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With the progress of deep learning used in unsupervised learning, deep approach based
multi-view clustering methods have been increasingly proposed in recent years.
However, in most of these methods, deep representation learning is not organically inte-
grated into the multi-view clustering process. They either conduct deep representation
learning and clustering in a separate manner, or use the pseudo cluster labels to supervise
deep representation learning. In this paper, we propose a centroids-guided deep multi-
view k-means clustering method, which organically incorporates deep representation
learning into the multi-view k-means objective by using the cluster centroids in multi-
view k-means to guide the deep learning of each view. In turn, more k-means-friendly rep-
resentations are produced to further optimize the multi-view k-means objective. The clus-
ter centroids of each view obtained under a common clustering partition not only
represent the semantic information of the clusters but also imply consistency among dif-
ferent views. By reducing the loss between each representation and its assigned cluster
centroid with respect to the network parameters of each view, the representations of dif-
ferent views will be more k-means-friendly toward a common partition. Experiments on
several datasets demonstrate the effectiveness of our method.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In many real-world applications, the instances can be represented by heterogeneous features from multiple views. For
example, images can be represented by different visual descriptors, documents may be translated into multiple languages,
and web pages consist of both text and hyperlinks. The features of different views are both compatible and complementary
to each other. Multi-view clustering (MVC) utilizes information from multiple views to learn a common clustering partition.
It has been extensively studied in recent years [1] and demonstrates better performance than clustering on a single view.

Traditional MVC works mainly focus on shallow methods, in which multi-view representation learning is based on shal-
low techniques, such as nonnegative matrix factorization (NMF) used in [2–5], subspace representation used in [6,7], and
canonical correlation analysis (CCA) used in [8,9]. However, shallow MVC methods may not work well for some complex
nonlinear data. In recent years, deep learning has been applied in MVC due to its powerful nonlinear representation capa-
bility. Some works conduct deep multi-view representation learning and traditional clustering in a separate manner. For
example, the works [10,11] apply deep CCA to learn the deep nonlinear representations between views by using deep neural
networks as mapping functions instead of traditional linear transformers. The works [12,13] use deep autoencoders to learn
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a shared representation between multiple views by jointly minimizing the reconstruction loss of each view. However, since
there is no clustering objective integrated into the deep representation learning process, the learned representations may not
be cluster-discriminative, which may lead to unsatisfactory clustering performance. Recent works show that jointly conduct-
ing multi-view deep representation learning and clustering can yield better performance. For example, Xie [14] proposed a
joint deep multi-view clustering method to optimize the fused multi-view representation simultaneously with a self-
training clustering objective by hardening the soft assignment distribution of the representation toward a common auxiliary
target distribution. Xu [15] proposed a deep multi-view clustering collaborative training that sequentially uses each view’s
auxiliary target distribution to refine the deep representation and soft clustering assignments of other views. Du [16] pro-
posed a deep multi-autoencoder based clustering method that designs a cross entropy based regularization to guarantee
consistency as well as complementarity between any two views. Sun [17] proposed a deep multi-view subspace clustering
method that uses the cluster assignments obtained in spectral clustering to self-supervise the learning of deep representa-
tions and the self-expression coefficients.

Although existing deep MVC methods have achieved significant progress, deep learning is not organically integrated into
the multi-view clustering process. For the two-step methods, deep learning just acts as a representation tool to produce bet-
ter representations and is not truly involved in the clustering process. For the joint learning methods, the deep representa-
tion learning in most works is guided by pseudo cluster assignments (either soft or hard assignments) and in turn refines the
cluster assignments. The cluster assignments acting as the guiding labels cannot reflect any semantic information of the clus-
ter distribution, which makes the deep representation learning process more like a ”black box” lacking the interpretability.

For this problem, inspired by the work [18] on single-view deep clustering that jointly performs deep representation
learning and k-means clustering, we propose a centroids-guided deep multi-view k-means clustering method (CDMKM).
In this method, the deep representation learning is organically incorporated into the multi-view k-means objective by using
the cluster centroids in multi-view k-means to guide the deep learning of each view. In turn, more k-means-friendly repre-
sentations are produced to further optimize the multi-view k-means objective. The framework of the proposed method is
presented in Fig. 1. To obtain the well-trained initial representations, the network of each view is pretrained with a deep
autoencoder by using only reconstruction loss. Then, in the deep multi-view k-means phase, our method is conducted in
an end-to-end recurrent manner. In the forward direction, multi-view k-means clustering is performed on the deep repre-
sentations of each view. In the backward direction, the view-specific cluster centroids obtained in multi-view k-means guide
the deep representation learning of each view. The cluster centroids of each view obtained under a common clustering par-
tition not only represent the semantic information of the clusters but also imply consistency among different views. By using
the cluster centroids as the supervised information to reduce the loss between each representation and its assigned cluster
centroid with respect to the network parameters of each view, the new representations of each view tend to be more k-
means-friendly toward a common partition. To avoid the representation capability of the autoencoders being slowly weak-
ened by the clustering loss in the training process, the centroids-guided training for each view is jointly optimized with the
reconstruction loss. Experiments on several datasets demonstrate the effectiveness of the proposed method.

The main contributions of this paper are summarized as follows:

� We propose a novel centroids-guided deep multi-view k-means clustering model, which organically integrates deep
learning and multi-view k-means into a unified framework. The proposed model can effectively use the cluster centroids
obtained in multi-view k-means to guide the deep clustering.

� Compared with most existing deep MVC methods that use cluster labels to guide the deep learning, the cluster centroids
used as the guiding signal in our model can possess not only the cluster discriminative information but also the semantic
information of the clusters, which makes the clustering process more interpretable.

� Compared with the state-of-the-art shallow and deep MVC methods, our method achieves superior performance on sev-
eral popular datasets, which demonstrates the effectiveness of the proposed CDMKM framework.

The rest of the paper is organized as follows. Related works on multi-view clustering and deep clustering are reviewed in
Section 2. Details of the proposed method are presented in Section 3. The experimental results are shown in Section 4.
Finally, the conclusions are given in Section 5.
2. Related Works

In this section, we give a brief review of the recent works on deep clustering and multi-view clustering, which are the two
areas that are most related to our work.
2.1. Deep clustering

With the success of deep learning used in supervised learning, in recent years, deep learning has begun to be used in clus-
tering (unsupervised learning). Recent works show that deep clustering by integrating the deep representation learning and
clustering process into a joint learning process yields better results than conducting them separately. Xie [19] proposed a
deep embedded clustering method to refine the clusters by iteratively optimizing the KL (Kullback Leibler) divergence of
877



