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Abstract

The classical multigranulation rough set (MGRS) theory offers a formal theoretical framework
for solving the complex problem under multigranulation environment. However, it is noticeable
that MGRS theory cannot be applied in multi-source information systems with a covering en-
vironment in the real world. To address this issue, we firstly present in this paper three types
of covering based multigranulation rough sets, in which set approximations are defined by dif-
ferent covering approximation operators. Then, by using two different approximation strategies,
i.e., seeking common reserving difference and seeking common rejecting difference, two kinds of
covering based multigranulation rough set are presented, namely, a covering based optimistic
multigranulation rough set and a covering based pessimistic multigranulation rough sets. Finally,
we develop some properties and several uncertainty measures of the covering based multigranu-
lation rough sets. These results will enrich the MGRS theory and enlarge its application scope.
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1. Introduction

Rough set theory, proposed by Pawlak [30, 31], is a well-established mechanism for
dealing with vagueness and uncertainty in data analysis. It is an efficient method em-
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ployed in many areas: feature selection [6, 12, 13, 15, 19, 45], knowledge reduction [17,
20-23, 35], rule extraction [1, 46], uncertainty reasoning [9, 33], granular computing [3,
16, 24, 32, 50, 52], and others [5, 7, 8].
Rough set theory is originally constructed on the basis of an indiscernibility relation

(or an equivalence relation) or a partition of the universe. However, it is restrictive for
many real-world applications. To overcome this limitation, there are two main methods
to generalize the classical rough sets. One method is to extend the equivalence relation
to other binary relations, such as similarity relation, tolerance relation, and dominance
relation [14, 42, 42, 47, 53]. The other important method is to replace a partition of the
universe with a covering [2, 4, 11, 26, 27, 34, 41, 54-60]. In 1983, Zakowski [55] has first
employed the covering of a universe for establishing a covering based generalized rough
set. Since then, many researchers have proposed a great number of diversity upper and
lower approximation operators and studied them extensively [2, 4, 11, 26, 27, 34, 41, 54,
56-60]. For example, Yao [54] investigated approximation operators by using coverings
produced by the predecessor and/or successor neighborhoods of serial or inverse serial
binary relations. Zhu et al. [56-60] systematically studied six types of approximation
operators and investigated their properties and relationships of them. Particularly, Yao
[54] studied a unified framework and a more systematic formulation of covering based
rough sets from three aspects: the element, the granule, and the subsystem. In fact,
the existing approximation operators have either dual property or non-dual property.
Under the covering application background of rough sets, Chen et al. [4] presented a new
covering to construct the upper and lower approximations of an arbitrary set. Covering
based generalized rough sets are important improvements among these extensions, which
can handle more complex practical problems. And they have obtained much attention
in many domains including machine learning and uncertainty reasoning. Actually, in the
view of granular computing [52], either a partition or a covering of the universe can be
considered as a granular space.

From the above, we can see that set approximations in the above rough sets are de-
scribed only by a single binary relation (a single granulation [52]) or a single covering
(or a single covering granulation) on a given universe, which cannot be applied in some
practical multigranulation backgrounds [36, 37]. Qian et al. [36] first took multiple bi-
nary relations into account and proposed multigranulation rough sets, in which a target
concept was described by multiple binary relations on a universe according to a user’s
different requirements. Up to now, many extensions of MGRS have been proposed. For
example, Liu et al. [28, 29] proposed covering fuzzy rough set based multigranulation
rough sets. Xu et al. [48] investigated another generalized version, called variable pre-
cision multigranulation rough sets. Yang et al. [51] proposed a multigranulation rough
set based on a fuzzy binary relation. Lin et al. [25] investigated neighborhood-based
multigranulation rough sets, which can be used to deal with data sets with hybrid at-
tributes. She et al. [44] explored topological structures of multigranulation rough sets,
which further enriches the theory of MGRS. It is deserved to mention that Liang et al.[15]
proposed an efficient feature selection algorithm for large-scale data sets from the per-
spective of multiple granulations, which has shown an important implication of MGRS
theory. Accordingly, MGRS theory has displayed its advantages in knowledge discovery
from large-scale data sets. In fact, in a Pawlak’s approximation space, each object can
be classified into a certain concept as shown in Figure 1. However, in real-world appli-
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cations, such as a multi-source covering information system [10] and computing with
words, different subsets of the universe usually overlap, as shown in Figure 2, in which
these basic information granules form a covering of the objects, rather than a Pawlak’s
approximation space. It is difficult for the classical MGRS theory to deal with this issue.
To address this issue, it is necessary to generalize the classical MGRS to covering based
multigranulation rough sets for enriching its application domains.
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In this paper, we introduce covering into the multigranulation environment and present
covering based optimistic and pessimistic multigranulation rough sets.

Additionally, lots of researchers suggested some possible applications of the uncertainty
measures in the fields of pattern recognition and image analysis in the literature [9, 18,
39-41, 49]. The concept of entropy was originally introduced by Shannon in [40], which
is a very useful mechanism for characterizing information content in various modes. It
has been applied in many diverse fields. Furthermore, Shannon entropy and its variants
were adopted for rough set theory in the literature [9, 18, 39, 41, 49]. Similarly, in this
paper, in order to make wide applications of the covering based multigranulation rough
set theory, we propose several uncertainty measures for covering based multigranulation
rough sets, including degree of rough membership, approximation measure, and rough
entropy.

The main objective of this paper is to establish three types of rough sets based on mul-
tiple coverings by using different approximation strategies due to the practical different
applied backgrounds. The rest of this paper is organized as follows. Some basic concepts
of classical multigranulation rough sets are briefly reviewed in Section 2. In Section 3,
three types of covering based optimistic and pessimistic multigranulation rough sets are
constructed and some of their important properties are investigated. In Section 4, several
uncertainty measures for covering based multigranulation rough sets are presented, such
as degree of rough membership, approximation measure, and rough entropy. We then
conclude the paper with a summary and direction for the further research in the last
section.
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2. Preliminaries

In this section, we review some basic concepts of covering based rough sets and multi-
granulation rough sets [4, 36, 55, 56]. Throughout this paper, we suppose the universe of
discourse U is a finite non-empty set.

2.1. Covering based rough sets

Let U be a finite non-empty set of objects and C a family of subsets of U . If no subset
in C is empty and

∪
C = U , C is called a covering of U . Then the ordered pair < U, C >

is called a covering approximation space.

Definition 2.1 [2]. Let (U, C) be a covering approximation space. For x ∈ U , the minimal
description of x is defined as

Md(x) = {K ∈ C | (x ∈ K) ∧ (x ∈ S ∈ C ∧ S ⊆ K =⇒ S = K)}.
If |Md(x)| = 1, x is called a representative element of K.

Definition 2.2 [56]. Let (U, C) be a a covering approximation space. For x ∈ U , the
neighborhood of x is defined as

N(x) = ∩{K ∈ C | x ∈ K}.
There are dozens of approximation operators for covering based rough sets to deal with
the diversity formed by covering data. However, in this paper, inspired by Yao’s study
[54], we only list three pairs of operators to illustrate the idea of the forthcoming covering
based multigranulation rough sets.

Definition 2.3 [54, 56, 59]. Let (U, C) be a covering approximation space. For each
i ∈ {1, 2, 3}, Ci and Ci called the i-th lower covering approximation operator and the i-th
upper covering approximation operator on (U, C) are defined as follows.

(1) C1(X) = ∪{K ∈ C | K ⊆ X}, (Granule based Definition)

C1(X) =∼ C1(∼ X)
= {x|x ∈ U,∀K ∈ C|x ∈ K ⇒ K ∩A ̸= ∅}.

(2) C2(X) = {x ∈ U | N(x) ⊆ X}, (Element based Definition)

C2(X) = {x ∈ U | N(x) ∩X ̸= ∅}.
(3) C3(X) = ∪{K ∈ C | K ⊆ X}, (Granule based Definition)

C3(X) = ∪{K ∈ C | K ∩X ̸= ∅}.

From the above, we call (Ci(X), Ci(X)), i = {1, 2, 3}, single covering based rough sets.
The pairs of approximation operators (1), (2) and (3) can be found in the literatures[54],
[56], [59], respectively.

