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Abstract—Granular computing, as an emerging computa-
tional and mathematical theory which describes and processes
uncertain, vague, incomplete, and mass information, has been
successfully used in knowledge discovery. At present, granular
computing faces the challenges of consuming a huge amount of
computational time and memory space in dealing with large-
scale and complicated data sets. Feature selection, a common
technique for data preprocessing in many areas such as pattern
recognition, machine learning and data mining, is of great
importance. This paper focuses on efficient feature selection
algorithms for large-scale data sets and dynamic data sets in
granular computing.
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I. INTRODUCTION

Granular computing (GrC) has played an important role
in information granulation of human reasoning [15], [30].
It is motivated by the practical needs for simplification,
clarity, low cost, approximation, and tolerance of uncer-
tainty [31], [28]. Three basic issues in GrC are informa-
tion granulation, organization, and causation. Many models
and methods under these issues have been proposed, and
appeared in many related fields such as interval analysis,
rough set theory, cluster analysis, machine learning and
data compression [16], [29]. Feature selection, a common
technique for data preprocessing in many areas including
machine learning, cluster analysis, pattern recognition and
data mining, has hold great significance [2], [9], [17]. With
the rapid development of information technology, feature
selection faces the challenges of consuming a huge amount
of computational time and memory space in dealing with
large-scale and complicated data sets.

Among various approaches to select useful features, a
special theoretical framework is Pawlak’s rough set model
[20], [21]. One can use rough set theory to select a subset
of features that is most suitable for a given recognition
problem [4], [S], [7], [18], [25]. In this paper, based on rough
set theory, an accelerator is developed to improve the time
efficiency of a heuristic search process [22]. Experiments
show that accelerated algorithms outperform their original
counterparts. However, for the very large-scale data sets, ac-
celerated computational time is still very long. To overcome
this deficiency, we propose an efficient rough feature selec-

978-1-4673-2311-6/12/$31.00 ©2012 IEEE

tion algorithm for large-scale data sets, which is stimulated
from a multi-granulation view [11]. Experiments indicate
that, this algorithm can find a valid feature subset and is
more efficient than the accelerated algorithms. In addition,
for dynamic data sets, an efficient group incremental rough
feature selection algorithm based on information entropy
is also developed in this paper. When multiple objects are
added to a decision table, the algorithm aims to find a new
feature subset in a much shorter time. Experiments show
that the algorithm is effective and efficient.

II. PRELIMINARY KNOWLEDGE

The information entropy from classical thermodynamics
is used to measure out-of-order degree of a system. Infor-
mation entropy is introduced in rough set theory to measure
uncertainty of a given data set, which have been widely
applied to devise heuristic feature selection algorithms [11],
[13], [22], [23], [26]. Shannon’s entropy [24], comple-
mentary entropy [12], [13] and combination entropy [23]
are three representative entropies which have been mainly
used to construct feature selection algorithms in rough set
theory. The definitions of these three entropies are defined
as follows.

Definition 1: Let S = (U,C U D) be a decision table
and B C C. Then one can obtain the condition partition
U/B = {X1,Xs, -+, X,,} and decision partition U/D =
{Y1,Ys,---,Y,}. Based on these partitions, Shannon’s con-
ditional entropy of B relative to D is defined as
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Definition 2: Let S = (U,C U D) be a decision table
and B C (. Then, one can obtain the condition par-
tition U/B = {X;1,X5,---,X,,} and decision partition
U/D = {Y1,Y3,---,Y,}. Based on these partitions, the
complementary conditional entropy of B relative to D is

defined as
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where Y“ and X7 are complement sets of Y; and X;

respectively.

Definition 3: Let S = (U,C U D) be a decision table
and B C C. Then, one can obtain the condition partition
U/B = {X1,Xs, -, X,,} and decision partition U/D =
{Y1,Ya,---,Y,}. Based on these partitions, the combination
conditional entropy of B relative to D is defined as
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where C denotes the number of pairs of objects which
are not dlstlngmshable from each other in the equivalence
class Xj;.