Fig. 1. The framework of CDMKM. (1) Network initialization phase: the autoencoder of each view is pretrained using only reconstruction loss. (2) Deep
multi-view k-means phase: multi-view k-means clustering is performed on the deep representations z vð Þ

i in the forward direction, while in the backward
direction, the view-specific cluster centroids l vð Þ

c ið Þ obtained in multi-view k-means guide the deep representation learning, which is optimized together with
reconstruction loss.
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a defined soft cluster assignment to a self-training target distribution. Guo [20] proposed a deep convolutional embedded
clustering method by using a convolutional autoencoder to perform deep embedded clustering on image data. Ji [21] intro-
duced a novel deep autoencoder framework with a novel self-expressive layer at the junction between the encoder and the
decoder to learn the deep nonlinear self-expressive coefficients for the subspace clustering. Yang [22] proposed an end-to-
end deep clustering model for jointly performing agglomerative clustering and deep representation learning in a recurrent
framework. Jiang [23] proposed a variational deep embedding clustering method that integrates the variational autoencoder
[24] and Gaussian Mixture Model into a unified generative clustering process. Yang [18] proposed a deep clustering network
that jointly performs dimension reduction and k-means clustering, where dimension reduction is conducted by a deep
autoencoder. In recent years, deep clustering has been extended into the field of multi-view clustering. The related works
on deep MVC are summarized in the ”Deep multi-view clustering methods” part of Section 2.2.
2.2. Multi-view clustering

Shallow multi-view clustering methods. In the past decade, various MVC methods have been proposed. In the earlier
years, MVC methods were mainly based on shallow approaches, and most of them were proposed based on the general idea
of jointly learning multiple views while maintaining the consistency among views by using common cluster-discriminative
information. Based on different kinds of cluster-discriminative information, a variety of shallow MVC methods are derived.
For spectral clustering based methods [25–28], the common cluster-discriminative information is expressed in terms of the
common eigenvector matrix, which is optimized by jointly using the Laplacian matrix of each view. For subspace clustering
based methods [6,7,29], the common cluster-discriminative information is represented as the common coefficient matrix for
jointly self-expressing the sample vectors of each view. For NMF based methods [2–5] and k-means based methods [30–33],
the common cluster-discriminative information among views is expressed as the common indicator matrix, which is opti-
mized by jointly updating the basis matrix (cluster centroids for k-means based method) of each view. Our proposed method
is derived from the idea of k-means based multi-view clustering methods that have already been applied in some existing
shallow MVC methods. For example, Tzortzis [30] proposed a weighted multi-view kernel k-means clustering method that
optimizes a weighted combination of the loss of kernel k-means in each view under a common clustering partition. Cai [31]
proposed a robust multi-view k-means clustering method that jointly optimizes the sparsity-inducing norm of k-means loss
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in each view under a common cluster indicator matrix across views. Xu [32] proposed weighted multi-view k-means clus-
tering with feature selection that weights the views and the features in a unified process of multi-view k-means clustering.
Liu [33] proposed a cluster-weighted multi-view kernel k-means method that jointly learns the clustering results and the
weights assigned to the corresponding clusters among views.

Deep multi-view clustering methods. With the progress of deep learning used in unsupervised learning, deep approach
based MVCmethods have been proposed in recent years. Deep MVC methods can be classified into two categories: separated
learning methods and joint learning methods. For the separated learning methods, deep multi-view representation and clus-
tering are performed separately. The works in this category usually focus on the design of deep multi-view representation
learning methods then followed by traditional clustering methods. Andrew [10] proposed deep CCA by using deep neural
networks as the mapping function to simultaneously learn deep nonlinear mappings of two views that are maximally cor-
related. Wang [11] proposed deep CCA based on autoencoders, which is an improved version of deep CCA with reconstruc-
tion networks from the latent space and additional reconstruction losses. Ngiam [34] proposed bimodal autoencoders to
reconstruct both audio and video views by minimizing the reconstruction loss of the two input views and reconstructed rep-
resentation. Zhang [35] proposed an autoencoder in autoencoder network, which automatically maps different views into a
common representation while adaptively balancing the consistency and complementarity among multiple views. More
works about deep multi-view representation learning methods can be found in the review [36]. For the joint learning meth-
ods, deep multi-view representation and clustering are jointly performed in a unified framework. Most works follow the
basic idea of single-view deep embedded clustering (DEC) [19] and extend the idea to the multi-view field by designing dif-
ferent kinds of multi-view fusion mechanisms, such as the multi-view weighted fusion mechanism in [14], the multi-view
collaborative training mechanism in [15], and the multi-view pairwise regularized mechanism in [16]. Different from the
DEC based methods that use the soft pseudo labels to guide the deep representation learning, we incorporate the deep rep-
resentation learning into the multi-view k-means clustering process and use cluster centroids to guide the deep represen-
tation learning.

3. The Proposed Method

In this section, we present the overall framework, problem formulation and optimization strategy of the proposed
CDMKM method in detail.

3.1. Framework of CDMKM

As shown in Fig. 1, the proposed framework has two phases: the network initialization phase and the optimization phase.
Specifically, multiple autoencoders are used for multiple views, with each autoencoder corresponding to one view. In the
network initialization phase, each autoencoder is pretrained by the reconstruction loss to obtain good initial representations.
This lays a good foundation for subsequent joint learning to iteratively obtain more precise clusters and more clustering-
friendly representations. Then, in the optimization phase, deep multi-view k-means is optimized alternately in the forward
direction and backward direction. In the forward direction, multi-view k-means is performed on the deep representations

z vð Þ
1 ; z vð Þ

2 ; . . . ; z vð Þ
N

n oV

v¼1
. In the backward direction, the view-specific cluster centroids l vð Þ

c ið Þ obtained in multi-view k-means

are used to guide the training of the view-specific encoder. To maintain the representation capability of the autoencoders,
the centroids-guided training for each view is jointly optimized with the reconstruction loss. More details about the pro-
posed method are described in the following sections. The main mathematical notations used in the paper are listed in
Table 1.

3.2. Problem Formulation

Consider a multi-view dataset consisting of N instances represented by V different views, which are to be partitioned into

K clusters. The dataset can be denoted by x vð Þ
1 ; x vð Þ

2 ; . . . ; x vð Þ
N

n oV

v¼1
2 Rd vð Þ

, where x vð Þ
i represents the i-th instance from the v-th

view and d vð Þ is the feature dimensionality of the v-th view. The original data are transformed into the deep representations

z vð Þ
1 ; z vð Þ

2 ; . . . ; z vð Þ
N

n oV

v¼1
2 Rm vð Þ

by the deep nonlinear mapping f vð Þ
Hv

x vð Þ
i

� �
: Rd vð Þ ! Rm vð Þ

, where Hv represents the network

parameters of the encoder part in the v-th view and z vð Þ
i ¼ f vð Þ

Hv
x vð Þ
i

� �
. Following the general approach of multi-view k-

means clustering [30–33] that jointly optimizes a weighted combination of the loss of k-means in each view under common
clustering partition, we introduce a novel deep multi-view k-means clustering method by solving the following objective
function
879



Table 1
List of mathematical notations.

