and some 
have small differences in dissimilarity.

To solve the problem with pairwise constraints, triple 
constraints were proposed in the literature, whereas the 
sample’s neighborhood relations remain fixed throughout 
the learning process [17, 18]. The LMNN [17] uses triples 
violating the current metric criterion and reduces the amount 
of computation using the difference between two adjacent 
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gradients. As an improvement of the LMNN, the PFLMNN 
[18] only considers the nearest dissimilar sample for the tar-
get neighborhood of the sample so that the number of sam-
ples used in the optimization process is considerably smaller. 
In [19, 20], several appropriate neighborhood relations are 
experimentally verified to significantly improve the quality 
of the learned metric. In addition, the ITML [21] proposes 
that if a metric can function well, the optimization model 
can find the metric closest to the metric while also satisfying 
the given randomly selected constraints. In [22], the triple 
constraints are selected by defining the importance of con-
straints. It can be seen from the above analysis that mining 
constraints are significant to distance metric learning.

In most of the methods, most constraints are given 
before metric learning and the constraints cannot be 
adaptively updated. The adversarial metric learning 
(AML) uses the idea of adversarial to generate “difficult” 
constraints (adversarial pairs) based on the original con-
straints, where the difficulty is overcome as much as pos-
sible in the metric learning phase. In the ASTCML [23], 
the adversarial sample is learned near the original sam-
ple to construct adversarial triple constraints. Although 
AML and ASTCML can dynamically learn constraints, the 
number of effective adversarial constraints is very small. 
Inspired by the anchor-based clustering methods [24, 25] 
and adaptive nearest-neighbor graph learning methods 
[26–28], we will adaptively construct constraints from the 

data. To mitigate the complexity of our model, we propose 
a metric learning model with clustering-based constraints 
(ML-CC), which iteratively updates triple constraints of 
large margin in the process of metric learning. The tradi-
tional metric learning combined with clustering methods 
tends to focus on how to learn metrics from the dataset to 
improve the performance of clustering [29–31]. Instead, 
our focus is on using clustering to dynamically mine con-
straints to improve the quality of the learned metric.

With a clustering method, the triple constraints are gen-
erated by regarding a cluster center as a target point and 
the cluster as a neighborhood of the target point (displayed 
in Fig. 1). The main contributions of this paper are sum-
marized as follows.

– We incorporate the triple constraints of large margin 
into the clustering model to construct a metric learning 
model and implement mutual guidance of metric learn-
ing and constraint construction.

– We construct a target point neighborhood, which is 
the basis of constructing triple constraints in a met-
ric learning model, via clustering data points instead 
of searching the neighbors of data points in terms of 
Euclidian distance.

– The ML-CC is empirically validated to outperform the 
state-of-the-art metric learning methods.

Fig. 1  Schematic illustration of 
one point’s neighborhood before 
training (left) versus after train-
ing (right). In Fig. 1a, the neigh-
borhood of one point consists 
of three nearest neighbors. In 
Fig. 1b, the cluster consists of 
the points that correspond with 
their cluster centers that overlap 
each other.
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2  Related work

Currently, most of the metric learning methods acquire 
fixed constraints based on prior knowledge. The frame-
work of the model can be simply and uniformly described 
as:

where l is a loss function, B is the Mahalanobis metric 
parameter matrix, C is the function of constraints on data-
set X, R is a regularization term of B, and � is a tradeoff 
parameter. C(X) is obtained with prior knowledge and has 
no connection with B.

2.1  Convex clustering with metric learning

Let the data matrix X = {x1, x2,… , xN} with xi ∈ ℝ
d be a 

collection of N data points and matrix U = {u1, u2,… , uN} 
with ui ∈ ℝ

d a collection of cluster centers. In [24], convex 
clustering with a metric learning problem is formulated as 
the following optimization problem:

where d2
B
(xj, uj) = (xj − uj)

TB(xj − uj) ,  the constraint 
log det(B) ≥ 0 ensures that the metric matrix B has a full 
rank, � is a positive tuning constant, and w{j1,j2}

 is a non-
negative weight, which can be used to control the scope of 
clustering centers fusion. The goal of convex clustering is to 
cluster the dataset X by merging the cluster centers in U. If 
the data are clustered into k clusters, there will be k unique 
rows of U. The problem (2) can be solved with the ADMM 
method. Due to the high cost of solving the cluster centers, 
it is difficult to work on large scale datasets.