Definition 2.4. Let U be a universe of discourse, C1 = {K11,K12, · · · ,K1|C1|}, C2 =
{K21,K22, · · · ,K2|C2|} two different coverings of U . An intersection operation between
C1 and C2 is defined as follows:

C1 ∩ C2 = {K1i ∩K2j | K1i ∩K2j ̸= ∅,K1i ∈ C1,K2j ∈ C2, 1 ≤ i ≤ |C1|, 1 ≤ j ≤ |C2|}.
where |Ci| represents the cardinality of Ci. In what follows, we denote ti = |Ci| for sim-
plicity.
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Proposition 2.1 [4]. Let C = {K1,K2, · · · ,Kt} be a covering of U . For every x ∈ U ,
suppose Cx =

∩
{Ki | Ki ∈ C, x ∈ Ki}. Then Cov(C) = {Cx|x ∈ U} is a covering of U .

Proposition 2.2 [4]. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U , where
Ci = {Ki1,Ki2, · · · ,Kiti}, i = 1, 2, · · · ,m. For X ⊆ U , suppose Ωx =

∩
{(Kij)x |

(Kij)x ∈ Cov(Ci), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}. Then, Cov(Ω) = {Ωx | x ∈ U} is
a covering of U . Throughout this paper, we use (Kij)x to represent a set including x in
Cov(Ω).

Definition 2.5 [4]. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U . For X ⊆ U ,
the lower and upper approximations of X with respect to Cov(Ω) are defined as follows:

Ω(X) =
∪

{Ωx | Ωx ⊆ X},

Ω(X) =
∪

{Ωx | Ωx ∩X ̸= ∅}.

Here, we use an example to illustrate the above definitions and propositions.

Example 2.1. Let U = {x1, x2, x3, x4, x5} be a universe. C1 = {C11 = {x1, x2, x4, x5},
C12 = {x2, x5}, C13 = {x3, x5}} and C2 = {C21 = {x1, x2, x3}, C22 = {x4, x5},
C23 = {x2, x4}} are two coverings of U . For the covering C1, by Proposition 2.1, we
have that C1x1

= C11 = {x1, x2, x4, x5}, C1x2
= C11 ∩ C12 = {x2, x5}, C1x3

= C13 =
{x3, x5}, C1x4

= C11 = {x1, x2, x4, x5} and C1x5
= C11 ∩ C12 ∩ C13 = {x5}. Obviously,

Cov(C1) = {C1x1
, C1x2

, C1x3
, C1x4

, C1x5
} also forms a covering of U . Similarly, for the

covering C2, we have that C2x1
= C22 = {x1, x2, x3}, C2x2 = C21 ∩ C23 = {x2}, C2x3

=
C22 = {x1, x2, x3}, C2x4

= C22 ∩ C23 = {x4}, and C2x5
= C22 = {x4, x5}. Obviously,

Cov(C2) = {C2x1
, C2x2

, C2x3
, C2x4

, C2x5
} also forms a covering of U .

By Proposition 2.2, we have that Ωx1 = C1x1
∩ C2x1

∩ C2x3
= {x1, x2}, Ωx2 = {x2},

Ωx3 = {x2}, Ωx4 = {x4}, and Ωx5 = {x5}. Obviously, Cov(Ω) = {Ωx1 ,Ωx2 ,Ωx3 ,Ωx4 ,Ωx5}
also forms a covering of U .
Suppose that X = {x1, x3, x4} ⊆ U . According to Definition 2.5, we have that Ω(X) =

{x2, x3} and Ω(X) = {x1, x2, x3, x4}.

2.2. Multigranulation rough sets

According to two different approximation strategies, Qian et. al [36, 38] developed two
different multigranulation rough sets (MGRS) including optimistic and pessimistic ones.

Definition 2.6. Let S = (U,AT, f) be a complete information system, A1, A2, · · · , Am ⊆
AT , and X ⊆ U . The optimistic lower and upper approximations of X with respect to

A1, A2, · · · , Am are denoted by
∑m

i=1 Ai
O
X and

∑m
i=1 Ai

O
X, respectively, where

m∑
i=1

Ai

O

(X) = {x ∈ U | [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X},

m∑
i=1

Ai

O

(X) =∼
m∑
i=1

Ai

O

(∼ X).
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Then (
∑m

i=1 Ai
O
(X),

∑m
i=1 Ai

O
(X)) is called the classical optimistic MGRS [36].

Let ∅ be an empty set and ∼ X the complement of X in U . We have the following
properties of optimistic multigranulation rough sets [36].

(1OML)
∑m

i=1 Ai
O
(U) = U (Co-normality)

(1OMH)
∑m

i=1 Ai

O
(U) = U (Co-normality)

(2OML)
∑m

i=1 Ai
O
(∅) = ∅ (Normality)

(2OMH)
∑m

i=1 Ai

O
(∅) = ∅ (Normality)

(3OML)
∑m

i=1 Ai
O
(X) ⊆ X (Contraction)

(3OMH) X ⊆
∑m

i=1 Ai

O
(X) (Extension)

(4OML)
∑m

i=1 Ai(
∩n

j=1 Xj) ⊆
∩n

j=1(
∑n

j=1 Ai(Xj)) (Implication)

(4OMH)
∑m

i=1 Ai(
∪n

j=1 Xj) ⊇
∪n

j=1(
∑n

j=1 Ai(Xj)) (Implication)

(5OML)
∑m

i=1 Ai(
∪n

j=1 Xj) ⊇
∪n

j=1(
∑n

j=1 Ai(Xj)) (Implication)

(5OMH)
∑m

i=1 Ai(
∩n

j=1 Xj) ⊆
∩n

j=1(
∑n

j=1 Ai(Xj)) (Implication)

(6OML)
∑m

i=1 Ai
O
(
∑m

i=1 Ai
O
(X)) =

∑m
i=1 Ai

O
(X) (Idempotency)

(6OMH)
∑m

i=1 Ai

O
(
∑m

i=1 Ai

O
(X)) =

∑m
i=1 Ai(X) (Idempotency)

(7OML)
∑m

i=1 Ai
O
(∼ X)) =∼

∑m
i=1 Ai

O
(X) (Duality)

(7OMH)
∑m

i=1 Ai

O
(∼ X) =∼

∑m
i=1 Ai

O
(X) (Duality)

(8OML) X ⊆ Y ⇒
∑m

i=1 Ai
O
(X) ⊆

∑m
i=1 Ai

O
(Y ) (Monotone)

(8OMH) X ⊆ Y ⇒
∑m

i=1 Ai

O
(X) ⊆

∑m
i=1 Ai

O
(Y ) (Monotone)

(9OML) ∀K ∈ U/Ai, i ∈ {1, 2, · · · ,m},
∑m

i=1 Ai
O
(K) = K (Granularity)

(9OMH) ∀K ∈ U/Ai, i ∈ {1, 2, · · · ,m},
∑m

i=1 Ai

O
(K) = K (Granularity)

(10OML)
∑m

i=1 Ai
O
(X) =

∪m
i=1(Ai(X)) (Relation based Addition)

(10OMH)
∑m

i=1 Ai

O
(X) =

∩m
i=1(Ai(X)) (Relation based Multiplication)

In addition, the definition of the classical pessimistic MGRS [38] is defined as follows:

m∑
i=1

Ai

P

(X) = {x ∈ U | [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X},

m∑
i=1

Ai

P

(X) =∼
m∑
i=1

Ai

P

(∼ X).