Symbol Description

N number of samples
V number of views
K number of clusters

x vð Þ
i

the i-th original sample in the v-th view

z vð Þ
i

the i-th deep representation in the v-th view

f vð Þ
Hv

�ð Þ transformation of the encoder part in the v-th view

g vð Þ
Xv

�ð Þ transformation of the decoder part in the v-th view

l vð Þ
k

centroid of the k-th cluster in the v-th view

l vð Þ
c ið Þ

centroid of the cluster in the v-th view to which the i-th representation is assigned

xv weight for the v-th view
p hyperparameter for controlling the distribution of the view weights

L
vð Þ
c

centroids-guided training loss of the v-th view

L
vð Þ
r

reconstruction loss of the v-th view

g1 �ð Þ activation function for the encoding layer
g2 �ð Þ activation function for the decoding layer
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min
l vð Þ
1 ;...;l vð Þ

K ;xv ;Hvf gV

v¼1
; c ið Þf gNi¼1

O ¼
XV
v¼1

xp
v
XN
i¼1

kf vð Þ
Hv

x vð Þ
i

� �
� l vð Þ

c ið Þk2;

s:t: xv > 0;
XV
v¼1

xv ¼ 1;p > 1;

ð1Þ
where l vð Þ
k is the centroid of the k-th k 2 1;2; . . . ;Kf gð Þ cluster in the v-th view, c ið Þ 2 1;2; . . . ;Kf g represents the cluster label

of the i-th instance, and l vð Þ
c ið Þ is the centroid of the cluster to which the mapping f vð Þ

Hv
x vð Þ
i

� �
has been assigned. Here, xv is the

view weight for the v-th view, and the exponent p is a hyperparameter used to control the distribution of the view weights.
This objective function can be regarded as two sub-objective functions: the clustering objective function with respect to

l vð Þ
k ; c ið Þ and xv in the forward direction, and the loss function for deep networks with respect to Hv in the backward

direction.
In the forward direction: when fixing the deep network parameters Hv , Eq. (1) is equivalent to applying the weighted

multi-view k-means clustering on the output deep representations z vð Þ
1 ; z vð Þ

2 ; . . . ; z vð Þ
N

n oV

v¼1
, as the following objective function
min
l vð Þ
1 ;...;l vð Þ

K ;xvf gV

v¼1
; c ið Þf gNi¼1

O ¼
XV
v¼1

xp
v
XN
i¼1

kz vð Þ
i � l vð Þ

c ið Þk2;

s:t: xv > 0;
XV
v¼1

xv ¼ 1;p > 1:

ð2Þ
The view weight xv determines the importance of the v-th view and is learned based on the loss of each view. For the i-th

sample, its assignment loss to each cluster k is computed by the weighted sum of squared distances between z vð Þ
i and l vð Þ

k in
all views v ¼ 1;2; . . . ;Vð Þ, and the cluster with the lowest assignment loss is selected as the final cluster assignment c ið Þ.

In the backward direction: when fixing the parameters l vð Þ
k ; c ið Þ and xv , Eq. (1) can be regarded as a combination of the

loss function for the deep network of each view with respect to the network parametersHv by using the view-specific cluster

centroid l vð Þ
c ið Þ as the supervisory signal, which can be written as the following form
min
Hvf gVv¼1

O ¼ PV
v¼1

xp
v
PN
i¼1

L vð Þ
c f vð Þ

Hv
x vð Þ
i

� �
;l vð Þ

c ið Þ

� �
; ð3Þ
where L vð Þ
c �ð Þ : Rm vð Þ ! R is a squared loss function that measures the loss between the deep mapping f vð Þ

Hv
x vð Þ
i

� �
and its cur-

rent assigned cluster centroid l vð Þ
c ið Þ. Since xv is a constant here, minimizing Eq. (3) is equivalent to minimizing the loss func-

tion of each view separately. For each view, the network is trained with the following loss function
min
Hv

O vð Þ ¼
XN
i¼1

L vð Þ
c f vð Þ

Hv
x vð Þ
i

� �� �
;l vð Þ

c ið ÞÞ: ð4Þ
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To avoid the representation capability of the autoencoder being slowly weakened by the centroids-guided loss L vð Þ
c in the

training process, we jointly minimize L vð Þ
c with the reconstruction loss L vð Þ

r by solving the following objective
min
Hv ;Xv

Ô vð Þ ¼
XN
i¼1

L vð Þ
c f vð Þ

Hv
x vð Þ
i

� �
;l vð Þ

c ið Þ

� �
þ k

XN
i¼1

L vð Þ
r g vð Þ

Xv
f vð Þ
Hv

x vð Þ
i

� �� �
; x vð Þ

i

� �
; ð5Þ
where g vð Þ
Xv

�ð Þ : Rm vð Þ ! Rd vð Þ
is the mapping function of the decoder part from the representation layer to the reconstruction

layer, and Xv represents the network parameters of the decoder part in the v-th view. k > 0 is a trade-off parameter balanc-
ing the two losses. Incorporating the reconstruction loss into the view-specific training of the autoencoder does not affect the
monotonically decreasing trend of the total objective of Eq. (1), which is demonstrated in the experiments section as shown
in Fig. 3.

Since the cluster centroid l vð Þ
c ið Þ of each view is obtained under the common cluster label c ið Þ, it not only represents the

cluster-discriminative information but also implies the consistency among different views. By using it as the supervised
information to minimize the loss with respect to the network parameters, the distance between each representation and
its assigned cluster centroid will be smaller, which makes the new representations more k-means-friendly toward a common
partition. Therefore, applying multi-view k-means on the new representations would lead to better clustering results.

3.3. Optimization

Before optimizing the proposed objective, we pretrain the autoencoder of each view by using only the reconstruction loss
to obtain initial representations. Then, cluster centroids, assignments and view weights are well initialized based on the ini-
tial representations. To optimize the proposed objective function of Eq. (1), we alternately optimize the sub-objective func-
tion of Eq. (3) in the backward direction and the sub-objective function of Eq. (2) in the forward direction. For the sub-
objective function of Eq. (2), each parameter is also updated alternately. The initialization details and optimization proce-
dures are described in the following sections.

Initialization: The well-trained initial representations can result in relatively good initial clustering results, which may
set up a good starting point for the subsequent learning to iteratively obtain more precise clusters. To make the initial rep-
resentations well represent the original data, we pretrain the network of each autoencoder with the reconstruction loss only.
The autoencoder is trained by the layer-wise training method, in which the first layer is trained by the reconstruction loss of
the input layer, and each following layer is trained by reconstructing the output of the previous learned layer. Suppose the
output of the previous layer is h, the parameters of the next layer are trained by minimizing the following reconstruction loss
L w1;w2ð Þ ¼ kg2 g1 h;w1ð Þ;w2ð Þ � hk2; ð6Þ

where g1 and g2 are activation functions for the encoding and decoding layers respectively, and w1 and w2 are model param-
eters of the encoding and decoding layers respectively.

After pretraining the autoencoder of each view, to make the initial cluster centroids more discriminative and effective for

supervising the training of the network at the beginning of the optimization phase, we initialize the cluster centroids l vð Þ
k and

assignments c ið Þ by performing multi-view k-means (using the objective function of Eq. (2) without weights) jointly on the
initial representations of each view. The weight xv of each view is initialized as 1=V .

Updating Hv in the backward direction: for the fixed l vð Þ
k ; c ið Þ and xv , the objective function of Eq. (3) is optimized by

minimizing the loss function of Eq. (5) with respect to the network parametersHv and Xv of each view. The network param-
eters are updated by using stochastic gradient descent (SGD) with the gradients computed by backpropagation algorithm.
Specifically, we use the Adam optimizer [37] in the training process.

Updating l vð Þ
k ; c ið Þ and xv in the forward direction: for the fixed network parameters Hv , the parameters l vð Þ

k ; c ið Þ and
xv are alternately updated on the learned representations z vð Þ

1 ; z vð Þ
2 ; . . . ; z vð Þ

N

n oV

v¼1
.

