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Abstract

This paper proposes a new method to trend analysis of categorical data
streams. A data stream is partitioned into a sequence of time windows and
the records in each window are assumed to carry a number of concepts rep-
resented as clusters. A data labeling algorithm is proposed to identify the
concepts or clusters of a window from the concepts of the preceding window.
The expression of a concept is presented and the distance between two con-
cepts in two consecutive windows is defined to analyze the change of concepts
in consecutive windows. Finally, a trend analysis algorithm is proposed to
compute the trend of concept change in a data stream over the sequence of
consecutive time windows. The methods for measuring the significance of
an attribute that causes the concept change and the outlier degrees of ob-
jects are presented to reveal the causes of concept change. Experiments on
real data sets are presented to demonstrate the benefits of the trend analysis
method.
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1. Introduction

Many real world applications generate continuously arriving data, such
as business transactions, network event logs and social networks. This type
of data is known as data streams [23]. In data stream mining, most research
has been focused on numerical data streams [1, 2, 5, 12, 13, 18]. Recently, the
mining of categorical data streams has become a research topic of growing
interest [4, 10, 11, 14, 19, 20].

A data stream can be considered as a sequence of data records, each
representing an object with a timestamp. Given a time window, we assume
that the objects represented by these records within the time window are
distributed in different clusters and each cluster represents a concept. As
new data records arrive over time, the structure of clusters changes, which
results in change of concepts represented in the clusters. In this context, a
concept change is called concept drift [23].

Two types of concept drift are illustrated in [17]. One is sudden (abrupt)
concept drift and the other is gradual concept drift. Sudden concept drift is
described as that the structure of clusters is changed dramatically in short
time. Gradual concept drift is considered that the change of a concept occurs
gradually over time. For example, in social network analysis, people in a
social group or cluster are interested in a particular topic at certain time
period. Some people gradually change their interest in the topic and some
suddenly change their interests from the current topic to a new topic. The
former represents a gradual concept drift and the later is a sudden concept
drift.

In [6], we have defined a difference measure to compute the change of
concepts between two consecutive windows. With this measure, we are able
to analyze the trend of concept change over time through the change of
clusters in consecutive windows. However, this measure cannot reveal the
relative concept change between two time windows. To solve this problem,
we have defined in [8] the new concept emerging degree and the old concept
fading degree to measure the relative concept change between two consecutive
windows.

In this paper, we propose a new method to trend analysis of categori-
cal data streams by extending the work of [6] and [8]. In this method, we
partition a data stream into a sequence of time windows. The data records
in each window are assumed to carry a number of concepts represented as
clusters. We propose a data labeling algorithm to identify the concepts or
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clusters in a window from the concepts of the preceding window. We express
concepts following the idea of Node Importance [10] and define the distance
between two concepts in two consecutive windows using the new concept
emerging degree and the old concept fading degree to analyze the change of
concepts in consecutive windows. We present the methods for measuring the
significance of an attribute that causes the concept change and the outlier
degrees of objects to reveal the causes of concept change. Finally, we in-
tegrate the above techniques in a trend analysis algorithm to compute the
trend of concept change in a data stream over the sequence of consecutive
time windows.

A series of experiments were conducted on KDD-CUP’99 data set [22].
The experimental results have shown that the proposed method can discover
the trend of concept change in consecutive windows. In comparison with
[6], the new method not only revealed the relative concept change between
consecutive windows but also found the causes of concept change.

The rest of this paper is organized as follows. Section 2 states the research
problem. Section 3 reviews some preliminaries. The trend analysis algorithm
and the corresponding techniques are presented in Section 4. Experimental
results on real data sets are shown in Section 5. The paper is concluded in
Section 6.