Let ∅ be an empty set and ∼ X the complement of X in U . The pessimistic multi-
granulation rough sets have the following properties [38].
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(1PML)
∑m

i=1 Ai
P
(U) = U (Co-normality)

(1PMH)
∑m

i=1 Ai

P
(U) = U (Co-normality)

(2PML)
∑m

i=1 Ai
P
(∅) = ∅ (Normality)

(2PMH)
∑m

i=1 Ai

P
(∅) = ∅ (Normality)

(3PML)
∑m

i=1 Ai
P
(X) ⊆ X (Contraction)

(3PMH) X ⊆
∑m

i=1 Ai

P
(X) (Extension)

(4PML)
∑m

i=1 Ai
P
(
∩n

j=1 Xj) =
∩n

j=1(
∑n

j=1 Ai
P
(Xj)) (Implication)

(4PMH)
∑m

i=1 Ai

P
(
∪n

j=1 Xj) =
∪n

j=1(
∑n

j=1 Ai

P
(Xj)) (Implication)

(5PML)
∑m

i=1 Ai
P
(
∪n

j=1 Xj) ⊇
∪n

j=1(
∑n

j=1 Ai
P
(Xj)) (Coarse Implication)

(5PMH)
∑m

i=1 Ai
P (

∩n
j=1 Xj) ⊆

∩n
j=1(

∑n
j=1 Ai

P
(Xj)) (Fine Implication)

(6PMH)
∑m

i=1 Ai

P
(
∑m

i=1 Ai

P
(X)) =

∑m
i=1 Ai

P
(X) (Idempotency)

(7PML)
∑m

i=1 Ai
P
(∼ X)) =∼

∑m
i=1 Ai

P
(X) (Duality)

(7PMH)
∑m

i=1 Ai

P
(∼ X) =∼

∑m
i=1 Ai

P
(X) (Duality)

(8PML) X ⊆ Y ⇒
∑m

i=1 Ai
P
(X) ⊆

∑m
i=1 Ai

P
(Y ) (Monotone)

(8PMH) X ⊆ Y ⇒
∑m

i=1 Ai

P
(X) ⊆

∑m
i=1 Ai

P
(Y ) (Monotone)

(9PML) ∀K ∈ U/Ai, i ∈ {1, 2, · · · ,m},
∑m

i=1 Ai
P
(K) = K (Granularity)

(9PMH) ∀K ∈ U/Ai, i ∈ {1, 2, · · · ,m},
∑m

i=1 Ai

P
(K) = K (Granularity)

(10PML)
∑m

i=1 Ai
P
(X) =

∩m
i=1(Ai(X)) (Relation based Addition)

(10PMH)
∑m

i=1 Ai

P
(X) =

∪m
i=1(Ai(X)) (Relation based Multiplication)

3. Covering based multigranulation rough sets

In the previous research work, covering based rough sets are constructed by one single
covering (or a single covering granulation space) of the universe. Even though multiple
coverings induced by neighborhood relations have been used in [25], they are only special
ones in covering based multigranulation rough sets. Therefore, in order to enlarge the
application scope of MGRS and enrich its theory, we introduce multiple coverings into
covering based rough sets by the idea of MGRS. According to the first, the second, and the
third pairs of the covering approximation operators in Definition 2.3 in Section 2, in this
section, we correspondingly propose three types of covering based multigranulation rough
sets. Furthermore, based on two different approximation strategies, we also investigate
optimistic and pessimistic ones of each proposed covering based MGRS.
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3.1. The first type of covering approximation operators based multigranulation rough
sets (Or the first type of CMGRS)

3.1.1. The first type of optimistic CMGRS

Let U be a finite universe of discourse, C1 and C2 two different coverings of U , Kx ⊆ U ,
and x ∈ Kx. For any Kx ∈ C1, if there exists Lx ∈ C2 such that Kx ⊆ Lx, we call that C1
is uniformly finer than C2 (or C2 is uniformly coarser than C1), called a uniform partial
relation between C1 and C2, denoted by C1 ≼c C2. If C1 ≼c C2 and C1 ̸= C2, we say that
C1 is strictly finer than C2 (or C2 is strictly coarser than C1), written as C1 ≺c C2.

Especially, if C1 and C2 are two different partitions of U , Kx is a subset including x.
If for any Kx ∈ C1, there exists Lx ∈ C2 such that Kx ⊆ Lx, we call that C1 is finer than
C2 (or C2 is coarser than C1), denoted by C1 ≼ C2. If C1 ≼ C2 and C1 ̸= C2, we say that C1
is strictly finer than C2 (or C2 is strictly coarser than C1), written as C1 ≺ C2.

Kx represents a subset including x throughout this paper.

Theorem 3.1. The partial relation ≼ is a special case of a uniform partial relation ≼c.

Proof. If C is a partition instead of a covering of U , then it is obvious that the uniform
partial relation ≼c degenerates into the partial relation ≼.

Example 3.1 (Continued from Example 2.1). Suppose C1 = {{x1}, {x2}, {x3, x4}, {x5}}
and C2 = {{x1, x2}, {x3, x4, x5}}. Then, we have that C1 ≼ C2 and C1 ≼c C2.

Definition 3.1. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U with Ci = {Ki1,Ki2, · · · ,Kiti} , and X ⊆ U . An optimistic lower
approximation and an optimistic upper approximation of X with respect to Ω, denoted

by
∑m

i=1 Ci
O
(X) and

∑m
i=1 Ci

O
(X), respectively, are defined by the following

m∑
i=1

Ci
O

(X) =
∪

{Kij ∈ Ci | ∨(Kij ⊆ X), i ∈ {1, 2, · · · ,m}; j = 1, 2, · · · , ti}, (1)

m∑
i=1

Ci

O

(X) =∼
m∑
i=1

Ci
O

(∼ X). (2)

And the area of uncertainty or boundary region of X relative to Ω in the covering
based multigranulation rough sets is

BnO∑m

i=1
Ci
(X) =

m∑
i=1

Ci

O

(X)\
m∑
i=1

Ci
O

(X).

Then, (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X)) is called the first type of covering based optimistic

multigranulation rough sets (or the first type of optimistic CMGRS, for short). For sim-
plicity, we say (U, C1, C2, · · · , Cm) an optimistic multigranulation covering approximation

space, denoted by ((U,
∑OCi)), i. e. OMCA-Space .

Remark 1. In a special case, when i = 1, the first type of optimistic CMGRS will
degenerate into a single covering based rough set whose lower and upper approximation
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operations are just (1) of Definition 2.3. In addition, if Ci, i ∈ {1, 2, · · · ,m}, is a partition

on the universe U , then (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X)) will degenerate into the original

MGRS. According to Yao’s opinion [54], we say that this pair of approximation operators
is defined by the granule.

Theorem 3.2. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U , and X ⊆ U . Then,

m∑
i=1

Ci

O

(X) = {x ∈ U | ∧((Kij)x ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}; j = 1, 2, · · · , ti}, (3)

where Ci = {Ki1,Ki2, · · · ,Kiti}.
Proof. x ∈

∑m
i=1 Ci

O
(X) ⇔ x ∈∼

∑m
i=1 Ci

O
(∼ X)

⇔ x /∈
∑m

i=1 Ci
O
(∼ X)

⇔ (Kij)x * (∼ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti
⇔ ∧((Kij)x ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti.

By Theorem 3.2, we see that though the optimistic multigranulation upper approxima-
tion is defined by the complement of the optimistic multigranulation lower approximation,
it can also be constructed by objects with non-empty intersection with the target concept
in terms of each granular structure.

In order to illustrate Definition 3.1, we here continue to use the common example from
the literature [4].

Example 3.2. Let us consider an evaluation problem of a credit card applicant. Suppose
that U = {x1, x2, · · · , x9} is a set of nine applicants. E = {education, salary} is a set of
two condition attributes. The values of attribute “education” are {best, better, good}. And
the values of attribute“salary” are {high, middle, low}. We make three specialists A, B,
C evaluate the attribute values for these applicants. It is possible that their evaluation
results to the same attribute values may not be the same each other. The evaluation
results are listed below as Table 1. In Table 1, yi (i = 1, 2, 3) denote the evaluation
results given by specialists A,B,C, respectively, as well as ni (i = 1, 2, 3), where yi
means “yes” and ni means “no”.