First, fixing c ið Þ and xv , the cluster centroid of each view l vð Þ
k is updated by
l vð Þ
k ¼

XN
i¼1

dikz
vð Þ
i

XN
i¼1

dik

; ð7Þ
where dik ¼ 1 if c ið Þ ¼ k and dik ¼ 0 otherwise.
Before updating the cluster labels, in order to make the distances in feature spaces of different views to be comparable,

the representations of different views must be normalized to the same level of magnitude. We use L2-norm normalization

approach to normalize z vð Þ
i and denote the normalized representations as ~z vð Þ

1 ; ~z vð Þ
2 ; . . . ; ~z vð Þ

N

n oV

v¼1
. To update the cluster labels

in the normalized feature space, we first calculate the cluster centroid ~l vð Þ
k in the normalized feature space by
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~l vð Þ
k ¼

XN
i¼1

dik~z
vð Þ
i

XN
i¼1

dik

: ð8Þ
Then, fixing ~l vð Þ
k and xv , the cluster label c ið Þ is updated by assigning the normalized representation ~z vð Þ

i to the cluster with

the lowest loss, which is computed by a weighted sum of the squared distances between ~z vð Þ
i and ~l vð Þ

k in different views. Thus,
c ið Þ can be obtained by
c ið Þ ¼ argmin
k

XV
v¼1

xp
vk~z vð Þ

i � ~l vð Þ
k k2: ð9Þ
Finally, fixing l vð Þ
k and c ið Þ, the view weight xv can be updated by using the Lagrangian multiplier method. We denote the

sum-of-squared loss of the v-th view as
Dv ¼
XN
i¼1

kz vð Þ
i � l vð Þ

c ið Þk2: ð10Þ
Then, we obtain the Lagrangian formula of Eq. (2) with respect to xv and c as the following function
L xv ; cð Þ ¼
XV
v¼1

xp
vDv þ c

XV
v¼1

xv � 1

 !
: ð11Þ
Taking the derivative with respect to xv yields
@L xv ; cð Þ
@xv

¼ pxp�1
v Dv þ c: ð12Þ
Setting this derivative to zero, combined with the constraint on the weights, we obtain the equation set
pxp�1
v Dv þ c ¼ 0;

XV
v¼1

xv ¼ 1:

8>>>><
>>>>:

ð13Þ
Solving this equation set with respect to xv , the closed-form solution of xv is obtained as following expression
xv ¼ 1XV
v0¼1

Dv
Dv 0

� � 1
p�1

; p > 1: ð14Þ
In this expression, we can see that the smaller the view loss Dv is, the larger the view weightxv will be. A smaller Dv reflects
a better clustering partition in this view, which, by being assigned a larger weight in multi-view clustering, boosts the overall
clustering performance.

We summarize the above optimization process in Algorithm1.

Algorithm1: The CDMKM.

Input: Multi-view dataset x vð Þ
1 ; . . . ; x vð Þ

N

n oV

v¼1
, number of clusters K, exponent p, trade-off parameter k, number of

training epochs E.

Output: Cluster labels c ið Þf gNi¼1.

Initialize: Networks parameters pre-trained with reconstruction loss; Initial cluster centroids l vð Þ
1 ; . . . ;l vð Þ

K

n oV

v¼1
and

assignments c ið Þf gNi¼1 on the initial deep representations; View weights xv ¼ 1=V .
Method:
1: for e ¼ 1: E do
2: for v ¼ 1: V do
3: Update the network parameters Hv ;Xvf g by minimizing the Eq. (5) via backpropagation algorithm.
4: end for
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a (continued)

Algorithm1: The CDMKM.

5: Compute z vð Þ
1 ; . . . ; z vð Þ

N

n oV

v¼1
with updated Hv ;

6: Update l vð Þ
k by Eq. (7);

7: Normalize z vð Þ
i to ~z vð Þ

i and compute ~l vð Þ
k by Eq. (8);

8: Update the cluster labels c ið Þf gNi¼1 by Eq. (9);
9: Update the view weights xv by Eq. (14).

10: end for
4. Experiments

We implement the proposed method in Python with TensorFlow 1.12.0 and evaluate its performance on six real datasets.
We first describe the experimental setup and then present the experimental results in detail.

4.1. Experimental Setup

4.1.1. Datasets Description
Mfeat 1: This dataset consists of multiple published features extracted from 2000 images of handwritten digits (0–9), with

200 images per digit. We use three published features to construct the multi-view dataset: Fourier coefficients of the character
shapes, profile correlations, and pixel averages in 2�3 windows.

Caltech101-202: This dataset is extracted from Caltech101 which consists of 101 categories of images. We select widely-
used 20 categories that contain 2386 images, which are represented by five types of features: gabor features, wavelet moments,
centrist features, HOG (histogram of oriented gradients) features, gist features, and LBP (local binary patterns) features.

Scene: This dataset [38] contains 2688 outdoor scene images over 8 categories: coast, mountain, forest, street, inside city,
open country, highways and buildings. For each image, three different visual features including gist features, color moments
and HOG features are extracted as three views.

Corel: This dataset [47] contains 34 categories and each category has 100 images. Each of the images has a salient fore-
ground object that belongs to one of these 34 categories. For each image, three different visual features including color his-
togram, color coherence and wavelet texture are extracted as three views.

NUS-WIDE-OBJ3: We use the training set of NUS-WIDE-OBJECT dataset, which contains 17928 object images over 31 cat-
egories. We delete the images that have multiple labels, and the remaining dataset contains 14270 images. Each image is rep-
resented by five types of low-level features: color histogram, color moments, color correlogram, edge direction histogram, and
wavelet texture.

MNIST&USPS: These are two image datasets of handwritten digits (0–9) from two sources, i.e., MNIST [39] and USPS [40].
We select 10000 images from each source, with 1000 images randomly selected per digit, and regard images from individual
sources as two views of the same digit.

Detailed information about these six datasets is summarized in Table 2.

4.1.2. Network Settings
For the datasets Mfeat, Caltech101-20, Scene, Corel and NUS-WIDE-OBJ, whose features are vector-based, we use the DNN

(deep neural network) architecture for the autoencoder of each view. For the image dataset MNIST&UPSP, we use the CNN
(convolutional neural network) architecture for the autoencoder of each view. The settings of the network architectures for
the six datasets are shown in Table 3. For all datasets, we use ReLU (rectified linear unit) [41] as the activation function for
the network. The network training has two phases, i.e., the pretraining phase and the fine-tuning phase. In both training
phases, for all datasets, we use the Adam optimizer [37] with the learning rate lr ¼ 0:001 to train the networks, and set
the batch size to approximately 0:01� N. In the pretraining phase, the DNN-based networks for the first five datasets are
pretrained for 100 epochs, and the CNN-based network for MNIST&UPSP is pretrained for 200 epochs. In the fine-tuning
phase, the number of training epochs is set to 200 for Mfeat and 50 for all other datasets. The hyperparameters p and k
are set to p ¼ 16 for all datasets, k ¼ 1 for the DNN-based networks for the first five datasets, and k ¼ 0:01 for the CNN-
based network for MNIST&USPS, based on the analysis in Section 4.6. For the cluster centroids initialization in the fine-
tuning phase, we randomly select K samples as the initial cluster centroids, and perform multi-view k-means on the repre-
sentations output from the pretrained networks to obtain the initial cluster centroids for the fine-tuning phase.
1 https://archive.ics.uci.edu/ml/datasets/Multiple + Features
2 http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html
3 https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
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Table 2
Details of the datasets.