2. Problem Statement

A categorical data stream consists of a sequence of records or objects with
timestamps, where each record is described by a set of categorical attributes
such as Sex, Position, Location and Class. A categorical attribute takes
values from a finite set of categories, for instance, Sex={M,F}. Formally, a
categorical data stream can be formulated as a table of the quintuple TDT =
(U,A, V, f, t), where U is a nonempty set of objects called the universe, A is a
nonempty set of attributes, t is a sequence of timestamps, f : U ×A× t → V
is a mapping called an information function such that for any x ∈ U , a ∈ A
and t′ ∈ t, f(x, a, t′) ∈ Va, where Va is a finite and unordered set of values
for attribute a. V =

⋃
a∈A Va is the union of all attribute domains.

Given a particular categorical data stream, we partition the sequence of
objects into a set of consecutive time windows with respect to t, using the
sliding window technique[3, 9, 16]. Suppose that N is the size of a sliding
window, i.e., the number of records in the window, data stream TDT is
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partitioned into a series of subsets STi(1 ≤ i ≤ d |U |
N
e), where Ti represents

the ith window and STi
⋂

STj = ∅ (1 ≤ i 6= j ≤ d |U |
N
e).

Problem Statement : Given a categorical data stream whose objects are
partitioned into a set of consecutive time windows, find the concepts the
objects carry in each window; find the change of concepts in two consecutive
windows; find the causes of concept change; find the trend of concept change
over the sequence of consecutive time windows.

3. Preliminaries

In this section, we briefly review some definitions, such as the new concept
emerging degree, the old concept fading degree and the difference measure
between two windows that are used to measure concept change. These defi-
nitions were first given in [8].

Definition 1. [21] Let TDT = (U,A, V, f, t) be a categorical data stream,
P ⊆ A and X ⊆ U . For any Y ⊆ X and x ∈ X, the lower approximation
and upper approximation of Y in X are defined as

PY = {x|[x]P ⊆ Y } (1)

and

PY = {x|[x]P
⋂

Y 6= ∅}, (2)

where [x]P = {y ∈ X|(x, y) ∈ IND(P )}. IND(P ) is an equivalence relation,
which is defined as IND(P ) = {(x, y) ∈ X ×X|∀a ∈ P, f(x, a) = f(y, a)}.

Here, we describe the lower approximation and upper approximation of
Y in a set X, not the universe U .

Given a categorical data stream whose objects are partitioned into a set
of consecutive windows, we can use Definition 1 to measure the change of
concepts between two consecutive windows. For example, in a social media
data stream, a time window may contain several topics (concepts). The set
of topics change as a new topic emerges in the following window or an old
topic disappears. The intuitive example in Figure 1 illustrates three types of
concept change. Assume the two rectangles in each subfigure represent two
consecutive windows. The circles in each window indicate different concepts.
Figure 1(a) shows the concept described by the yellow circle emerged in the
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following window. Figure 1(b) shows the concept described by the yellow
circle disappeared in the following window. In Figure 1(c), two old concepts
faded completely and two new concepts emerged in the following window.

(a) New concept emerging (b)Old concept fading (c) Dual occurring

Figure 1: Three types of concept change

Using the lower approximation and upper approximation in Definition 1,
we define the new concept emerging degree and the old concept fading degree
in two consecutive windows as follows.

Definition 2. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . The new concept

emerging degree and the old concept fading degree from Ti to Tj with respect
to A are defined as

NEDA < STi , STj > = 1
|A|

∑
a∈A NED{a} < STi , STj > (3)

and
OFDA < STi , STj > = 1

|A|
∑

a∈A OFD{a} < STi , STj >, (4)

where

NED{a} < STi , STj >=
|{a}STj |
|{a}STj | ,

OFD{a} < STi , STj >=
|{a}STi|
|{a}STi| .