For convenience, a uniform notation M E(D|B) is intro-
duced to denote the above three entropies. For example,
if one adopts Shannon’s conditional entropy to define the
attribute significance, then M E(D|B) = H(D|B). In [11],
[22], [26], the attribute significance is defined as follows
(See Definitions 4-5).

Definition 4: Let S = (U,C U D) be a decision table
and B C C. Va € B, the significance measure (inner
significance) of a in B is defined as

Sigi"™" (a, B, D) = ME(D|B — {a}) — ME(D|B).
Definition 5: Let S = (U,C U D) be a decision table
and B C C. Va € C — B, the significance measure (outer

significance) of a in B is defined as

Sig®“*"(a, B, D) = ME(D|B) — ME(D|B U {a}).

III. AN ACCELERATOR FOR FEATURE SELECTION

In rough set theory, feature selection (also called at-
tribute reduction) aims to retain the discriminatory power
of original features. It plays an important role in many
areas including pattern recognition, machine learning and
data mining. In the last two decades, many techniques of
attribute reduction have been developed. Skowron proposed
a discernibility matrix approach to obtain all attribute reducts
of an information system [25]. Kryszkiewicz proposed an
approach to computing the minimal set of attributes that
functionally determine a decision attribute[10]. In addition,
to conceptualize and analyze various types of data, re-
searchers have generalized Pawlak’s classic rough set model.
The generalized rough set models include neighborhood
rough set model [14], fuzzy rough model [1], decision-
theoretic rough set model [27], variable precision rough
set model (VPRS)[32] and dominance rough set model [3].
Attribute reduction based on these generalizations was also
redefined. To improve the time efficiency, researchers have

also developed many heuristic attribute reduction algorithms
which can generate a single reduct from a given table[11],
[22], [26]. However, above algorithms are computationally
time-consuming for large-scale data sets. To overcome this
deficiency, we developed an accelerated framework, which
can be used to accelerate a heuristic process of feature
selection[22].

Theorem 1: Let S = (U,C U D) be a decision table,
X CUand P={Ry,Rs, -, R,} be a family of attribute
sets with By < Ry < --- < R,, (R; € 2°). Given P, =

{Rl, RQ, Ty, Ri}, we have
POSY,, (D) = POSY,(D)U POS, ! (D),
where Uy = U and Uiy = U — POSE (D).

Theorem 1 implies that the target decision D can be
positively approximated by using granulation orders P on
the gradually reduced universe. This mechanism motivates
the idea of the accelerator for improving the computing
performance of a heuristic attribute reduction algorithm.

Based on Theorem 1, we concentrate on the rank preser-
vation of significance measures of attributes, which can be
studied in the following theorem.

Theorem 2: Let S = (U,C U D) be a decision table,
B C C and U = U — POSY(D). For Va,b € C —
B, if Sig°vt"(a, B,D,U) > Sig°“t"(b, B, D,U), then
Sige¥e(a, B, D,U") > Sig°ut¢" (b, B, D, U").

Based on Theorem 1 and 2, a common accelerated feature
selection algorithm is developed in the following.

Algorithm 1. A common accelerated feature selection algo-
rithm (FSA)

Input: Decision table S =
Output: One reduct red.

Step 1: red «— O,
Step 2: Compute Sig"""*"(ay,C, D,U), k < |C/;
Step 3: Put ay, into red, where Sig™™"°" (ay,C,D,U) >
0;
Step 4: i — 1, Ry =red, P, ={R1} and U; — U;
Step 5: While M EV: (red, D) # MEV: (C, D) Do
{Compute the positive region POSE, (D),
U; = U — POSY, (D),
t— i+ 1,
red «— red U {ag}, where Sig°“**"(ag,red,
= max{Sig°***" (ay, red, D,U;), ar, € C — red},
R; — R;_1 U{ao},
P, —{Ri,Rs,---,R;} };
Step 6: return red and end.