Datasets #Size #Class #View d 1ð Þ d 2ð Þ d 3ð Þ d 4ð Þ d 5ð Þ d 6ð Þ

Mfeat 2000 10 3 76 216 240 - - -
Caltech101-20 2386 20 6 48 40 254 1984 512 928
Scene 2688 8 3 512 432 256 - - -
Corel 3400 34 3 64 128 104 - - -
NUS-WIDE-OBJ 14270 31 5 65 226 145 74 129 -
MNIST&USPS 10000 10 2 28�28 16�16 - - - -

Table 3
Network architecture of the encoder of each view for each dataset. The architecture of the decoder is
symmetric with the encoder. For the first five datasets that use DNN architecture, each number
represents the wide of each hidden layer. For the last dataset that uses CNN architecture, conv
(a�a�b) represents the convolutional layer with kernel size = a and channel number = b (stride = 2 is
set as default), and fc(10) represents the fully connected layer with the dimension reduced to 10.

Datasets Network architecture of the encoder of each view

Mfeat 100–50–30
Caltech101-20 100–50–30
Scene 200–100–50
Corel 100–50–30
NUS-WIDE-OBJ 200–100–50
MNIST&USPS conv(5� 5� 32)-conv(5� 5� 64)-conv(3� 3� 128)-fc(10)
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4.1.3. Baseline Methods
The proposed method is compared with several baseline methods. First, we compare our method with some representa-

tive state-of-the-art multi-view clustering methods including the NMF based method GNMF [42], the subspace clustering
based method LMSC [43], the spectral clustering based methods CoregSC [26] and AWGL [28], the deep clustering based
method DEMVC [15] and DMJC[14], and the CCA based deep representation methods DCCA[10] and DCCAE[11]. To illustrate
the superiority of our method compared with single-view deep clustering methods, we compare our method with the single-
view deep k-means method DCN[18], which is the method that our method is based on.

For the shallow clustering methods GNMF, LMSC, CoregSC and AWGL, we follow the experimental settings in their papers.
For the deep clustering methods DEMVC, DMJC and DCN, for fair comparison, the same initialized autoencoder for each view
as our method is used, and other hyperparameters in the fine-tuning phase are set following their papers. The single-view
method DCN is conducted on each view, and the results of the view with the best performance are reported. For the deep
representation methods DCCA and DCCAE, since they can only handle two views, we first select two views with better k-
means performance as the input of the methods and then follow the settings in their papers to obtain the deep CCA repre-
sentations, on which the traditional k-means is performed to obtain the final results.

Then, to further verify the superiority of our method, we compare our method with two variant methods as follows:MVk-
means that conducts weighted multi-view k-means in the original space by solving the following objective function
min
l vð Þ
1 ;...;l vð Þ

K ;xvf gV

v¼1
; c ið Þf gNi¼1

O ¼
XV
v¼1

xp
v
XN
i¼1

kx vð Þ
i � l vð Þ

c ið Þk2;

s:t: xv > 0;
XV
v¼1

xv ¼ 1; p > 1;

ð15Þ
and AE + MVk-means that first extracts the deep representations by autoencoders and then performs weighted multi-view
k-means in a separate manner, by solving the following objective function
min
l vð Þ
1 ;...;l vð Þ

K ;xvf gV

v¼1
; c ið Þf gNi¼1

O ¼
XV
v¼1

xp
v
XN
i¼1

kz vð Þ
i � l vð Þ

c ið Þk2;

s:t: xv > 0;
XV
v¼1

xv ¼ 1;p > 1;

ð16Þ
where z vð Þ
i is the deep representation of the i-th sample extracted by the v-th autoencoder with reconstruction loss. All the

mathematical notations in Eq. (15) and Eq. (16) represent the same meaning as in Section 3. For these two methods, we use
the same experimental settings as the proposed method.
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For fair comparisons, all methods involving k-means operation apply random initialization. And we perform all methods
10 times and report the average performance.

4.1.4. Evaluation Metrics
Clustering evaluation metrics: We employ three metrics to evaluate the clustering performance for all methods. They

are normalized mutual information (NMI), accuracy (ACC) and adjusted rand index (ARI). Before computing the evaluation
metrics, the assigned cluster labels are best mapped to the true labels by Munkres algorithm [44]. Suppose the true label of
each sample belongs to Y1; Y2; . . . ;Ykf g, where k is the number of clusters. The contingency table is given in Table 4.

Then the three evaluation metrics are defined as follows
Table 4
The con

True

Y
Y

Y
Su
NMI ¼
�2
Xk
i¼1

Xk
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nijn
ni�n�j
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For each of them, the higher the value is, the better the clustering performance is. For all methods, we report the average
results with the standard deviation from 10 executions.

Non-parametric tests: After obtaining the results for all methods on all datasets under each metric, we use non-
parametric tests to test whether the improvements of the proposed method over the baseline methods are significant.
We first use the Friedman test to test the difference among all methods under each metric. If there is a significant difference
among all methods, we use the Nemenyi test and Wilcoxon signed-rank test to further test the difference of the proposed
method against each baseline method. The detailed descriptions about each type of non-parametric test is as following.

For the Friedman test, suppose the number of methods is k and the number of datasets is N. Firstly rank the methods

within each dataset, and let rji be the rank of the j-th method on the i-th of N datasets. Then the average rank for the j-th

method among all datasets is Rj ¼ 1
NRir

j
i. Then the Friedman statistic can be calculated by the following expression
Q ¼ 12N
k kþ 1ð Þ

X
j

R2
j �

k kþ 1ð Þ2
4

" #
: ð20Þ
The probability distribution of Q is approximated by that of a chi-squared distribution with k� 1 degrees of freedom. Then
the probability value can be given by P X2 > Q

� �
. If the probability value is less than the significance level a (we set a ¼ 0:1 in

our experiment), the null-hypothesis (performance of all the methods are equivalent) is rejected, demonstrating a significant
difference among all methods. Then we can proceed with the post hoc tests Nemenyi test and Wilcoxon signed-rank test.

For the Nemenyi test, the test statistic for comparing the i-th and j-th method is calculated by the following expression
z ¼ Ri � Rj
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ

6N

r
: ð21Þ
Then use the z value to find the corresponding probability from the table of normal distribution, which is then compared
with the significant level a. If the probability value is less than the significant level, the performance of two methods is sig-
tingency table.

label Assigned label

Y1 Y2 � � � Yk Sums

1 n11 n12 � � � n1k n1�
2 n21 n22 � � � n2k n2�

..

. ..
. ..

. . .
. ..