Here, {a}STm and {a}STm(m = i, j) represent the lower approximation and

the upper approximation of STm in S[Ti,Tj ] with respect to attribute a, respec-
tively. The objects in {a}STm can be with certainty classified as members of

STm on the basis of knowledge in a, while the objects in {a}STm can be only
classified as possible members of STm on the basis of knowledge in a.
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NEDA < STi , STj > represents the accuracy of approximation [21] of STj

in S[Ti,Tj ], while OFDA < STi , STj > is the accuracy of approximation of
STi in S[Ti,Tj ]. The higher the two measures, the bigger the relative concept
change occurring in the two windows. That is to say, the higher the values
of NEDA < STi , STj > or OFDA < STi , STj > are, the bigger the difference
between STi and STj .

If S[Ti,Tj ]/IND({a}) = {X|X = {u}, u ∈ S[Ti,Tj ]}, NED{a} < STi , STj >
and OFD{a} < STi , STj > achieve their maximum value 1. In other words,
NED{a} < STi , STj > and OFD{a} < STi , STj > are precise with respect to
a.

If S[Ti,Tj ]/IND({a}) = {X|X = S[Ti,Tj ]}, NED{a} < STi , STj > and
OFD{a} < STi , STj > achieve their minimum value 0. In other words,
NED{a} < STi , STj > and OFD{a} < STi , STj > are vague with respect
to a.

Obviously, we have 0 ≤ NEDA < STi , STj >≤ 1 and 0 ≤ OFDA <
STi , STj >≤ 1.

Figure 1 shows that old concept fading and new concept emerging can
occur simultaneously. We use NEDA < STi , STj > and OFDA < STi , STj >
to define the difference measure between two consecutive windows as follows.

Definition 3. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . The difference

measure between STi and STj with respect to A is defined as

DMA(STi , STj) = NEDA<STi ,STj >+OFDA<STi ,STj >
2

. (5)

We can verify that DMA(STi , STj) is a distance metric.

4. Trend Analysis Method

In this section, we propose a new algorithm for trend analysis of con-
cept change in categorical data streams. We first present a data labeling
algorithm to identify concepts of a given time window from the concepts in
the preceding window. Then, we define a method to express concepts and
a distance measure of two concepts in two consecutive windows. After that,
we integrate all these methods in the trend analysis algorithm. Finally, we
present methods to measure the significance of an attribute that affects the
concept change and the outlier degree of objects in a time window.
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4.1. Data-labeling algorithm

Given the set of objects in the first window of a data stream, we can use a
clustering algorithm to divide the objects into clusters and identify concepts.
If the difference measure between Ti and Tj is greater than a given threshold,
we consider that Tj is a concept-drifting window relative to Ti and use a
clustering algorithm to find new concepts in Tj. If there is no significant
change in concepts between two consecutive windows, we can use a data
labeling method to quickly partition the objects in the current window by
referencing the concepts in the preceding window. Inspired by the idea of
Node Importance [10], we define the degree of membership of an object in
the current window Tj that belongs to a cluster or concept in the preceding
window Ti as follows.

Definition 4. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . Suppose that

CTi = {cTi
1 , cTi

2 , · · · , cTi
kTi
} is the clustering results on STi, where cTi

m is the

mth cluster, 1 ≤ m ≤ kTi
. For any unlabeled object x ∈ STj , the degree of

membership of x belonging to cTi
m with respect to A is defined as

SimA(x, cTi
m) =

∑
a∈A

δa × ωa, (6)

where

δa =
|{y|f(x, a) = f(y, a), y ∈ cTi

m}|
|cTi

m |
and

ωa = 1 +
1

log2(kTi
)
×

kTi∑
m=1

(qa × log2(qa)).