(U,CUD);
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This accelerator provides an efficient accelerated strategy
for heuristic feature selection based on rough set theory.
Note that each of the modified algorithms can choose the
same attribute reduct as its original version, which possesses
the same classification accuracy. Experiments carried out on



nine UCI data sets show that these accelerated algorithms
outperform their original counterparts. Furthermore, as the
size of data set increases, the efficiency of accelerated
algorithms is more and more obvious.

IV. AN EFFICIENT ROUGH FEATURE SELECTION
ALGORITHM WITH A MULTI-GRANULATION VIEW

In this section, according to the idea of using samples
to estimate the totality, we develop a highly efficient rough
feature selection algorithm from a multi-granulation view
[11]. We remark that there are three key problems should
be considered. The first problem is selecting sub-tables from
the large-scale one, the second one is finding reduct on sub-
tables, and the last one is the fusing the all the reducts
on sub-tables together. A sub-table can be considered as a
single small granularity; and one can estimate on this small
granularity the reduct of the original table. In the process of
selecting small granularity, one of the most important issues
is how to determine the size of a small granularity. With
the use of some concepts and formulas in statistics, we first
introduce a familiar approach to determine sample size [6].

Let S be a data table (the original large-scale data table)
and let the size of S be denoted by N. Then, the sample
size M’ is defined as [6]

where, o is the standard deviation on S, Z is Z—statistic
under confidence intervals, and F is an acceptable tolerance
error. If M’ is larger than 5% of the overall size, it should
be adjusted as [6]

M’'N

M=—""
M +N

Because decision tables in rough set theory are categorical
data, we introduce the coefficient of unalikeability u to
replace the standard deviation o [8].
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we expand the definition of ¢(x;, z;) into multi-dimensional
data, which is denoted by cp, (25, ;).

where z;,z; € U, and ¢(z;,x;) =
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with the function § being given by
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Hence, for a decision table S, the coefficient of unalike-
ability can be redefined as
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and sample size is redefined as
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According to equations (1)-(3), one can determine the size
of sub-table (small granularity) on a large-scale decision
table as follows.

For a decision table, its reducts are directly related to
its decision distribution. Thus, the decision distribution on a
small granular space may also affect the estimated result. To
ensure the decision distribution on a small granular space is
close to the large-scale one, an algorithm for selecting sub-
table is developed as follows.

Algorithm 2. An algorithm for selecting small granularity
on a large-scale decision table

Input: Decision table S = (U,C U D).
Output: n small granularity S; = (U;,C U D) (j =
1,2, ,n).

Step I: Compute the size of small granularity M; (ac-
cording to Algorithm 1);

Step 2: Compute U/D = {D;,Ds3,---,D,}, and the
decision attribute value proportions p; = |D;|/|U|(i =
13 27 e ,’I");

Step 3: Compute the numbers of each decision attribute
value in the small granularity m; = [M; X p;](i =
1,2,---,7) (function [-] is the rounding function);

Step 4: Select the first granularity S; on U, Uy « 0:
forG=1;i<7r;i++)
{ Select m,; objects from D, randomly, which is
denoted by X;
U1 — U1 U X;
}
Step 5: Select granularity S; repeatedly, j < 2:
Given threshold a (0 < a < 1);
while (U — JIZ} Ux| > M)
{ Uj — 0
Step 5.1: Select aM objects from table S;_q:
{ Compute U;_1/D ={D},D5,---,D,};
forG=1;1<r;i++)
{ Select am; objects from D, randomly,
which is denoted by X’;
Uj — Uj U X/;

} .
Step 5.2: U" = U—J._} Uy, and select (1—a) M
objects from U":



{ Compute U"/D = {D{,DY,---,D/'}:
forG=11<7r;i1++)
{ Select (1—a)m; objects from D; randomly,
which is denoted by X",
Uj —U j uxXx N;
}
}
JeJj+1
}

Step 6: n < j — 1 and end.