Example 3.3 (Continued from Example 3.1). From Table 1, for the attribute “edu-
cation”, the specialist A gives evaluation results: the applicants x1, x4, x5, and x7 get
“best”, denoted by best = {x1, x4, x5, x7}, the applicants x2 and x8 get “better”, de-
noted by better = {x2, x8}, and the applicants x3, x6, and x9 get “good”, denoted by
good = {x3, x6, x9}. In brief, we denote that
A: C1 = {best = {x1, x4, x5, x7}, better = {x2, x8}, good = {x3, x6, x9}};
Similarly, we get that
B: C2 = {best = {x1, x2, x4, x5, x7, x8}, better = {x2, x5, x8}, good = {x3, x5, x6, x9}};
C: C3 = {best = {x4, x7}, better = {x2, x8}, good = {x1, x3, x5, x6, x9}}.
And for the attribute “salary”, we have that
A: C4 = {high = {x1, x2, x3},middle = {x4, x5, x6, x7, x8}, low = {x2, x5, x9}};
B: C5 = {high = {x1, x2, x3},middle = {x4, x5, x6, x7, x8}, low = {x7, x8, x9}};
C: C6 = {high = {x1, x2, x3},middle = {x4, x5, x6, x8}, low = {x7, x9}}.
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Table 1
An evaluation information system
PPPPPPU

A
Education Salary

Attribute value Best Better Good High Middle Low

A B C A B C A B C A B C A B C A B C

x1 y1 y2 n3 n1 n2 n3 n1 n2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3

x2 n1 y2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 n2 n3

x3 n1 n2 n3 n1 n2 n3 y1 y2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3

x4 y1 y2 y3 n1 n2 n3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3

x5 y1 y2 n3 n1 y2 n3 n1 y2 y3 n1 n2 n3 y1 y2 y3 y1 n2 n3

x6 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3

x7 y1 y2 y3 n1 n2 n3 n1 n2 n3 n1 n2 n3 y1 y2 n3 n1 y2 y3

x8 n1 y2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 y2 n3

x9 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3

Therefore, C1, C2, C3, C4, C5, C6 are six coverings of U . We choose randomly two coverings
C2 = {{x1, x2, x4, x5, x7, x8}, {x2, x5, x8}, {x3, x5, x6, x9}} and C5 = {{x1, x2, x3}, {x4, x5,
x6, x7, x8}, {x7, x8, x9}} from them. For a target concept X = {x1, x2, x5, x8} ⊆ U ,
by Definition 3.1, one has that C1 + C2O(X) = {x2, x5, x8} ∪ ∅ = {x2, x5, x8} and

C1 + C2
O
(X) = U . Then, by Definition 2.4, we get a new covering of the universe, i. e., C1∩

C2 = {{x1, x2}, {x2}, {x3}, {x4, x5, x7, x8}, {x5, x8}, {x5, x6}, {x6, x9}, {x8}, {x9}, {x7, x8}}.
Then, C1 ∩ C2(X) = {x1, x2, x5, x8}, C1 ∩ C2(X) = {x1, x2, x4, x5, x6, x7, x8}. Hence, we

have that (C1 + C2)O(X) ⊆ C1 ∩ C2(X) and (C1 + C2)O(X) ⊇ C1 ∩ C2(X).

As a result of this example, we see that the optimistic lower approximation of X
induced by C1+C2 is not more than that induced by C1 ∩C2. Then we have the following
propositions.

Proposition 3.1. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm}
a family of coverings of U , and X ⊆ U . Then,

(1)
∑m

i=1 Ci
O
(X) ⊆

∩m
i=1 Ci(X),

(2)
∑m

i=1 Ci
O
(X) ⊇

∩m
i=1 Ci(X).

Proof. (1) For any x ∈
∑m

i=1 Ci
O
(X), by Definition 3.1, it follows that there must exist

(Kij)x ∈ Ci, i ∈ {1, 2, · · · ,m}, j = {1, 2, · · · , ti} such that x ∈ (Kij)x. Here, we use
(Kij)x to denote a set which includes x. By Definition 2.4, we know that Cx ⊆ (Kij)x.
Obviously, if Cx ⊆ X, (Kij)x is not always included in X. Conversely, it holds. Hence,∑m

i=1 Ci
O
(X) ⊆

∩m
i=1 Ci(X).

(2) For any x ∈
∩m

i=1 Ci(X), there exists Cx such that x ∈ Cx and Cx ∩ X ̸= ∅.
But Cx ⊆ (Kij)x (j = 1, 2, · · · , t). Obviously, (Kij)x ∩ X ̸= ∅, i. e., x ∈

∑m
i=1 Ci

O
(X).

Therefore,
∑m

i=1 Ci
O
(X) ⊇

∩m
i=1 Ci(X).
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Proposition 3.2. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U , and X ⊆ U .
Then, the following properties hold

(1)
∑m

i=1 Ci
O
U =

∑m
i=1 Ci

O
U = U,

(2)
∑m

i=1 Ci
O∅ =

∑m
i=1 Ci

O
∅ = ∅,

(3)
∑m

i=1 Ci
O
(X) ⊆ X ⊆

∑m
i=1 Ci

O
(X),

(4)
∑m

i=1 Ci
O
(X ∩ Y ) ⊆

∑m
i=1 Ci

O
(X) ∩

∑m
i=1 Ci

O
(Y ),

(5)
∑m

i=1 Ci
O
(X ∪ Y ) ⊇

∑m
i=1 Ci

O
(X) ∪

∑m
i=1 Ci

O
(Y ),

(6)
∑m

i=1 Ci
O
(X ∪ Y ) ⊇

∑m
i=1 Ci

O
(X) ∪

∑m
i=1 Ci

O
(Y ),

(7)
∑m

i=1 Ci
O
(X ∩ Y ) ⊆

∑m
i=1 Ci

O
(X) ∩

∑m
i=1 Ci

O
(Y ),

(8)
∑m

i=1 Ci
O
(X) =

∑m
i=1 Ci

O
(X),

(9)
∑m

i=1 Ci
O
(X) =∼

∑m
i=1 Ci

O
(∼ X),

(10)
∑m

i=1 Ci
O
(X) =∼

∑m
i=1 Ci

O
(∼ X),

(11) X ⊆ Y ⇒
∑m

i=1 Ci
O
(X) ⊆

∑m
i=1 Ci

O
(Y ),

(12) X ⊆ Y ⇒
∑m

i=1 Ci
O
(X) ⊆

∑m
i=1 Ci

O
(Y ).

Proof. They can be easily proved by Definition 3.1.

However,
∑m

i=1 Ci
O

(X) =
∑m

i=1 Ci
O
(X) may not hold.

For example, let U = {x1, x2, x3, x4} be a universe, C1 = {{x1, x3}, {x1}, {x2}, {x3, x4}}
and C2 = {{x2, x3}, {x2}, {x3, x4}, {x1}} two coverings of U . ForX = {x1, x2}, C1 + C2

O
(X) =

{x1, x2, x3} and C1 + C2
O
(X) = {x1, x2, x3, x4}. Hence,

∑m
i=1 Ci

O

(X) ̸=
∑m

i=1 Ci
O
(X).

This example shows that a distinction between the classical MGRS and the covering
based MGRS.

Theorem 3.3. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X1 ⊆ X2 ⊆
· · · ⊆ Xn ⊆ U . Then,

(1)
∑m

i=1 Ci
O
(X1) ⊆

∑m
i=1 Ci

O
(X2) ⊆ · · · ⊆

∑m
i=1 Ci

O
(Xn),

(2)
∑m

i=1 Ci
O
(X1) ⊆

∑m
i=1 Ci

O
(X2) ⊆ · · · ⊆

∑m
i=1 Ci

O
(Xn).

Proof. They can be easily proved by Definition 3.1.

Theorem 3.4. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X ⊆ U .
Suppose C1 ≼c C2 ≼c · · · ≼c Cm, then,

(1)
∑m

i=1 Ci
O
(X) = Cm(X),

(2)
∑m

i=1 Ci
O
(X) = Cm(X).