The value of δa reflects the frequency of the component f(x, a) in cTi
m . In

other words, the component is important in the cluster when the frequency of
the component is high in this cluster. The value of ωa measures the entropy of

component f(x, a) between clusters, where qa = |{y|f(x,a)=f(y,a),y∈c
Ti
m }|

|{z|f(z,a)=f(x,a),z∈CTi}| . Sup-

pose that there is a component which occurs in all clusters uniformly, the
component which contains the maximum uncertainty provides less similarity.
In other words, attribute a is of no effect for the degree of membership.
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Table 1: An example of categorical data stream

Object A1 A2 A3 A4

x1 A M C t1
x2 Y E P t2
x3 X E P t3
x4 Y M P t4
x5 A M D t5
x6 A M C t6
x7 X M P t7
x8 A M D t8
x9 Y M P t9
x10 A M C t10

x11 B E G t11

x12 X M P t12

x13 B E D t13

x14 Y M P t14

x15 B F D t15

x16 Y M P t16

x17 X M P t17

x18 Z N T t18

x19 X M P t19

x20 Y M P t20

We use an example to show that DMA() can measure not only the dif-
ference between two windows, but also the relative concept change between
two windows. The data is shown in Table 1.

Let U = {x1, x2, · · · , x20}, A = {A1, A2, A3, A4}, where A4 is the timestamp.
Suppose that the size of the time window is 5. We have ST1 = {x1, x2, · · · , x5},
ST2 = {x6, x7, · · · , x10}, ST3 = {x11, x12, · · · , x15} and ST4 = {x16, x17, · · · , x20}.
Using Definition 3, we have DMA(ST1 , ST2) = 0.0333, DMA(ST2 , ST3) =
0.2507 and DMA(ST3 , ST4) = 0.2381. We set the threshold of concept drift
to 0.2. Since DMA(ST1 , ST2) ≤ 0.2, we have to allocate the most appropri-
ate cluster label to each object of ST2 . We first used the k-modes algorithm
[15] to partition ST1 . Assume that x1, x2 were chosen as the initial cluster
centers in ST1 . We obtained the clustering results CT1 = {cT1

1 , cT1
2 }, where

cT1
1 = {x1, x5} and cT1

2 = {x2, x3, x4}. Table 2 shows the degree of mem-
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bership between each object in ST2 and each cluster in ST1 according to
Definition 4.

Table 2: The degrees of membership between objects of ST2 and clusters of ST1

x6 x7 x8 x9 x10

cT1
1 1.5817 0.0817 1.5817 0.0817 1.5817

cT1
2 0.0272 1.3606 0.0272 1.6939 0.0272

From Table 2, we can obtain that cT2
1 = {x6, x8, x10} and cT2

2 = {x7, x9}.
The data labeling algorithm is described in Algorithm 1. The time com-

plexity for computing the degree of membership between an object and a
cluster is O(|STi||A|). The total computational cost of the algorithm is
O(|STi||A||STj |kTi

). Therefore, this algorithm is linear to the number of the
objects in STj , i.e., the size of the time window.

Algorithm 1 The data labeling algorithm
1: Input:
2: - CTi : the clustering results in Ti;
3: - STj : the objects in Tj;
4: Output: a partition of STj ;
5: Method:
6: Generate a partition CTi = {cTi

1 , cTi
2 , · · · , cTi

kTi
} of STi with respect to A

by calling the corresponding categorical clustering algorithm;
7: for j′ = 1 to |STj | do
8: for i′ = 1 to kTi

do
9: Calculate SimA(xj′ , c

Ti

i′ ) according to Definition 4, where xj′ is the
j′th object in STj .

10: end for
11: Give label L to xj′ , where L = arg maxi′=1,···,kTi

{SimA(xj′ , c
Ti

i′ )};
12: end for
13: Return CTj = {cTj

1 , c
Tj

2 , · · · , cTj

kTi
};

4.2. Expression of Concepts

The cluster expressions contribute to the understanding of concepts. The
“modes” [15] are a traditional expression of clusters for categorical data.

9



  

However, “modes” are mainly focused on the intra-cluster similarity and do
not take the inter-cluster similarity into account. To solve this problem, we
define a new cluster expression that considers both intra- and inter-cluster
similarities.

Definition 5. Let TDT = (U,A, V, f, t) be a categorical data stream and
ST ⊆ U . Suppose that CT = {cT

1 , cT
2 , · · · , cT

kT
} is the clustering results on ST .