. ..
.

k nk1 nk2 � � � nkk nk�
ms n�1 n�2 � � � n�k n
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nificantly different. We also plot the critical distance (CD) diagram for the Nemenyi test. In the CD diagram, the average rank
of each method is marked along an axis (the smaller the better), and any two methods are significantly different if the dis-
tance of their average ranks exceeds the following critical distance
CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ

6N

r
; ð22Þ
where the critical value qa is based on the Studentized range statistic divided by
ffiffiffi
2

p
. Groups of methods that are not signif-

icantly different are connected.
For the Wilcoxon signed-rank test, to compare two methods, first calculate the difference between the performance of

two methods on each dataset, which is denoted by Di for the i-th of N datasets. Then sort jD1j; . . . ; jDNj and assign ranks
R1; . . . ;RN . Now reassign the symbol ‘‘+” or ‘‘�” to each of the N ranks Ri, depending on whether Di was originally positive
or negative. Let sgn denote the sign function: sgn xð Þ ¼ 1 if x > 0 and sgn xð Þ ¼ �1 if x < 0. The test statistic is the signed-
rank W defined by
W ¼
XN
i¼1

sgn Dið ÞRi: ð23Þ
Then use the statistical software or check the distribution table of the Wilcoxon signed-rank test to obtain the probability
value. If the probability value is less than the significant level a, the performance of two methods is significantly different.
4.2. Clustering Performance Comparisons

The clustering performance of all methods on six datasets is shown in Tables 5–10. The best results of all methods on each
dataset are indicated in bold, and the second best results are indicated with underline. It can be seen that the proposed
method outperforms all baseline methods on most datasets, except that some metrics of the proposed method on
Caltech101-20, NUS-WIDE-OBJ and MNIST&USPS are slightly lower than those of DEMVC and DMJC. For the dataset NUS-
WIDE-OBJ, since the number of classes is very large and the data distribution is inherently poor, the clustering results for
all methods are very low. In this case, the metrics NMI and ARI make more sense than ACC because the calculations for
NMI and ARI have no need to map the cluster labels to the true labels and thus are not influenced by inappropriate label
mapping. Therefore, although the ACC metric of our method is slightly lower than that of DEMVC, the more convincing met-
rics NMI and ARI of our method are much higher than those of DEMVC, which still demonstrates that the clustering perfor-
mance of our method is overall better than that of DEMVC. For the image dataset MNIST&USPS, since DMJC was originally
proposed for image clustering, it performs well on this image dataset and slightly outperforms our method under ACC and
ARI metrics. Even so, our method still achieves comparable performance with DMJC on this dataset, and greatly outperforms
it on all other vector-based datasets, demonstrating that our method has more universal applicability than DMJC. Addition-
ally, on most datasets except for NUS-WIDE-OBJ, multi-view k-means on deep representations (AE + MVk-means) obtains
better performance than in the original data space (MVk-means). Furthermore, on all datasets, our method by jointly con-
ducting deep representation learning and multi-view k-means in an end-to-end manner substantially improves the cluster-
ing performance over AE + MVk-means that performs deep representation extraction and multi-view k-means in a separate
manner.

We also conduct the non-parametric tests for different methods under each metric. First, the Friedman test is used to test
the difference among all methods. The probability values attained when conducting the Friedman test for NMI, ACC and ARI
are 3:217� 10�11;2:685� 10�11 and 4:220� 10�11 respectively, which are all very small, demonstrating a significant differ-
ence among the different methods. Then, it is necessary to further test the significance degree of the improvements of the
proposed method over other methods. So we conduct the Nemenyi test and Wilcoxon signed-rank test for the proposed
method over other methods under each metric, and the corresponding probability values are shown in Table 11. From
the table, we find that for the Nemenyi test, our method has significant improvements over DCCA, DCCAE and DCN under
all metrics, and LSMC, CoregSC and AWGL under NMI metric. To further illustrate the performance ranking relationship
among all methods, we plot the critical distance (CD) diagram of the Nemenyi test under the NMI metric which is the most
informative metric that can best reflect the clustering performance. In the CD diagram shown in Fig. 2, the average rank of
each method is marked along the axis. We can see that our method ranks first and significantly outperforms most shallow
methods AWGL, LMSC and CoregSC, the single-view method DCN, and the double-view methods DCCA and DCCAE. The
improvements of our method over some of the methods, especially for the deep multi-view methods, are not significant.
There may be two reasons for this. One is because the difference in the performance among the deep approach based
multi-view methods is inherently lower. The other is because the number of the compared methods is much higher than
the number of the datasets, which may limit the capability of the Nemenyi test. Therefore, we also conduct the Wilcoxon
signed-rank test, which is more suitable in this case. From Table 11, we can see that our method demonstrates significant
improvements over all compared methods under all metrics for the Wilcoxon signed-rank test.
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Table 5
Performance comparisons on Mfeat.

Method NMI ACC ARI

GMNMF 0.8625(0.0369) 0.8416(0.0968) 0.7918(0.0822)

LMSC 0.7887(0.0113) 0.8269(0.0469) 0.7324(0.0249)
CoregSC 0.7595(0.0201) 0.8086(0.0497) 0.6930(0.0393)
AWGL 0.7641(0.0258) 0.8206(0.0508) 0.6994(0.0471)
DEMVC 0.8010(0.0173) 0.7884(0.0318) 0.7080(0.0317)
DMJC 0.8354(0.0195) 0.8949(0.0505) 0.8103(0.0446)
DCCA 0.6562(0.0137) 0.6765(0.0523) 0.5424(0.0258)
DCCAE 0.6403(0.0142) 0.6213(0.0422) 0.5006(0.0248)
DCN 0.7594(0.0219) 0.7645(0.0727) 0.6686(0.0479)
MVk-means 0.7453(0.0251) 0.7414(0.0463) 0.6490(0.0387)
AE + MVk-means 0.7683(0.0406) 0.8148(0.0683) 0.7056(0.0681)
CDMKM 0.8705(0.0309) 0.9156(0.0524) 0.8466(0.0587)

Table 6
Performance comparisons on Caltech101-20.

Method NMI ACC ARI

GMNMF 0.6071(0.0089) 0.4390(0.0120) 0.3788(0.0272)
LMSC 0.4173(0.0092) 0.3640(0.0157) 0.1748(0.0066)
CoregSC 0.5803(0.0129) 0.4085(0.0316) 0.2946(0.0279)
AWGL 0.5462(0.0110) 0.4527(0.0268) 0.3519(0.0270)

DEMVC 0.5612(0.0202) 0.4174(0.0459) 0.3912(0.0726)
DMJC 0.6103(0.0207) 0.4496(0.0503) 0.3587(0.0617)
DCCA 0.6094(0.0063) 0.4094(0.015) 0.3392(0.0275)
DCCAE 0.6219(0.0100) 0.4126(0.0317) 0.3312(0.0280)

DCN 0.5944(0.0062) 0.4157(0.0269) 0.3111(0.0269)
MVk-means 0.5686(0.0208) 0.4286(0.0440) 0.3519(0.0565)
AE + MVk-means 0.6075(0.0229) 0.4436(0.0447) 0.3537 (0.0600)
CDMKM 0.6312(0.0239) 0.4634(0.0511) 0.3706(0.0637)

Table 7
Performance comparisons on Scene.