Proof. (1) For any x ∈
∑m

i=1 Ci
O
(X), we have (Kij)x ⊆ X, where i ∈ {1, 2, · · · ,m}

and j = 1, 2, · · · , ti. Note that C1 ≼c C2 ≼c · · · ≼c Cm. There must exist (Kpq)x ∈ Cm
such that (Kpq)x ⊆ X, where p ∈ {1, 2, · · · ,m} and q ∈ {1, 2, · · · , ti}. It follows that

x ∈ CmX. Hence,
∑m

i=1 Ci
O
X ⊆ CmX. On the other hand, for any x ∈ CmX, we have that
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(Kmj)x ⊆ X, where j ∈ {1, 2, · · · , ti}. Moreover, according to C1 ≼c C2 ≼c · · · ≼c Cm,
we have x ∈ (K1j1)x ⊆ (K2j2)x ⊆ · · · ⊆ (Kmjm)x ⊆ X, where jl ∈ {1, 2, · · · , ti} and l ∈
1, 2, · · ·m. By Definition 3.1, we have x ∈

∑m
i=1 Ci(X). Therefore,

∑m
i=1 Ci

O
X ⊇ CmX.

Consequently,
∑m

i=1 Ci
O
(X) = CmX.

(2) Suppose that (K1j1)x ∈ C1, (K2j2)x ∈ C2, · · · , (Kmjm)x ∈ Cm. By Definition 3.1,
we have that (Kij)x ∩X ̸= ∅, where i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , ti}. Note that
C1 ≼c C2 ≼c · · · ≼c Cm. Hence, (K1j1)x ≼ (K2j2)x ≼ · · · ≼ (Kmjm)x. By Theorem 3.3,∑m

i=1 Ci
O
(X) = Cm(X).

Example 3.4 (Continued from Example 3.2). LetX = {x1, x2, x3, x4}, C1 = {{x1}, {x2},
{x3, x5, x6}, {x6, x7, x8, x9}}, C2 = {{x1, x3}, {x2, x4}, {x3, x4, x5, x6, x7, x8, x9}} be two
coverings of U , and C1 ≼c C2. We have that C1(X) = {x1, x2}, C1(X) = {x1, x2, x3, x5, x6},
C2(X) = {x1, x2, x3, x4}, and C2(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}. Hence, C1 + C2O(X) =

{x1, x2, x3, x4} = C2(X) and C1 + C2
O
(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9} = C2(X).

3.1.2. The first type of pessimistic CMGRS

Definition 3.2. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U with Ci = {Ki1,Ki2, · · · ,Kiti}, and X ⊆ U . Then, a pessimistic
lower approximation and a pessimistic upper approximation of X with respect to Ω are

denoted by
∑m

i=1 Ci
P
(X) and

∑m
i=1 Ci

P
(X), respectively, where

m∑
i=1

Ci
P

(X) =
∪

{Kij ∈ Ci | ∧m
i=1(Kij ⊆ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (4)

m∑
i=1

Ci

P

(X) =∼
m∑
i=1

Ci
P

(∼ X). (5)

And the area of uncertainty or boundary region of X relative to Ω in covering based
multigranulation rough sets is

BnP∑m

i=1
Ci
(X) =

m∑
i=1

Ci

P

(X)\
m∑
i=1

Ci
P

(X).

Then, (
∑m

i=1 Ci
P
(X),

∑m
i=1 Ci

P
(X)) is called the first type of covering based pessimistic

multigranulation rough sets (or the first type of pessimistic CMGRS, for short). We say
(U, C1, C2, · · · , Cm) a pessimistic multigranulation covering approximation space, denoted

by ((U,
∑PCi)) i.e., PMCA-Space .

Remark 2. In particular, when i = 1, the first type of pessimistic CMGRS will
degenerate into a single covering based rough sets whose lower and upper approximation
operations are just (1) of Definition 2.3. In addition, if Ci(i ∈ {1, 2, · · · ,m}) is a partition

on the universe U , then (
∑m

i=1 Ci
P
(X),

∑m
i=1 Ci

P
(X)) will degenerate into the original

MGRS. According to Yao’s opinion [54], we say that this pair of approximation operators
is defined by the granule.
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Theorem 3.5. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U , and X ⊆ U . Then,

m∑
i=1

Ci

P

(X) = {x ∈ U | ∨ ((Kij)x ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (6)

Proof. x ∈
∑m

i=1 Ci
P
(X) ⇔ x ∈∼

∑m
i=1 Ci

P
(∼ X)

⇔ x /∈
∑m

i=1 Ci
P
(∼ X)

⇔ ∨((Kij)x *∼ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti
⇔ ∨(Kij(x) ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti.

Example 3.5 (Continued from Example 3.1). By Definition 3.2, we have (C1 + C2)P (X) =

{x2, x5, x8}∩∅ = ∅ and (C1 + C2)P (X) = C1X∪C2(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}.
By Example 3.2, we have C1 ∩ C2(X) = {x1, x2, x5, x8}, C1 ∩ C2(X) = {x1, x2, x4, x5, x6, x7, x8}.
Hence, (C1 + C2)P (X) ⊆ C1 ∩ C2(X) and (C1 + C2)P (X) ⊇ C1 ∩ C2(X).

As a result of this example, we see that the pessimistic lower approximation of X
induced by C1 + C2 is not bigger than that induced by C1 ∩ C2. For a more general case,
we have the following propositions.

Proposition 3.3. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm}
a family of coverings of U , and X ⊆ U . Then, the following properties hold

(1)
∑m

i=1 Ci
P
(X) ⊆

∩m
i=1 Ci(X),

(2)
∑m

i=1 Ci
P
(X) ⊇

∩m
i=1 Ci(X).

Proof. (1) For any x ∈
∑m

i=1 Ci
P
(X), by Definition 3.2, it follows that there must

exist (K1j1)x ∈ C1, (K2j2)x ∈ C2, · · · , (Kmjm)x ∈ Cm. In fact, x ∈ (Kij)x for i ∈
{1, 2, · · · ,m}, j ∈ {1, 2, · · · , ti}. Hence, x ∈

∩m
i=1 Kiti(x). Note that

∩m
i=1(Kij)x ⊆ Ωx

for any x ∈ U , and
∩m

i=1 CiX =
∪
{Ωx | Ωx ⊆ X}. As a result, x ∈

∩m
i=1 CiX.

(2) For any x ∈
∩m

i=1 Ci(X), there exists Ωx such that x ∈ Ωx and Ωx∩X ̸= ∅. Note
that Ωx ⊆ (Kij)x, where i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , ti}. Hence, (Kij)x ∩X ̸= ∅,
i. e., x ∈

∑m
i=1 Ci

P
(X). Therefore,

∑m
i=1 Ci

P
(X) ⊇

∩m
i=1 Ci(X).

Proposition 3.4. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U , and X,Y ⊆ U .
Then, the following properties hold

(1)
∑m

i=1 Ci
P
U =

∑m
i=1 Ci

P
U = U,

(2)
∑m

i=1 Ci
P ∅ =

∑m
i=1 Ci

P
∅ = ∅,

(3)
∑m

i=1 Ci
P
(X) ⊆ X ⊆

∑m
i=1 Ci

P
(X),

(4)
∑m

i=1 Ci
P
(X ∪ Y ) =

∑m
i=1 Ci

P
(X) ∪

∑m
i=1 Ci

p
(Y ),

(5) X ⊆ Y ⇒
∑m

i=1 Ci
P
(X) ⊆

∑m
i=1 Ci

P
(Y ),

(6) X ⊆ Y ⇒
∑m

i=1 Ci
P
(X) ⊆

∑m
i=1 Ci

P
(Y ),

(7)
∑m

i=1 Ci
P
(X) =∼

∑m
i=1 Ci

P
(∼ X),

(8)
∑m

i=1 Ci
P
(X) =∼

∑m
i=1 Ci

P
(∼ X).
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Proof. These can be easily proved by Definition 3.2.

However, some propositions held in the original MGRS cannot hold in the covering
based pessimistic multigranulation rough sets. For example,

(1)
∑m

i=1 Ci
P
(X ∩ Y ) =

∑m
i=1 Ci

P
(X) ∩

∑m
i=1 Ci

P
(Y ),

(2)
∑m

i=1 Ci
P

(X) =
∑m

i=1 Ci
P
(X).

Now, we use two counter-examples to confirm our assertions.