The expression of cT
i ∈ CT is defined as

R(cT
i ) = {qj|qj = arg max

qj′∈Vaj

δ′aj
× ω′aj

, j = 1, 2, · · · , |A|}, (7)

where

δ′aj
=
|{x|f(x, aj) = qj′ , x ∈ cT

i }|
|cT

i |
and

ω′aj
= 1 +

1

log2(kT )
× ψ.

Here

ψ =

kT∑
i=1

(
|{x|f(x) = q

′
j, x ∈ cT

i }|
|{z|f(z) = q

′
j, z ∈ CT}| × log2

|{x|f(x) = q
′
j, x ∈ cT

i }|
|{z|f(z) = q

′
j, z ∈ CT}|).

Similar to Definition 4, the value of δ′aj
reflects the frequency of q

′
j in cT

i .

The value of ω′aj
measures the entropy of component q

′
j between clusters.

Continuing from Example 1, we have cT1
1 = {x1, x5}, cT1

2 = {x2, x3, x4},
cT2
1 = {x6, x8, x10} and cT2

2 = {x7, x9}. With Definition 5, we can obtain the
expression of each cluster as shown in Table 3.

Table 3: The expressions of clusters in 2 consecutive windows
Clusters Cluster expression

cT1
1 = {x1, x5} R(c1

1) = {A,M, C}
cT1
2 = {x2, x3, x4} R(c1

2) = {Y, E, P}
cT2
1 = {x6, x8, x10} R(c2

1) = {A,M, C}
cT2
2 = {x7, x9} R(c2

2) = {X, M,P}
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4.3. Distance between two concepts in consecutive windows

With the difference measure in Definition 3, we define a new distance
between two concepts (clusters) in consecutive windows as follows.

Definition 6. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . Suppose that

CTi = {cTi
1 , cTi

2 , · · · , cTi
kTi
} and CTj = {cTj

1 , c
Tj

2 , · · · , cTj

kTj
} are the clustering

results on STi and STj , respectively. The distance between cTi

i′ and c
Tj

j′ with
respect to A is defined as

dA(cTi

i′ , c
Tj

j′ ) =
NEDA < cTi

i′ , c
Tj

j′ > +OFDA < cTi

i′ , c
Tj

j′ >

2
, (8)

where 1 ≤ i′ ≤ kTi
, 1 ≤ j′ ≤ kTj

.

Continuing from Example 1, we have DMA(ST2 , ST3) > 0.2 and DMA(ST3 , ST4) >
0.2. We consider that T3 and T4 are two concept-drifting windows. Suppose
that the clustering results of ST3 and ST4 are CT3 = {cT3

1 , cT3
2 } and CT4 =

{cT4
1 , cT4

2 }, where cT3
1 = {x11, x13, x15}, cT3

2 = {x12, x14}, cT4
1 = {x16, x17, x19, x20}

and cT4
2 = {x18}. With Definition 6, we can compute the distances of clusters

in STi and STi+1 (1 ≤ i ≤ 3) as shown in Table 4.

Table 4: The distances between clusters in two consecutive windows of 4 windows
cT1
1 = {x1, x5} cT1

2 = {x2, x3, x4}
cT2
1 = {x6, x8, x10} 0 0.7222

cT2
2 = {x7, x9} 0.6667 0.0667

cT2
1 = {x6, x8, x10} cT2

2 = {x7, x9}
cT3
1 = {x11, x13, x15} 0.7750 1

cT3
2 = {x12, x14} 0.6667 0

cT3
1 = {x11, x13, x15} cT3

2 = {x12, x14}
cT4
1 = {x16, x17, x19, x20} 1 0

cT4
2 = {x18} 1 1

4.4. Significance of attributes and outlier degree of objects

To find the causes of concept change in consecutive windows, we measure
the significance of an attribute the change of whose values affects the change
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of clusters in the following window. If the value distributions of an attribute
remain the same in the two consecutive windows, then this attribute has little
effect on the concept change. The significance of an attribute is measured as
follows.