2.2  Adversarial metric learning

Let X = {X1,X2,… ,XN} ∈ ℝ
2d×N  be the matrix of N 

training constraints, where Xi = [xT
i
, xi

�T ]T ∈ ℝ
2d con-

sists of a pair of d-dimensional training points. Let 
V = {V1,V2,… ,VN} ∈ ℝ

2d×N , where Vi = [vT
i
, vi

�T ]T ∈ ℝ
2d 

represents the i-th generated “difficult” constraints, and let 
xi have the similar label with vi . This method divides the 
process of metric learning into two steps:

The first step is to adaptively generate the “difficult” 
constraints which mislead the learned metric. The goal is 
to learn a “difficult” constraints matrix V through the fol-
lowing optimization problem:

(1)l(B,C(X)) + �R(B),

(2)
min
U,B

1

2

N�

j=1

d2
B
(xj, uj) + 𝛾

�

1≤j1<j2≤N

w{j1,j2}
‖uj1 − uj2‖1

s.t. log det(B) ≥ 0,

w h e r e  d2
B
(vi, v

�
i
) = (vi − v�

i
)TB(vi − v�

i
)  , 

d2
B−1

(vi, v
�
i
) = (vi − v�

i
)TB−1(vi − v�

i
) , � ∈ ℝ

+ is manually 
tuned to control the degree of proximity to the original con-
straint, D is a disimilar matrix and S is a similar matrix. In 
the problem, if Sij = 1 , it means that vi and vj have the similar 
label, otherwise Dij = 1.

The second step is to try its best to distinguish both the 
“difficult” constraints and the original constraints. The goal 
is to learn a metric matrix B through the following optimiza-
tion problem:

where the parameter � ∈ ℝ
+ control the weights of the “dif-

ficult” constraints. Futhermore, two problems have to be 
optimized alternatively, i.e.

3  Metric learning with clustering‑based 
constraints

3.1  Preliminaries

Given the data matrix X = {x1, x2,… , xN} , each point 
xi ∈ ℝ

d has a label yi ∈ {1, 2,… , c} , where c is the num-
ber of classes. Let Ck denote the set of points in the k-th 
class and |Ck| be the number of points in Ck . Let matrix 
U = {u1, u2,… , uN} with ui ∈ ℝ

d be a collection of cluster 
centers, where each cluster center ui has a one-to-one corre-
sponding point xi . The cluster center ui is assigned the same 
label as xi , where point xi is closer to the cluster center ui 
than any other point (one real or cluster center).

3.2  Model establishment

We incorporate triple constraints into a clustering model to 
construct a novel model of metric learning. In the proposed 
model, the center of each cluster is regarded as a target point, 
and the cluster corresponding to a target point is regarded as 
the neighborhood of the target points. The metric learning 
problem is formulated as optimizing a regularized objective 
function:

(3)
min
V

C(V) =
∑

(vi,v
�
i
)∈D

d2
B
(vi, v

�
i
) +

∑

(vi,v
�
i
)∈S

d2
B−1(vi, v

�
i
)

+ �(d2
B
(xi, vi) + d2

B
(x�

i
, v�

i
)).

(4)

min
B

D(B) =
∑

(xi,x
�
i
)∈S

d2
B
(xi, x

�
i
) +

∑

(xi,x
�
i
)∈D

d2
B−1(xi, x

�
i
)

+ �(
∑

(vi,v
�
i
)∈S

d2
B
(vi, v

�
i
) +

∑

(vi,v
�
i
)∈D

d2
B−1(vi, v

�
i
)).