(1) Continued from Example 3.3, let X = {x1, x2, x5, x8}, Y = {x2, x5, x7, x8, x9} ⊆ U ,
C1 = {{x1}, {x2}, {x3, x5, x6}, {x6, x7, x8, x9}} and C2 = {{x1, x2, x5}, {x2, x7}, {x3, x4,
x5, x6, x7, x8, x9}} two coverings on U . By Definition 3.2, we can getX∩Y = {x2, x5, x8}.
Then C1 + C2P (X ∩ Y ) = ∅, C1 + C2P (X) = {x2, x1}, C1 + C2P (Y ) = {x2, x7}, and

(C1 + C2)P (X)∩(C1 + C2)P (Y ) = {x2}. Hence, (1) does not hold, i.e.,
∑m

i=1 Ci
P
(X∩Y ) ̸=∑m

i=1 Ci
P
(X) ∩

∑m
i=1 Ci

P
(Y ).

(2) Continued from Example 3.3, letX = {x4}. Now, C1 + C2
P
(X) = {x1, x2, x4, x5, x6,

x7, x8, x3} and C1 + C2
P
(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}. Obviously, (2) also does

not hold, i.e.,
∑m

i=1 Ci
P

(X) ̸=
∑m

i=1 Ci
P
(X).

Also, these counter-examples show a distinction between the classical MGRS and the
covering based MGRS.

Theorem 3.6. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X1 ⊆ X2 ⊆
· · · ⊆ Xn ⊆ U . Then,

(1)
∑m

i=1 Ci
P
(X1) ⊆

∑m
i=1 Ci

P
(X2) ⊆ · · · ⊆

∑m
i=1 Ci

P
(Xn),

(2)
∑m

i=1 Ci
P
(X1) ⊆

∑m
i=1 Ci

P
(X2) ⊆ · · · ⊆

∑m
i=1 Ci

P
(Xn).

Proof . These can be proved by Definition 3.2.

Theorem 3.7. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X ⊆ U . If
C1 ≼c C2 ≼c · · · ≼c Cm, then,

(1)
∑m

i=1 Ci
P
(X) = Cm(X),

(2)
∑m

i=1 Ci
P
(X) = Cm(X).

Proof. (1) For any x ∈
∑m

i=1 Ci
P
(X), we have (Kij)x ⊆ X. For i = 1, 2, · · · ,m, it follows

x ∈ Cm(X). For any x ∈ Cm(X), we have (Kmj)x ⊆ X. By C1 ≼c C2 ≼c · · · ≼c Cm, we
have that (K1j1)x ⊆ (K2j2)x ⊆ · · · ⊆ (Kmjm)x ⊆ X. According to Definition 3.4, we

obtain x ∈
∑m

i=1 Ci(X). Hence,
∑m

i=1 Ci
P
(X) = Cm(X). Similarly, (2) can be proved.

Finally, it is necessary to discuss the relationship between the above two different
covering based multigranulation rough sets.

Theorem 3.8. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X ⊆ U .
The optimistic and pessimistic covering based multigranulation rough sets are denoted

by (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X)) and (

∑m
i=1 Ci

P
(X),

∑m
i=1 Ci

P
(X)), respectively. Then,

the following properties hold
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(1)
∑m

i=1 Ci
O
(X) ⊇

∑m
i=1 Ci

P
(X),

(2)
∑m

i=1 Ci
O
(X) ⊆

∑m
i=1 Ci

P
(X).

Proof. They can be proved by Theorem 3.1 and Theorem 3.5.

Example 3.6 (Continued from Example 3.2). From Example 3.2, we have six coverings

of U . Let X = {x1, x2, x5, x8, x9} ⊆ U . By Definition 3.1, we have that
∑6

i=1 Ci
O
(X) =

{x2, x5, x8, x9} and
∑6

i=1 Ci
P
(X) = {{x2, x8}∩{x2, x5, x9}} = {x2}. Hence,

∑6
i=1 Ci

O
(X) ⊇∑6

i=1 Ci
P
X. Similarly,

∑6
i=1 Ci

O

(X) = {x1, x2, x3, x5, x6, x8, x9} and
∑6

i=1 Ci
P

(X) = U .

Hence,
∑6

i=1 Ci
O

(X) ⊆
∑6

i=1 Ci
P

(X).

3.2. The second type of covering approximation operators based multigranulation rough
sets (Or the second type of CMGRS)

3.2.1. The second type of optimistic CMGRS

Definition 3.3. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U with Ci = {Ni1(x1), Ni2(x2), · · · , Niti(x|U |)}, and X ⊆ U . An
optimistic lower approximation and an optimistic upper approximation of X with respect

to Ω, denoted by
∑m

i=1 Ci
O
(X) and

∑m
i=1 Ci

O
(X), are defined as

m∑
i=1

Ci
O

(X) = {x ∈ U | ∨(Nij(x) ⊆ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (7)

m∑
i=1

Ci

O

(X) = {x ∈ U | ∧(Nij(x) ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (8)

where N(x) = ∩{K ∈ C | x ∈ K}.
And the area of uncertainty or boundary region of X relative to Ω in covering based

multigranulation rough sets is

BnO∑m

i=1
Ci
(X) =

m∑
i=1

Ci

O

(X)\
m∑
i=1

Ci
O

(X).

Then, (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X)) is called the second type of covering based optimistic

multigranulation rough sets (or the second type of optimistic CMGRS, for short).
In particular, when i = 1, the second type of optimistic CMGRS will degenerate into

the second type of covering approximation operators listed in Section 2. Additionally, if

Ci, i ∈ {1, 2, · · · ,m} is a partition on the universe U , then (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X))

will degenerate into the original MGRS. According to Yao’s opinion [54], we say that this
pair of approximation operators is defined by the element based definition.
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3.2.2. The second type of pessimistic CMGRS

Definition 3.4. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm}
a family of coverings of U with Ci = {Ni1(x1), Ni2(x2), · · · , Niti(x|U |)}, and X ⊆ U .
Then, a pessimistic lower approximation and a pessimistic upper approximation of X

with respect to Ω are denoted by
∑m

i=1 Ci
P
(X) and

∑m
i=1 Ci

P
(X), respectively, where

m∑
i=1

Ci
P

(X) = {x ∈ U | ∧m
i=1(Nij(x) ⊆ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (9)

m∑
i=1

Ci

P

(X) = {x ∈ U | ∨ (Nij(x) ∩X ̸= ∅)}. (10)

And the area of uncertainty or boundary region of X relative to Ω in covering based
multigranulation rough sets is

BnP∑m

i=1
Ci
(X) =

m∑
i=1

Ci

P

(X)\
m∑
i=1

Ci
P

(X).

Then, (
∑m

i=1 Ci
P
(X),

∑m
i=1 Ci

P
(X)) is called the second type of covering based pes-

simistic multigranulation rough sets (or the second type of pessimistic CMGRS, for
short).

In a special case, when i = 1, the second type of pessimistic CMGRS will degenerate
into the second type of covering approximation operators listed in this paper. Addition-

ally, if Ci, i ∈ {1, 2, · · · ,m} is a partition on the universe U , then (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X))

will degenerate into the original MGRS. Here, the properties of the second type of opti-
mistic and pessimistic CMGRS are omitted.

3.3. The third type of covering approximation operators based multigranulation rough
sets (Or the third type of CMGRS)

3.3.1. The third type of optimistic CMGRS

Definition 3.5. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U with Ci = {Ki1,Ki2, · · · ,Kiti}, and X ⊆ U . An optimistic lower
approximation and an optimistic upper approximation of X with respect to Ω, denoted

by
∑m

i=1 Ci
O
(X) and

∑m
i=1 Ci

O
(X), are defined as

m∑
i=1

Ci
O

(X) =
∪

{Kij ∈ Ci | ∨(Kij ⊆ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (11)

m∑
i=1

Ci

O

(X) = {x ∈ U | ∧((Kij)x ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti}, (12)

where ti = |Ci|.
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And the area of uncertainty or boundary region of X relative to Ω in covering based
multigranulation rough sets is

BnO∑m

i=1
Ci
(X) =

m∑
i=1

Ci

O

(X)\
m∑
i=1

Ci
O

(X).