Method NMI ACC ARI

GMNMF 0.4900(0.0161) 0.5949(0.0347) 0.3833(0.0117)
LMSC 0.5227(0.0086) 0.6810(0.0364) 0.4533(0.0125)
CoregSC 0.4709(0.0178) 0.6313(0.0428) 0.4014(0.0228)
AWGL 0.4459(0.0132) 0.5557(0.0274) 0.3577(0.0140)
DEMVC 0.5454(0.0051) 0.6304(0.0106) 0.4289(0.0075)

DMJC 0.5301(0.0042) 0.6618(0.0239) 0.4375(0.0094)
DCCA 0.4511(0.0204) 0.5296(0.0294) 0.3139(0.0329)
DCCAE 0.4679(0.0336) 0.5210(0.0677) 0.3408(0.0393)
DCN 0.4967(0.0151) 0.6005(0.0143) 0.3820(0.0294)
MVk-means 0.4468(0.0196) 0.5623(0.0332) 0.3515 (0.0219)
AE + MVk-means 0.4962(0.0153) 0.6087(0.0419) 0.3992(0.0250)
CDMKM 0.5709(0.0131) 0.7135(0.0181) 0.4832(0.0207)

Table 8
Performance comparisons on Corel.

Method NMI ACC ARI

GMNMF 0.3125(0.0048) 0.2096(0.0087) 0.1174(0.0054)
LMSC 0.2914(0.0057) 0.2002(0.0077) 0.1043(0.0025)
CoregSC 0.3289(0.0064) 0.2357(0.0112) 0.1205(0.0068)
AWGL 0.3183(0.0066) 0.2145(0.0111) 0.1145(0.0081)
DEMVC 0.3138(0.0048) 0.2086(0.0073) 0.1127(0.0064)
DMJC 0.3086(0.0032) 0.2045(0.0058) 0.1128(0.0017)
DCCA 0.2943(0.0025) 0.1936(0.0044) 0.1058(0.0023)
DCCAE 0.2917(0.0020) 0.1883(0.0027) 0.1092(0.0024)
DCN 0.2961(0.0040) 0.1979(0.0062) 0.0847(0.0034)
MVk-means 0.3206(0.0033) 0.2305(0.0091) 0.1111(0.0052)
AE + MVk-means 0.3333(0.0041) 0.2400(0.0071) 0.1248(0.0036)
CDMKM 0.3568(0.0079) 0.2590(0.0119) 0.1395(0.0065)
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Table 9
Performance comparisons on NUS-WIDE-OBJ.

Method NMI ACC ARI

GMNMF 0.0042(0.0000) 0.1329(0.0000) 0.0000(0.0000)
LMSC 0.0883(0.0015) 0.1085(0.0011) 0.0274(0.0005)
CoregSC 0.1232(0.0027) 0.1346(0.0039) 0.0448(0.0016)
AWGL 0.1281(0.0022) 0.1378(0.0047) 0.0491(0.0029)
DEMVC 0.1075(0.0140) 0.1761(0.0137) 0.0539(0.0116)
DMJC 0.1354(0.0025) 0.1420(0.0032) 0.0504(0.0027)
DCCA 0.0567(0.0013) 0.1355(0.0013) 0.0013(0.0002)
DCCAE 0.0580(0.0005) 0.1245(0.0009) 0.0011(0.0001)
DCN 0.1163(0.0013) 0.1503(0.0056) 0.0471(0.0023)
MVk-means 0.1588(0.0019) 0.1572(0.0026) 0.0593(0.0021)
AE + MVk-means 0.1415(0.0031) 0.1430(0.0037) 0.0510(0.0024)
CDMKM 0.1670(0.0023) 0.1619(0.0037) 0.0615(0.0019)

Table 10
Performance comparisons on MNIST&USPS.

Method NMI ACC ARI

GMNMF 0.7109(0.0139) 0.6251(0.0397) 0.5622(0.0201)
LMSC 0.8041(0.0300) 0.8018(0.0692) 0.7314(0.0645)
CoregSC 0.6413(0.0228) 0.7289(0.0528) 0.5724(0.0417)
AWGL 0.6838(0.0207) 0.6871(0.0348) 0.5712(0.0334)
DEMVC 0.8732(0.0217) 0.9006(0.0645) 0.8550(0.0538)
DMJC 0.9341(0.0252) 0.9266(0.0701) 0.9109(0.0629)

DCCA 0.8351(0.0085) 0.7122(0.0188) 0.5981(0.0431)
DCCAE 0.8183(0.0230) 0.6604(0.0332) 0.5914(0.0823)
DCN 0.6907(0.0210) 0.6975(0.0369) 0.5725(0.0336)
MVk-means 0.8180(0.0393) 0.7939(0.0658) 0.7424(0.0707)
AE + MVk-means 0.8536(0.0286) 0.8709(0.0731) 0.8203(0.0615)
CDMKM 0.9362(0.0187) 0.9244(0.0661) 0.9079(0.0550)

Table 11
Nemenyi test (NT) and Wilcoxon signed-rank test (WT) for methods comparisons on all datasets under each metric. The values in the table represent the
probability value, and the value less than the significance level a ¼ 0:1 is indicated in bold, which demonstrates a significant improvement of CDMKM over this
compared method.

Method NMI ACC ARI

NT WT NT WT NT WT

GMNMF 0.1203 0.0277 0.1470 0.0277 0.3524 0.0464
LMSC 0.0218 0.0277 0.1470 0.0277 0.1786 0.0277
CoregSC 0.0776 0.0277 0.2561 0.0277 0.1470 0.0277
AWGL 0.0165 0.0277 0.3524 0.0277 0.1626 0.0277
DEMVC 0.5665 0.0277 0.7678 0.0464 0.9000 0.0747
DMJC 0.9000 0.0277 0.9000 0.0464 0.9000 0.0464
DCCA 0.0165 0.0277 0.0026 0.0277 0.0050 0.0277
DCCAE 0.0218 0.0277 0.0010 0.0277 0.0026 0.0277
DCN 0.0478 0.0277 0.0776 0.0277 0.0124 0.0277
MVk-means 0.1203 0.0277 0.4081 0.0277 0.2786 0.0277
AE + MVk-means 0.9000 0.0277 0.9000 0.0277 0.9000 0.0277
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4.3. Running Time Comparisons

In this section, we compare the running time of CDMKM with other methods except for the single-view method DCN and
the variant methods MVk-means and AE + MVk-means on Caltech101-20, Scene, MNIST&USPS and NUS-WIDE-OBJ. The cor-
responding results are shown in Table 12. It can be seen that the shallow methods GMNMF, LMSC, CoregSC and AWGL
demonstrate obviously lower running time than the deep methods on the smaller-size datasets Caltech101-20 and Scene,
but for larger-size datasets MNIST&USPS and NUS-WIDE-OBJ, CoregSC shows no obvious efficiency over the deep methods,
and LMSC and AWGL show extremely high running time compared with the others. Among the deep methods, CDMKM
shows average-level running time on each dataset. Comparing the running time of CDMKM on different datasets, we can
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Fig. 2. CD diagram of Nemenyi test among all methods under NMI metric.