Definition 7. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . For any a ∈ A,

the significance of a between STi and STj is defined as

Sig{a}(STi , STj) =
DM{a}(STi ,STj )P

c∈A DM{c}(STi ,STj )
. (9)

Continuing from Example 1, we can use Definition 7 to compute the
significance of each attribute in two consecutive windows as shown in Table
5.

Table 5: The significance of each attribute in two consecutive windows of 4 windows

windows A1 A2 A3

T1 −→ T2 0 1 0
T2 −→ T3 0.5698 0.1994 0.2308
T3 −→ T4 0.3333 0.3333 0.3333

From Table 5, we can see that A1 and A3 has no effect on concept change
from T1 to T2. A1, A2 and A3 have the same contributions for concept change
from T3 to T4.

Similarly, different objects provide different contributions for the concept
change. If the attribute values of an object rarely occur in two consecutive
windows, the object provides the maximal contribution to concept change
and can be considered as an outlier [24]. We measure the degree of an object
as an outlier as follows.

Definition 8. Let TDT = (U,A, V, f, t) be a categorical data stream and
STi , STj ⊆ U , where STi

⋂
STj = ∅ and S[Ti,Tj ] = STi

⋃
STj . For any x ∈

S[Ti,Tj ], the outlier degree of the object x with respect to A is defined as

ODA(x) = 1
|A|

∑
a∈A(1 + w(a)

|S[Ti,Tj ]| × log2
w(a)

|S[Ti,Tj ]|), (10)

where w(a) = |{z|f(x, a) = f(z, a), z ∈ S[Ti,Tj ]}|.

12



  

Table 6: The outlier degree of each object in two consecutive windows of 4 windows

T1 −→ T2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.59500.81570.84340.59500.62260.59500.62260.62260.59500.5950

T2 −→ T3 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

0.73500.70250.70740.70250.73500.93220.70250.88450.70250.9046

T3 −→ T4 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

0.93220.64100.91220.64100.93220.64100.64101.00000.64100.6410

Continuing from Example 1, the outlier degree of each object in T1 −→ T2,
T2 −→ T3 and T3 −→ T4 is shown in Table 6.

From Table 6, we can see that objects x3, x11 and x18 have the maximum
outlier degree in T1 −→ T2, T2 −→ T3 and T3 −→ T4, respectively.

4.5. Trend analysis algorithm

Integrating the techniques discussed in the previous sections, we define
the trend analysis algorithm in Algorithm 2. The total computational cost
of this algorithm is O(|STi||A|kTi

+ |STj ||A|kTj
+ kTi

kTj
|STi

⋃
STj ||A|) =

O(kTi
kTj
|STi

⋃
STj ||A|).

We use the trend analysis algorithm to analyze the trend of concept
change in the data stream of Table 1. We set the threshold γ to 0.2. The
trend of concept change in 4 consecutive time windows is shown in Figure 2.
The horizontal axis is consecutive time windows. The blue and red circles
in each column indicate the clusters in the time window. The size of the
circle represents the number of objects. The content in each circle is the
expression of concept in each cluster. Similar concepts are linked with the
green lines. From this figure, we can understand how concepts change in
consecutive windows.

In comparison with the result in [6], Figure 3 shows the relative concept
change between windows. We computed the new concept emerging degree
and the old concept fading degree in consecutive time windows as shown
in Figure 3. We can see that concept change was caused by emerging new
concepts or fading old concepts or both. From T2 to T3, the new concept
emerging degree was greater than the old concept fading degree. This indi-
cates that more new concepts emerged than old concepts faded. However,
from T3 to T4, more old concepts faded than new concepts emerged. This
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Algorithm 2 The trend analysis algorithm
1: Input:
2: - CTi : the clustering results in Ti;
3: - CTj : the clustering results in Tj;
4: - γ : the specified threshold;
5: Output: the trend of concept change from Ti to Tj;
6: Method:
7: Obtain clustering results CTi = {cTi