{
Bt+1 = argminDVt (B)

Vt+1 = argminCBt+1 (V)
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where � and � are two positive tuning constants and w{j1,j2}
 

is a non-negative weight. w{j1,j2}
= 1 if data point xj2 locates 

in K-nearest neighbors with the same label as data point 
xj1 ; w{j1,j2}

= 0 otherwise. Note that B ⪰ 0 means that B is a 
positive semi-definite matrix, and �il is the slack variable.

The objective function consists of three terms: the first term 
indicates that this convex optimization problem aims to cluster 
the data points such that the distance between the data points 
and their corresponding cluster centers are minimized; the 
second term is a regularizer that leverages group sparsity to 
control the number of cluster centers of the clustering solution 
for each class; the third term is a relaxation variable to allow 
some constraints to be unsatisfied. Furthermore, a large margin 
constraint is employed to ensure that each cluster center is as 
close as possible to its corresponding data point and remains 
distant from the data points with different labels. We use an 
alternating procedure that alternates between cluster learning 
(minimizing over U) and metric learning (minimizing over B) 
to solve the optimization problem (5).

3.3  Solving U with fixed B

After fixing B, the optimization problem of formula (5) can be 
equivalently written as

One can rewrite the loss function in Eq. (6) as

(5)

min
U,B

�
�

i=1

d2
B
(xi, ui) + �

c�

k=1

�

uj1
≠ uj2

xj1
, xj2

∈ Ck

w{j1,j2}

‖uj1 − uj2‖
2
2
+ (1 − �)

�

i,l,yi≠yl

�il

s.t.
�

yi≠yl

d2
B
(xl, ui) − d2

B
(xi, ui) ≥ 1 − �il, �il ≥ 0,

B ⪰ 0

(6)

min
U

�

N�

i=1

d2
B
(xi, ui) + �

c�

k=1

�

uj1
≠ uj2

xj1
, xj2

∈ Ck

w{j1,j2}
‖uj1

− uj2‖
2
2
+ (1 − �)

�

i,l,yi≠yl

�il

s.t.
�

yi≠yl

d2
B
(xl, ui) − d2

B
(xi, ui) ≥ 1 − �il, �il ≥ 0.

L(U) = �

N�

i=1

d2
B
(xi, ui) + �

c�

k=1

�

uj1
≠ uj2

xj1
, xj2

∈ Ck

w{j1,j2}
‖uj1 − uj2‖

2
2

+ (1 − �)
�

i,l,yi≠yl

[1 + d2
B
(xi, ui) − d2

B
(xl, ui)]+

Let Pi be a set of integers such that l ∈ Pi if and only if (i, l) 
triggers a hinge loss. A subgradient condition sufficient for 
an optimal U is for all i ∈ {1,… , n} ∶

Let G = {(ui, uj)|ui ≠ uj, (xi, xj) ∈ Ck} . One can rewrite the 
optimality condition as

Because B is a positive semi-definite matrix for 
(B + �

∑
(ui,uj)∈G

wij)
−1 = L(Λ + �

∑
(ui,uj)∈G

wij)
−1LT , where 

B = LΛLT is the eigenvalue decomposition of matrix B, we 
can quickly solve it at a small cost.

When the difference between two cluster centers clusters 
( C1 , C2 ) is small, we are required to merge these into one 
cluster C. The new cluster center in C is:

To judge whether two clusters are required to be merged, we 
use a small threshold on ‖uC1

− uC2
‖ , which we typically take 

to be a fraction of the smallest nonzero difference in all clus-
ter centers mini,j‖uCi

− uCj
‖ , and then set the threshold: 

1.02 ∗ mini,j‖uCi
− uCj

‖ . We compute the distance between 
cluster centers, search for all pairs of cluster centers smaller 
than the current constraint using breadth-first search(BFS), 
and compute the fused cluster center by formula (9).

3.4  Solving B with fixed U

Fix U, the optimization problem (5) can be equivalently 
written as:

(7)

�L(U)

�ui
= 2�B(ui − xi) + 2�

∑

(xi,xj)∈Ck ,ui≠uj

wij(ui − uj)

+ 2(1 − �)
∑

l∈Pi

B(xl − xi) = 0.