Table 12
Running time of different methods on four datasets. (unit: seconds)

Method Caltech101-20 Scene MNIST&USPS NUS-WIDE-OBJ

GMNMF 156 24 60 462
LMSC 164 222 9644 28131
CoregSC 37 23 355 1709
AWGL 61 74 3657 12304
DEMVC 777 361 420 632
DMJC 481 232 272 473
DCCA 146 161 163 1051
DCCAE 472 508 673 3106
CDMKM 678 294 387 1749
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observe that when the size of the dataset (in terms of the number of samples, the number of clusters or the number of views)
scales up, the running time of CDMKM also scales up, but the increase is not too great.
4.4. Performance over Epochs

To observe how the loss and the clustering performance of the proposed method change during the optimization process,
we plot the changing curves of the loss for Eq. (1) and the metric NMI over the training epochs for each dataset, as presented
in Figs. 3 and 4 respectively. From Fig. 3, we can see that the loss on all datasets continuously decreases over the training
epochs, with decreasing very rapidly in the first few epochs and slowly down in the latter epochs. From Fig. 4, the NMI curve
for each dataset shows an overall ascending trend with some fluctuations until rising to a certain stable level and then fluc-
tuates around this level. These results show that our model on all datasets works in the desired direction.
4.5. Visualization of Results

To show the superiority of the embedded features obtained by our method over the original features, we choose three
datasets, Mfeat, Scene and MNIST&USPS, to visualize their original features and the learned embedded features in 2-
dimensional space via t-SNE [45]. The visualizations for view 1 of Scene, view 1 of Mfeat, and both views of MNIST&USPS
in both the original space and the deep embedding space are shown in Fig. 5. The shape of each point is plotted as its
ground-truth label, and points of the same label are plotted with the same color. We can observe that for all datasets, after
transformation by our method, the points of different labels are more cluster-discriminative than in the original space. Espe-
cially for Mfeat and MNIST&USPS, the effect of our method is more significant. After transformation by our method, points of
the same class are more concentrated, and points of different classes are more linearly separable, demonstrating a more k-
means-friendly data distribution than in the original space. These comparisons between features in the original space and
embedding space of CDMKM verify the good representation capability of our method and thus satisfactory clustering
performance.

Although the proposed method demonstrates satisfactory numerical results for all datasets, the t-SNE visualization
results show that for datasets with originally more cluster-separable data distributions, our method performs more effec-
tively than for datasets that are originally poorly-separated. The reason for this is because the representation learning is
guided by the continually refined cluster centroids, which highly depend on the initial centroids learned by multi-view k-
means. If the dataset is relatively well-separated, the initial learned cluster centroids are prone to be more cluster-
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Fig. 3. The loss variation with training epochs on six datasets.

J. Liu, F. Cao and J. Liang Information Sciences 609 (2022) 876–896
discriminative and thus will effectively guide the distribution of the learned representation improvingly toward the true
class distribution. While if the dataset is originally very scattered and poorly-separated, the initial learned cluster centroids
may be far from the true class distribution and thus may wrongly guide parts of data points to wrong classes. Therefore, our
method is more applicable for datasets with relatively well-separated data distributions, and the effectiveness of our method
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Fig. 4. The NMI variation with training epochs on six datasets.
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on datasets with poorly-separated data distributions may not be very significant. In real applications, to make our method
more applicable for datasets that are not well-separated, we can explore or make use of more advanced centroids initializa-
tion algorithms to make the initialized cluster centroids more cluster-discriminative, or we can introduce the semi-
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Fig. 5. t-SNE visualization of features in original space and features in deep embedding space of CDMKM. (The shape of each point is plotted as its ground-
truth label.).
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Fig. 6. Visualizing the feature maps of the last convolution layer of the CDMKM encoder part on MNIST by mapping the feature maps to the heat map over
the input image.
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supervised idea to use parts of labeled data to assist the cluster centeroids determination, making the subsequent learning
more accurate.

For MNIST&USPS that uses the CNN architecture, we further visualize the learned feature maps of the last convolution
layer of the encoder part. Since the raw feature maps cannot show any meaningful information, we use the Grad-CAM
[46] method to map the feature maps to the heat map over the input image. The heat map can show the degree to which
the last convolutional layer responds to each region of the input image. Fig. 6 shows the heat maps for 10 randomly selected
samples from 0–9. We can observe that all these heat maps highlight the area around the digit, which is exactly the class-
discriminative region. This indicates that the proposed method makes the convolutional neural network more focused on the
class-discriminative region of the input image.

For the clustering results on MNIST&USPS obtained by our method, we randomly select 20 samples of MNIST from each
cluster and visualize their original images and reconstructed images in Fig. 7. Since our model incorporates the multi-view k-
means objective into the training of the autoencoders, we can observe that for most of the samples, the reconstructed images
not only restore the original digit shape but also adjust the digit to a more standard shape. Fig. 8 shows some typical
instances (selected from Fig. 7) whose reconstructed images obviously adjust the shape of the original digit. These results
demonstrate the strong reconstruction ability of our model, which further implies the good representation capability of
the representation layer, thereby leading to better clustering performance. As a result, we can observe in Fig. 7 that most
samples can be clustered correctly, except for only a few misclassified digits that are inherently easy to be confused in
the original shape or over-adjusted by reconstruction in the training process.

4.6. Impact of Parameters

In our model, there are two hyperparameters p and k that should be set properly. In our experiments, we tune p and k
from 2;4;8;16;32f g and 0:01;0:1;1;10;100f g respectively. The results of the NMI metric under different parameters on dif-
ferent datasets are shown in Fig. 9. For the parameter p, the larger p value generally produces better performance, and the
performance becomes stable when p > 8. For the parameter k, our model obtains the best clustering performance when k ¼ 1
on the first five datasets that use the DNN architecture, and on the last dataset that uses the CNN architecture, the best clus-
tering performance occurs when k ¼ 0:01. Therefore, in our experiments, we set p ¼ 16 for all datasets, k ¼ 1 for the DNN-
based networks on the first five datasets and k ¼ 0:01 for the CNN-based network on the MNIST&USPS dataset.

5. Conclusion

In this paper, we have proposed a centroids-guided deep multi-view k-means clustering method that incorporates deep
representation learning into the multi-view k-means framework. The cluster centroids of each view obtained in the multi-
view k-means objective guide the deep representation learning of each view to produce more k-means-friendly representa-
tions toward a common partition, thereby improving the clustering accuracy. Experimental results on six datasets demon-
strate that the proposed method is superior to the state-of-the-art multi-view clustering methods. And the proposed method
by jointly conducting deep representation learning and multi-view k-means substantially improves the clustering perfor-
mance over conducting multi-view k-means in the original space as well as conducting deep representation extraction
and multi-view k-means in a separate manner. Furthermore, the visualizations of the data distribution for some datasets
demonstrate that the deep embedding space obtained by our method is more cluster-discriminative and k-means-
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Fig. 7. Parts of clustering results of the proposed method on MNIST. Each two rows represent 20 samples randomly selected from one cluster with the first
row representing the input images and the second row representing their corresponding reconstructed images.

Fig. 8. Some typical instances that the reconstructed images obviously adjust the shape of the original digit.
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Fig. 9. The parameters effects of p and k on different datasets with NMI metric.

J. Liu, F. Cao and J. Liang Information Sciences 609 (2022) 876–896
friendly than the original data space. In future studies, this framework can be extended to the semi-supervised context by
using parts of labeled data to assist the cluster centroids optimization in the learning process, ensuring that the cluster cen-
troids are more in line with the true class distribution, thereby making the centroids-guided learning more effective and
accurate.
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