1 , cTi
2 , · · · , cTi

kTi
} and CTj =

{cTj

1 , c
Tj

2 , · · · , cTj

kTj
} with respect to A;

8: for i′ = 1 to kTi
do

9: Generate R(cTi

i′ ) according to Definition 5;
10: end for
11: for j′ = 1 to kTj

do

12: Generate R(c
Tj

j′ ) according to Definition 5;
13: end for
14: for i′ = 1 to kTi

do
15: for j′ = 1 to kTj

do

16: if dA(cTi

i′ , c
Tj

j′ ) ≤ γ then

17: Connect cTi

i′ , c
Tj

j′ with line;
18: end if
19: end for
20: end for

phenomenon was caused by the fact that a new cluster of x11, x13 and x15

emerged in T3 from T2 and an old cluster of x11, x13 and x15 in T3 faded in
T4.

5. Experimental Results

A series of experiments was conducted on real data for evaluation of the
proposed trend analysis algorithm. In this section, we present the results
of trend analysis on a real data stream for network intrusion detection and
investigate the causes of concept change through significance of attributes
and discuss the property of parameter γ.
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Figure 2: The trend of concept change in 4 consecutive time windows
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Figure 3: The change of two measures in 4 consecutive windows

5.1. Network stream data

KDD-CUP’99 was used as a test data for The Third International Knowl-
edge Discovery and Data Mining Tools Competition. The data set contained
494,021 records, each having a timestamp. The records were classified into
23 classes. One class indicated the normal connection and other 22 classes
were network attack types. Each record was described by 41 attributes, in
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which 34 attributes were continuous and 7 were categorical. We used uniform
quantization to convert these continuous attributes into discrete values, each
attribute with 5 categories. We also aggregated 22 attack classes into one
general attack class.

5.2. Trends analysis

The first 15000 records in the network data set were selected as a sam-
ple data to show trend analysis. We choose 3000 records as the size of the
time window and divided the sample data into 5 consecutive time windows.
We first used the k-modes algorithm [15] to cluster the records in the first
window into two clusters, each representing a concept. Before executing the
k-modes algorithm, we used the method in [7] to obtain its initial cluster cen-
ters. Then, we used DMA distance measure Eq.(5) to compute the distance
between the first window and the second window. If the distance was smaller
than the given threshold 0.01, the data labeling algorithm was used to obtain
the concepts for the second window. Otherwise, the k-modes algorithm was
used to generate clusters for the second window. This process was repeatedly
used to generate concepts in the following windows.

To investigate the relationships of concepts in two consecutive windows,
we used dA distance measure Eq.(8) to compute the similarity between two
concepts in the consecutive windows. If the similarity between two concepts
was greater than the threshold γ, the two concepts in the consecutive windows
were related, i.e., being the same. Figure 4 shows relations of concepts in
consecutive windows and the trend of concept change in 5 consecutive time
windows. The result was produced with γ = 0.01. The red circles represent
attack clusters and the blue circles are normal connection clusters. The
vertical dot lines indicate the boundaries between consecutive time windows.
The number in the circle is the number of the records in the cluster. We can
see that attacks suddenly emerged in window 3, continued to window 4 and
suddenly dropped in window 5. Such trend can help us easily understand
the behavior of network attacks over time.

Table 7 shows the expressions of concepts (clusters) of 41 attributes in 5
consecutive windows. Each window has two concepts.

In addition, we compared the proposed method with the work in [6]. In
the method of [6], we set γ = 0.1. Figure 5 shows the trend of concept change
in 5 consecutive time windows.