Then, (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X)) is called the third type of covering based optimistic

multigranulation rough sets (or the third type of optimistic CMGRS, for short). In a
special case, when i = 1, the third type of optimistic CMGRS will degenerate into
the third type of covering approximation operators listed in this paper. Additionally, if

Ci, i ∈ {1, 2, · · · ,m} is a partition on the universe U , then (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X))

will degenerate into the original MGRS.

3.3.2. The third type of pessimistic CMGRS

Definition 3.6. Let (U,Ω) be a covering approximation space, Ω = {C1, C2, · · · , Cm} a
family of coverings of U with Ci = {Ki1,Ki2, · · · ,Kiti}, and X ⊆ U . Then, a pessimistic
lower approximation and a pessimistic upper approximation of X with respect to Ω are

denoted by
∑m

i=1 Ci
P
(X) and

∑m
i=1 Ci

P
(X), respectively, where

m∑
i=1

Ci
P

(X) =
∪

{Kij ∈ Ci | ∧m
i=1(Kij ⊆ X), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti, x ∈ U},

(13)

m∑
i=1

Ci

P

(X) = {x ∈ U | ∨((Kij)x ∩X ̸= ∅), i ∈ {1, 2, · · · ,m}, j = 1, 2, · · · , ti, x ∈ U}.

(14)
And the area of uncertainty or boundary region of X relative to Ω in covering based

multigranulation rough sets is

BnP∑m

i=1
Ci
(X) =

m∑
i=1

Ci

P

(X)\
m∑
i=1

Ci
P

(X).

Then, (
∑m

i=1 Ci
P
(X),

∑m
i=1 Ci

P
(X)) is called as the third type of covering based pes-

simistic multigranulation rough sets (or the third type of pessimistic CMGRS, for short).

In a special case, when i = 1, the third type of pessimistic CMGRS will degenerate into
the third type of covering approximation operators listed in Section 2. Additionally, if

Ci(i ∈ {1, 2, · · · ,m}) is a partition of the universe U , then (
∑m

i=1 Ci
O
(X),

∑m
i=1 Ci

O
(X))

will degenerate into the original MGRS. Here, the properties of the third type of opti-
mistic and pessimistic CMGRSs are omitted.

Corresponding to the properties of MGRS listed in Section 2.2, the proposed covering
based optimistic multigranulation rough sets can be summarized in Table 2.
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Table 2
The properties of three types of covering based optimistic multigranulation rough sets

MCA-Space (U,
∑OCi) Satisfied Not satisfied

(U,
∑OC1) (1OML),(2OML),(3OML),(4OML),(5OML) (6OMH)

(6OML),(7OML),(8OML),(9OML),(10OML)

(1OMH),(2OMH),(3OMH),(4OMH),(5OMH)

(7OMH),(8OMH),(9OMH),(10OMH)

(U,
∑OC2) (1OML),(2OML),(3OML),(4OML),(5OML) (6OMH)

(6OML),(7OML),(8OML),(9OML),(10OML)

(1OMH),(2OMH),(3OMH),(4OMH),(5OMH)

(7OMH),(8OMH),(9OMH),(10OMH)

(U,
∑OC3) (1OML),(2OML),(3OML),(4OML),(5OML) (7OML)

(6OML),(8OML),(9OML),(10OML) (6OMH)

(1OMH),(2OMH),(3OMH),(4OMH) (7OMH)

(5OMH),(8OMH),(9OMH),(10OMH)

In Table 2, (U,
∑OCi) represents the i-th(i ∈ {1, 2, 3}) type of covering based optimistic

multigranulation approximation space. Similarly, the proposed covering based pessimistic
multigranulation rough sets can also be summarized in Table 3.

Table 3
The properties of three types of covering based pessimistic multigranulation rough sets

MCA-Space (U,
∑P Ci) Satisfied Not satisfied

(U,
∑P C1) (1PML),(2PML),(3PML),(5PML) (4PML)

(7PML),(8PML),(9PML),(10PML) (4PMH)

(1PMH),(2PMH),(3PMH),(5PMH) (6PMH)

(7PMH),(8PMH),(9PMH),(10PMH)

(U,
∑P C2) (1PML),(2PML),(3PML),(5PML) (4PML)

(7PML),(8PML),(9PML),(10PML) (4PMH)

(1PMH),(2PMH),(3PMH),(5PMH) (6PMH)

(7PMH),(8PMH),(9PMH),(10PMH)

(U,
∑P C3) (1PML),(2PML),(3PML), (5PML) (4PML)

(8PML),(9PML),(10PML),(1PMH) (7PML)

(2PMH),(3PMH),(5PMH) (4PMH),(9PMH)

(8PMH),(10PMH) (6PMH),(7PMH)

In Table 3, (U,
∑PCi) represents the i-th(i ∈ {1, 2, 3}) type of covering based pes-
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simistic multigranulation approximation space.

Remark 3. In this section, we have proposed three types of covering based optimistic
and pessimistic multigranulation rough sets and discussed some relationships between
the CMGRS and the original MGRS. Several results held in the original MGRS model
but cannot hold in all the three CMGRSs. It can be known from the above discussions
that (1) the original MGRS is a special case of the CMGRS and the latter degenerates
into the former when each covering is a partition on the universe, and (2) compared
with the original MGRS, the CMGRS theory has its advantage in the application scope
since it is applicable to the covering environment, which is beneficial to the application
of the idea of multigranulation for knowledge representation, rule acquisition and feature
selection from a multi-source covering information system.

4. Uncertainty measures of covering based multigranulation rough sets

Multigranulation rough set (MGRS) theory is a relatively mathematical tool for solving
complex problems in the multiple granulations or distributed circumstances through
determining their vagueness and uncertainty. However, the existing uncertainty measures
of a single covering granulation based rough sets [9, 18, 39-41, 49] are no longer suitable
for covering based multigranulation rough sets. In this section, we will introduce some
measures to characterize the vagueness and uncertainty of these new rough set models.
Thus, these new rough set theories will contribute a lot to the applications in the fields
of pattern recognition, image processing, and fuzzy reasoning.

We notice that in the literature [30], Pawlak has given a definition of the rough mem-
bership as follows.

Definition 4.1. Let S = (U,AT ) be an information system. For A ⊆ AT , X ⊆ U , the
rough membership of x in X is defined by

µA
X(x) =

|[x]A ∩X|
|[x]A|

,

where [x]A represents an equivalence class induced by an attribute set A.

However, it is not be suitable to evaluate the uncertainty of a covering based rough
sets. So the new definition of rough membership of x in X is needed.

Definition 4.2. Let S = (U,AT ) be an information system, C a covering of the universe
U where C = {K1,K2, · · · ,Kt} and X ⊆ U . The maximal and minimal covering based
rough memberships of x in K, denoted by µC

X(x), ηCX(x), are defined by

µC
X(x) = max

|(Ki)x ∩X|
|Kix |

,

ηCX(x) = min
|(Ki)x ∩X|

|(Ki)x|
,

where (Ki)x ∈ C and x ∈ (Ki)x.

Proposition 4.1. Let S = (U,AT ) be an information system, C a covering of the universe
U where C = {K1,K2, · · · ,Kt} and X ⊆ U . Then, the following properties hold
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(1) µC
X(x) = 1 ⇔ ∃(Ki)x ∈ C ∧ (Ki)x ⊆ X,

(2) 0 < µC
X(x) ≤ 1 ⇔ ∃(Ki)x ∈ C ∧ (Ki)x ∩X ̸= ϕ,

(3) ηCX(x) = 1 ⇔ ∀(Ki)x ∈ C ∧ (Ki)x ⊆ X,

(4) 0 < ηCX(x) ≤ 1 ⇔ ∃(Ki)x ∈ C ∧ (Ki)x ⊆ X.

Proof. They can be easily proved by Definition 4.2.