For a large-scale decision table, from Algorithm 1 and
Algorithm 2, we obtain a group of estimates to the reduct.
By fusing together these estimates, we get a valid feature
subset for the large-scale decision table. An efficient rough
feature selection algorithm is proposed as follows.

Algorithm 3. An efficient rough feature selection algo-
rithm(EFSA)

Input: A large-scale decision table S =
Output: Feature subset Red

(U,CUD)

Step 1: Select n small granularity according to Algorithm
2 from S: S; = (U;,CUD), Se = (Us,CUD), -+, S, =
(Unv cu D),
Step 2: Red « (J;
for (=15 <mn;j++)
{ Compute the attribute reduct red; of table S; =
(U;,C U D) using Algorithm 1;
Red = Red U red; ;
}

Step 3: return Red and end.

Algorithm 3 introduces a framework that is dividing and
fusing on a large-scale data set. Based on this framework,
by employing other reduction algorithms to find reduct on
a sub-table, one can also construct appropriate efficient
algorithms. Experiments indicate that, compared with the
accelerated algorithm (FSA), algorithm EFSA can find a
valid feature subset in a much shorter time.

In addition, algorithm EFSA can also handle some large-
scale data sets that are very difficult to deal with on a
PC because of the high computational time. This is a
very important contribution of this algorithm. In [11], two
data sets (Poker-hand and Covtype) have been employed to
illustrate this conclusion. The sizes of these two data sets
are 1025010 and 581012, and the numbers of features of
them are 10 and 54. By using existing reduction algorithms,
these two data sets are too large in scale to get the feature
subset within 100 hours. However, the computational time
of algorithm EFSA on these two data sets are just 0.35
hours and 6.6 hours. Therefore, this algorithm has made an
important contribution to deal with large-scale data sets in
applications.

V. A GROUP INCREMENTAL APPROACH TO FEATURE
SELECTION

In practice, the rapid development of data processing tools
has led to the high speed of dynamic data updating. Thus
many real data in applications may be generated in groups
instead of one by one. To address this issue, this section
introduces a group incremental feature selection algorithm,
which aims to deal with multiple objects at a time instead
of repeatedly.

Given a decision table, when multiple objects are added,
Theorems 3-5 introduce the group incremental mechanisms
of three entropies respectively.

Theorem 3: Let S = (U,C U D) be a decision
table, B - C, U/B = {Xl,XQ,”-,Xm} and
U/D = {Y1,Ys,---,Y,}. The Shannon’s conditional
entropy of D with respect to B is Hy(D|B). Sup-
pose that Ux is an incremental object set, Ux/B =
{M17M27-'-,Mm/} and Ux/D = {Zl,ZQ,"'7Zn/}. We
assume that (UUUx)/B = {X{, X5, -+, X}, Xit1, Xpt2,

-,Xm,Mk+1,Mk+2,~ e ,Mm/} and (U U Ux)/D =
(Y1, Y4, - Y/, Yirn, Yiso, - Yo, Zivts Zivos--- s Zur ).
Then, the new Shannon’s conditional entropy becomes
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Theorem 4: Let S = (U,C U D) be a decision ta-
ble, B C C, U/B = {X1,Xs,,Xm} and U/D =
{Y1,Ys,---,Y,}. The complementary conditional entropy
of D with respect to B is Ey(D|B). Suppose that Uy is
an incremental object set, Ux/B = {M;y, My, -+, M}
and Ux/D = {Z1,Z3, -+, Zy}. We assume that (U U
Ux)/B ={X1{,X5, -, X}, Xi+1, Xir2, -+ Xy Miy,
Mk+2a"'va’} and (U U UX)/D = {Y1/7Y2/a"'vyl/7
}/l+17 }/2+27 <Y, Zl+17 Zl+2, ey Zn/} Then, the new
complementary conditional entropy becomes