(8)

ui = (�B + �
∑

(ui,uj)∈G

wij)
−1(�Bxi + �

∑

(ui,uj)∈G

wijuj − (1 − �)
∑

l∈Pi

B(xl − xi)).

(9)uC =
|C1|uC1

+ |C2|uC2

|C1| + |C2|
.

(10)

min
B

�

N∑

i=1

d2
B
(xi, ui) + (1 − �)

∑

i,l,yi≠yl

�il,

s.t.
∑

yi≠yl

d2
B
(xl, ui) − d2

B
(xi, ui) ≥ 1 − �il

�il ≥ 0

B ⪰ 0.
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This model is similar to LMNN, we use an active-set 
decent algorithm to solve it. For details, please refer to 
the LMNN solution process. For simple notation, let 
�il = (ui − xl)(ui − xl)

T  . The gradient of Eq. (10) can be 
written as:

where l ∈ Pi if and only if the (i, l) triggers the hinge loss in 
the third part of Eq. (11). We update the gradient ▽Gt+1(B) 
at iteration t + 1 from the gradient ▽Gt(B) at iteration t:

where P(t)

i
− P

(t+1)

i
 is no longer an active constraint, and 

P
(t+1)

i
− P

(t)

i
 just becomes an active constraint. The flowchart 

of the algorithm is shown in Algorithm 1.
In Algorithm 1, the main computational cost is in solving 

the problem (10). The time complexity of solving the prob-
lem (10) is O(t1n2d2) , where t1 is the iteration number about 
solving the problem (10). Thus, the time complexity of Algo-
rithm 1 is in general no more than O(t2(t1n2d2 + nd2 + n2)) , 
where t2 is the iteration number about Algorithm 1. For 
LMNN method, the time complexity of solving is gener-
ally no more than O(t1kn2d2) . Therefore, our method has the 
same order of magnitude as LMNN’s method.

(11)▽G(B) = �

N∑

i=1

�ii + (1 − �)

N∑

i=1

∑

l∈Pi

(�ii − �il),

(12)

▽Gt+1(B) = ▽Gt(B) − (1 − �)

N∑

i=1

∑

l∈P
(t)

i
−P

(t+1)

i

(�ii − �il)

+ (1 − �)

N∑

i=1

∑

l∈P
(t+1)

i
−P

(t)

i

(�ii − �il),

method with the NCA [8], MCC [10], MCML [7], LMNN 
[17], PFLMNN [18], RVML [15], AML [32], and ASTCML 
[23] on nine UCI datasets. Moreover, the parametric sensi-
tivity of ML-CC is analyzed. Finally, we validate the effec-
tiveness of the method on face dataset.

4.1  Experiments on synthetic dataset

To demonstrate the effectiveness of the proposed method, we 
validate the performance with the classical nonlinear syn-
thetic dataset Two-moon. The dataset contains 200 points 
across two classes. In Fig. 2a, different colors represent dif-
ferent classes. The black and blue circles are the cluster cent-
ers corresponding to the light green and light yellow data 
points, respectively.

In this experiment, we use Two-moon to learn the clus-
tering centers and metrics with ML-CC-1, which is a one-
iteration version of ML-CC. In this case, the data points are 
clustered only once, and the metric is learned based on the 
clustering results. It is easy to confirm from Fig. 2b–d that 
as the value of � increases, more and more cluster centers 
overlap each other, and when � = 100 , the cluster centers of 
each class overlap to one point. This result shows that the 
number of cluster centers can be adjusted by the value of �.

Moreover, when the weight parameter K adopts differ-
ent values, it also has a significant impact on the result and 
limits the upper limit of the cluster centers merger (as indi-
cated in Fig. 3a–d). K controls the size of the fused near-
est neighbors and B controls the degree of nearest neighbor 
fusion. To facilitate the parameter adjustment, we adopt 
a larger value of � ( � = 100 ) to maximize the integration 
of the cluster centers. By adjusting the value of the weight 

1 https:// github. com/ array 12138/ metric- leanr ing.