Example 4.1 (Continued from Example 3.2). Let C1 = {{x1, x2, x4, x5}, {x2, x5}, {x3, x5}}
be a covering of U , and X = {x1, x3, x5} ⊆ U . By Definition 4.2, we have that µC1

X (x1) =

max{ |{x1,x2,x4,x5}∩X|
|{x1,x2,x4,x5}| } = 1

2 , µ
C1

X (x2) = max{ |{x1,x2,x4,x5}∩X|
|{x1,x2,x4,x5}| , |{x2,x5}∩X|

|{x1,x2,x4,x5}|} = max{ 1
2 ,

1
2} =

1
2 , µ

C1

X (x3) = 1, µC1

X (x4) =
1
2 , and µC1

X (x5) = max{1
2 ,

1
2 , 1} = 1. Similarly, we have that

ηC1

X (x1) =
1
2 , η

C1

X (x2) =
1
2 , η

C1

X (x3) = 1, ηC1

X (x4) =
1
2 , and ηC1

X (x5) = min{ 1
2 ,

1
2 , 1} = 1

2 .

Definition 4.3. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X ⊆ U .
The maximal and minimal degree of rough membership of x in X, denoted by µΩ

X(x)
and ηΩX(x) are defined by

µΩ
X(x) =

1

m

m∑
i=1

µCi

X (x),

ηΩX(x) =
1

m

m∑
i=1

ηCi

X (x).

Proposition 4.2. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and X ⊆ U .
Then, we have that

(1) 0 < µΩ
X(x) ≤ 1,

(2) 0 < ηΩX(x) ≤ 1.

Proof. They can be proved by Definition 4.3.

Example 4.2 (Continued from Example 3.1). Let Ω = {C1, C2} be a family of coverings of
U , where C1 = {{x1, x2, x4, x5}, {x2, x5}, {x3, x5}} and C2 = {{x1, x2, x3}, {x4, x5}, {x2, x4}}.
For X = {x1, x3, x5} ⊆ U , by Definition 4.2, we have that µC2

X (x1) = 2
3 , µ

C2

X (x2) = 2
3 ,

µC2

X (x3) = 2
3 , µC2

X (x4) = 1
2 , and µC2

X (x5) = 0. Similarly, we have that ηC2

X (x1) = 2
3 ,

ηC2

X (x2) = 0, ηC2

X (x3) = 2
3 , ηC2

X (x4) = 0, and ηC2

X (x5) = 0. According to the results
obtained from Example 4.1 and Definition 4.3, we get that

µΩ
X(x1) =

µ
C1
X

(x1)+µ
C2
X

(x1)

2 = 1
2 × ( 12 + 2

3 ) =
7
12 ,

µΩ
X(x2) =

µ
C1
X

(x2)+µ
C2
X

(x2)

2 = 1
2 × ( 12 + 2

3 ) =
7
12 ,

µΩ
X(x3) =

µ
C1
X

(x3)+µ
C2
X

(x3)

2 = 1
2 × (1 + 2

3 ) =
5
6 ,

µΩ
X(x4) =

µ
C1
X

(x4)+µ
C2
X

(x4)

2 = 1
2 × ( 12 + 1

2 ) =
1
2 ,

µΩ
X(x5) =

µ
C1
X

(x5)+µ
C2
X

(x5)

2 = 1
2 × ( 12 + 0) = 1

4 .
Similarly,

ηΩX(x1) =
η
C1
X

(x1)+η
C2
X

(x1)

2 = 1
2 × ( 12 + 2

3 ) =
7
12 ,
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ηΩX(x2) =
η
C1
X

(x2)+η
C2
X

(x2)

2 = 1
2 × ( 12 + 0) = 1

4 ,

ηΩX(x3) =
η
C1
X

(x3)+η
C2
X

(x3)

2 = 1
2 × (1 + 2

3 ) =
5
6 ,

ηΩX(x4) =
η
C1
X

(x4)+η
C2
X

(x4)

2 = 1
2 × ( 12 + 0) = 1

4 ,

ηΩX(x5) =
η
C1
X

(x5)+η
C2
X

(x5)

2 = 1
2 × ( 12 + 0) = 1

4 .

Definition 4.4. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U . An optimistic
approximation measure of X by Ω is defined as

αO
Ω(X) =

|
∑m

i=1 Ci
O
X|

|
∑m

i=1 Ci
O
X|

,

where X ̸= ∅ and |X| denotes the cardinality of a set X. Similarly, a pessimistic approx-
imation measure of X by Ω is defined as

αP
Ω(X) =

|
∑m

i=1 Ci
P
X|

|
∑m

i=1 Ci
P
X|

.

Theorem 4.1. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and Ω
′ ⊆ Ω. Then

αO
Ω(X) ≥ αO

Ω′ (X) ≥ αCi(X) and αP
Ω(X) ≤ αP

Ω′ (X) ≤ αCi(X), (i ≤ m).

Proof. They can be proved by Definition 4.4.

In the optimistic covering based multigranulation rough sets, the approximation mea-
sure of X by Ω is not smaller than that induced by a subset of Ω. The approximation
measure of X by Ω

′
is also not smaller than that induced by a single covering granulation.

Whereas, in the pessimistic version, the result is just the converse.

Definition 4.5. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U and Ci =
{Ki1,Ki2, · · · ,Kiti}. The rough entropy of Ω is defined by the following

E(Ω) =
1

m

m∑
i=1

E(Ci),

where E(Ci) =
∑ti

j=1
|Kij |
ti

log2 |Kij |, i ∈ {1, 2, · · · ,m} (see [18]).

Example 4.3 (Continued from Example 3.1). Let Ω = {C1, C2} be a family of coverings of
U , where C1 = {{x1, x2, x4, x5}, {x2, x5}, {x3, x5}}, C2 = {{x1, x2, x3}, {x4, x5}, {x2, x4}}.
By Definition 4.5, we have that E(C1) =

∑3
j=1

|K1j |
3 log2 |K1j | = 1

3 (4log24 + 2log22 +

2log22) = 8
3 and E(C2) =

∑3
j=1

|K2j |
3 log2 |K2j | = 1

3 (3log23 + 2log23 + 2log22) = 2
3 +

5
3 log23. Hence, E(Ω) = 5

3 + 5
6 log23.

Theorem 4.2. Let Ω = {C1, C2, · · · , Cm} be a family of coverings of U . If C1 ≼c C2 ≼c

· · · ≼c Cm, then E(C1) ≤ E(Ω) ≤ E(Cm).

Proof. It can be proved by Definition 4.5.

Example 4.4 (Continued from Example 2.1). Let Ω = {C1, C2} be a family of coverings of
U , where C1 = {{x1}, {x2}, {x3, x4}, {x4, x5}}, C2 = {{x1, x2}, {x3, x4}, {x2, x3, x4, x5}}
and C1 ≼c C2. By Definition 4.5, we have that E(C1) =

∑4
j=1

|K1j |
4 log2 |K1j | = 1

4 (1log21+
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1log21 + 2log22 + 2log22) =
1
2 and E(C2) =

∑3
j=1

|K2j |
3 log2 |K2j | = 1

3 (2log22 + 2log22 +

2log24) =
4
3 . Hence, E(Ω) = 1

2 (
1
2 + 4

3 ) =
11
12 . Therefore, E(C1) ≤ E(Ω) ≤ E(C2).

Remark 4. In this section, we have systematically investigated the united measure-
ment formations. Some examples have been employed to illustrate the application of these
measures by the first type of CMGRS. Similarly, the proposed uncertainty measures can
offer a method to characterize some other types of approximate abilities of the covering
based multigranulation models, such as approximate precision, the rough membership,
and the maximal and minimal degree of rough membership. Under the framework of cov-
ering based multiple granulations, these uncertainty measures may become a theoretical
basis of granule reduction, granulation space reduction, and rule evaluation for a target
information system with the covering background.

5. Conclusion and Discussion

The main contribution of this paper is that three types of optimistic and pessimistic
covering based multigranulation rough sets have been proposed which can be used to
do data analysis characterized by the covering environment. Under the framework of
covering based multigranulation rough sets, we have investigated some of their important
properties and compared their properties with those of the classical MGRS. In addition,
we have introduced several important uncertainty measures, such as degree of rough
membership, approximation measure, and rough entropy. These results can enrich the
MGRS theory and enlarge its application scope to some extent.

Further research includes how to reduce redundant granules and how to reduce redun-
dant granular space in the process of rough data analysis under the multigranulation
environment. Another important issue in the future is to investigate applications of this
new rough set theory for knowledge representation, rule acquisition, feature selection in
knowledge discovery.
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