1
([UUUx|)?
|Ux?Euy (D|B)) + A,

l |X NY; || M —Z; | +|MiNZ; || X — Y]
where A = Zl (205 0T +

Evuuy (D|B) = (IUI*Eu(D|B)+

n |X:NY; || M| [MinZ; || X;]
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Theorem 5: Let S = (U,C U D) be a decision ta-

ble, B C C, U/B = {X1,Xs,-++, X} and U/D =
{Y1,Ys,---,Y,}. The combination conditional entropy of
D with respect to B is Ey(D|B). Suppose that Ux is



an incremental object set, Ux/B = {My, My, -+, M,/ }
and Ux/D = {Zy,Z5,--,Z,}. We assume that (U U
Ux)/B = {X1, X5, -+, Xpy X1, X2, ooy Xony Mgy,
Mk+2v"'>Mm’} and (U U UX)/D = {Yl/7Y2/7""Yl/7
Yie1,Yigo, -, Yy, Ziv1, Ziyo, -+, Zy}. Then, the new
combination conditional entropy becomes

1
(U] + Ux)2(U] + [Ux] - 1)

C’E‘UUUX (D|B) =

2
(U(U]=
_ k |G || M | (3] X5 [+3| M | —2)

where A = Zz’=1(ﬁ|U\+|Ux|>2(|U|+|UX\—1)
El | X:NY; || MinZ; \(3|X NY;|+3|M;iNZ;|—2) )

J=1 (U[+Ux (U U x|-1)

Based on incremental mechanisms of the three entropies,
an efficient group incremental feature selection algorithm is

introduced in the following.

Algorithm 5. A group incremental algorithm for reduct
computation (GIARC)

Input: A decision table S = (U,C U D), reduct REDy
on U, and the new object set Ux

Output: Reduct REDyy, on UUUx

Step 1 : B « REDy. Compute U/B = {XP
X2B7""Xr€}’ U/C = {XIC7X2C7""XSC}’ UX/B =
{MB,ME,... MB}andUx/C = {MF ,MS, -, M5}

Step 2 : Compute (U U Ux)/B = {X}B X}B

XIQB>X1§+17XkB+27" X MkB+17MkB+2""7M£’}
and (UWU)/C = {X{C7X X X X e
XE MG, MS -, ME }.

Step 3 : If k =0 and k' = 0, turn to Step 4; else turn

Step 5.

Step 4 : Compute M Ey, (D|B) and M Ey, (D|C). If
MEy, (D|B) = MEy, (D|C), turn to Step 7; else turn to
Step 5.

Step 5 : while M Eyyyy (D|B) # M Eyuuy (D|C) do

{ For each a € C — B, compute
Sigtity (a, B, D);
Select ag = max{Sig'/, (a,B,D), a € C —
B},
B+~ BU {ao}.
}
Step 6 : For each a € B do
{ Compute Sig{ji5" (a, B, D);
If Szgf}ﬁf; (a,B,D) =0, then B — B —{a}.

Step 7 : REDyyuy «— B, return REDyy, and end.

When multiple objects are added to the basic data set,
theoretical analysis and experimental results have shown that
this algorithm is effective and efficient. In particular, with
the number of added data increasing, the efficiency of the
group incremental feature selection algorithm become more
and more obvious.

1)CEy (D|B)+|Ux|*([Ux|-1)CEy, (D|B))+A

VI. CONCLUSIONS AND FUTURE WORK

At present, feature selection for large-scale data sets is still
a challenging issue in the field of artificial intelligence. In
this paper, for large-scale data sets, we developed an accel-
erator for heuristic feature selection and an efficient rough
feature selection algorithm. In addition, an efficient group
incremental feature selection algorithm was also introduced
for dynamic data sets.

Based on the results in this paper, some further investiga-
tions are as follows.

e Information fusion of multi-data sets or multi-
granularity.

e Uncertainty measures for generalized rough set models.

e Feature selection for dynamic data sets under general-
ized rough set models.
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