Algorithm 1 Metric Learning with Clustering-Based Constraints
Input: X: datasets, Y: label vector, µ, β: regularization parameter, w: weight matrix
Output: B: Mahalanobis matrix, U: cluster centers

Step 1: Set U = X;
Step 2: While(the object function value is not decreasing)
Step 3: Update the cluster centers using formula(8);
Step 4: Fusion of similar cluster centers using equation(9);
Step 5: Update the Matrix B by solving the problem(10);
Step 6: Compute the object function value by formula(6);
Step 7: End

4  Experiments

Extensive experiments have been carried out to demon-
strate the effectiveness of ML-CC1. We first visualize the 
mechanism of the proposed ML-CC on a synthetic dataset. 
Then we compare the performance of the proposed ML-CC 

K, the upper limit of the algorithm cluster center’s fusion 
degree increases.

4.2  Experiments on classification

To compare the performances of the different methods on 
the classification task, we adapt the 3-NN classification 

https://github.com/array12138/metric-leanring
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based on the learned metrics to perform the experimental 
analysis. The experiments have been conducted on nine 
datasets from the UCI machine learning repository, includ-
ing Auto, Balance, Glass, German, Heart, Monk1, Pima, 
Verhicle, Verhicle, and Wilt. The performance of the pro-
posed ML-CC is compared with ten classical methods of 
metric learning (kNN, NCA, MCC, MCML, LMNN, ITML, 
RVML, FLMNN, AML and ASTCML).

We have compared all the methods with the proposed 
method over 5-fold cross-validation. In each trial, 70% of 
the data points are randomly selected as the training set; the 
remaining are used for testing, where the dataset Wilt has a 
training set and a testing set. The distributions of all classes 
in the training set and testing set are the same as those in 
the original dataset. In our experiments, we have performed 
metric learning on the training set and used a 3-NN classifier 

Fig. 2  The cluster centers 
change as parameter � gets 
larger. ( K = 100 , � = 0.5)

Fig. 3  The cluster centers 
change as parameter K gets 
larger. ( � = 100, � = 0.5)

Table 1  Classification accuracy of 3-nearest neighbor classifiers

Methods  Auto 
25,6,205

Balance 
4,3,625

Glass 
9,6,214

German 
20,2,1000

Heart 
13,2,270

Monk1 
6,2,432

Pima 8,2,768 Verhicle 
18,4,846

Wilt 5,2,4839

kNN 0.532 0.787 0.585 0.677 0.778 0.800 0.732 0.728 0.628
NCA 0.516 0.926 0.600 0.717 0.765 0.954 0.719 0.720 0.862

MCC 0.532 0.894 0.585 0.700 0.778 0.777 0.740 0.728 0.708
MCML 0.548 0.920 0.600 0.717 0.778 0.508 0.749 0.748 0.764
LMNN 0.500 0.787 0.585 0.670 0.803 0.908 0.710 0.780 0.842
ITML 0.516 0.894 0.539 0.700 0.790 0.790 0.697 0.744 0.820
RVML 0.548 0.888 0.523 0.713 0.753 0.639 0.706 0.610 0.718
FLMNN 0.532 0.819 0.585 0.703 0.803 0.931 0.732 0.768 0.836
AML 0.516 0.782 0.615 0.687 0.790 0.777 0.732 0.740 0.802
ASTCML 0.532 0.931 0.615 0.657 0.790 0.962 0.719 0.780 0.764
ML-CC-1 �.��� �.��� 0.615 0.683 0.803 0.923 0.727 0.752 �.���

ML-CC �.��� �.��� �.��� �.��� �.��� �.��� �.��� �.��� 0.862
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to classify the testing set based on the learned metrics to 
verify the metric learning algorithm’s performance.

The parameter � is set to 100 in the proposed method. 
The weight parameter K is adjusted so that wij = 1 if j is a 
neighbor of i and have the same label, otherwise wij = 0 . The 
parameters K and � in the proposed method are adjusted by 
searching the grid {2, 4, 8, 16, 32… , } × {0.1, 0.3,… , 0.9} . 
The stopping condition of the proposed model solving pro-
cess is that the objective function value no longer decreases 
or the number of iterations reaches the maximum number 
of iterations we allow.

The parameters for the comparative algorithms are also 
carefully tuned to achieve their optimal performance. In 
Table 1, the three numbers below each dataset correspond 
to the number of dimensionalities, number of classes, and 
the number of samples. We highlight the best results in each 
dataset in boldface, and sub-optimal results in light blue. The 
experimental results indicate that ML-CC has significant 
advantages on most datasets, which suggests that cluster-
ing data with cluster centers as target samples and clusters 
as target neighbors can better exploit the local properties 
of data. Besides, ML-CC-1 also shows acceptable perfor-
mance, which indicates that the metric obtained based on 
the nearest neighbor structure of single cluster mining can 
also perform well for classification.

4.3  Experiments on face images

We use the MIT CBCL Face Database2 to validate the pro-
posed classification method. The database is divided into 
a training set and a testing set. The training set contains 
3240 synthetic face images with ten different subjects, each 

containing 324 images, and the testing set contains 2000 
images with ten different subjects, each containing 200 
images.

We represent each image as a 400-dimensional fea-
ture vector, which is a straightened gray vector, by image 
cropping to visualize the results. We select the first three 
classes in the training set (972 face images) and the first 
three classes in the testing set (600 face images). The param-
eters in the proposed method, such as K and � , are tuned 
by searching the grid {2, 4, 8, 16, 32...} × {0.1, 0.3, ..., 0.9} , 
� = 100 , and the maximum value of K is set to the number 
of samples in the smallest class.

After obtaining the metric, we apply the metric to the 
3-NN to classify the images in the testing set, and the experi-
mental results are displayed in Fig. 4. From the results, one 
can see that for the AML method, it is difficult to obtain 
results in an acceptable time, and ML-CC obtains the best 
classification accuracy.

4.4  Parametric sensitivity

In the proposed ML-CC, three parameters � , � , and K can 
affect the model performance. The parameter � controls the 
number of cluster centers. When � is sufficiently large, the 
number of cluster centers becomes small.

To reduce the size of the parameter, we directly set � to 
100. The parameter � is a trade-off parameter. The weight 
parameter K controls the upper limit of cluster center over-
lap. When � is sufficiently large, as K increases, the number 
of cluster centers decreases until they overlap into one point. 
In Fig. 5, we change the value of K,� and record the average 
classification accuracy on the validation set in the 5-fold 
cross-validation for nine datasets, where the parameter K 
varies within the set [2,4,8,16,32,64] and the parameter � 
within the set [0.1,0.3,0.5,0.7,0.9]. From the experimental 
results, � has a low impact on the model and K has a high 
impact on the model. This is because tuning up K helps mine 
more important constraints for dataset, and thus it makes the 
metric learning model to improve the quality of the learned 
metric.

5  Conclusion

This paper proposes a novel metric learning method called 
ML-CC, which exploits the learned cluster centers to gener-
ate a large margin constraint for metric learning. Because the 
number of different cluster centers is considerably smaller 

Fig. 4  3-NN classification based on different metric learning methods 
for the MIT face image dataset

2 http:// cbcl. mit. edu/ softw are- datas ets/ heise le/ facer ecogn ition- datab 
ase. html.

http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
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than the number of data points, the proposed method can 
significantly reduce the search space for solving the optimi-
zation problem. Our study shows that updating the cluster 
centers by clustering and constructing a large marginal con-
straint derived from the cluster centers with a considerable 
residual constraint can improve metric learning. However, 
our current approach still suffers from an enormous compu-
tational burden. An interesting future issue would be to study 
how to use clustering methods to construct simpler and more 
effective constraints between the generated cluster centers 
and the real samples.
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