In Figure 5, we find that the clusters between T3 and T4 were not con-
nected by lines. In fact, the clusters between T3 and T4 should be connected
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Table 7: The cluster expressions in 5 consecutive time windows
Attr R(c1

1) R(c1
2) R(c2

1) R(c2
2) R(c3

1) R(c3
2) R(c4

1) R(c4
2) R(c5

1) R(c5
2)

1 1 1 1 1 1 1 1 1 1 1
2 2 3 2 2 2 2 2 2 1 1
3 20 9 20 20 20 20 20 20 1 1
4 10 10 10 10 10 10 10 10 2 2
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 0 0 0 0
12 1 0 1 1 1 1 1 1 0 0
13 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 5 5 5 5 5 5 5 5 2 2
30 1 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1
32 5 1 1 5 1 5 1 1 1 1
33 5 2 5 5 5 5 5 5 1 1
34 5 5 5 5 5 5 5 5 1 1
35 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1
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Figure 4: The trend of concept change on the sample set by the proposed method
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Figure 5: The trend of concept change on the sample set by the method in [6]

because there are many objects labeled by attack in these two time win-
dows. Comparing Figure 4 with Figure 5, we find the results of the proposed
method were much closer to the distributions of the sample data.
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5.3. Significance of attributes

To investigate the causes of concept change between two windows, we
analyzed the significance of attributes for the changed concepts. The result is
shown in Table 8. The first column is attribute and the other four columns are
the significance measure of each attribute on the transition of two consecutive
windows. Value 0 implies that the concept change in consecutive windows
was not caused by that attribute. The values greater than 0 indicate that
the attributes contributed to the concept change in the consecutive windows.

From Table 8, we can see that a few attributes contributed significantly to
the change of concepts in consecutive windows, such as attributes 4, 19, 26,
29, 30, 35, 37 and 38. These attributes were the main causes of the concept
change in 5 consecutive windows. Some attributes such as 23 and 24 show
significant impact on the concept change in consecutive windows T2 → T3,
T3 → T4 and T4 → T5.

Further investigating the causes of concept change, we looked into the
value distributions of an attribute in consecutive windows. Table 9 shows
the example of attribute 4 in 5 time windows. We can see that the bigger
the difference of value distributions in two consecutive windows, the more
significant the causes of concept change by the attribute. From this obser-
vation, we can monitor the concept change of a data stream by looking into
the value change of significant attributes in the data stream.

Computing the new concept emerging degree and the old concept fading
degree defined in Definition 2, we investigated the relative concept change in
5 consecutive time windows. The result is shown in Figure 6. We can see
a dramatic drop of the fading degree and an obvious rise of the emerging
degree from T4 and T5. This is an indication that the change was mainly
caused by emerging new concepts and the fact was that there were 2488
attack records in T4 which disappeared in T5 whereas 3000 normal connection
records emerged in T5.

5.4. Impact of γ

Using the trend analysis algorithm Algorithm 2, we need to specify a
threshold γ that determines whether two concepts in consecutive windows
are the same concept or one concept in one window has drifted to another
concept in the following window. We used the entire data set to investigate γ.
The time window size was set as 3000 records and 164 consecutive windows
were obtained. We ran the trend analysis algorithm with different values
of γ and counted the number of pairs of consecutive windows which had
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Table 8: The significance of attributes in 5 consecutive time windows
Attr T1 → T2 T2 → T3 T3 → T4 T4 → T5

1 0.0345 0.0004 0 0
2 0 0 0 0.2445
3 0 0.0032 0.1195 0.2607
4 0.0345 0.0040 0.0298 0.0008
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0.0690 0 0.0448 0.0003
11 0 0 0.0149 0.0001
12 0 0 0 0
13 0 0 0 0
14 0 0.0016 0 0.0003
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0.0690 0.0008 0 0
19 0.0690 0.0008 0.0149 0.0001
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0.0009
23 0 0.4834 0.1642 0.2319
24 0 0.4834 0.1642 0.2319
25 0.0690 0 0.0298 0.0003
26 0.0690 0.0004 0.0448 0.0001
27 0 0.0016 0 0.0004
28 0 0.0016 0 0.0004
29 0.0345 0.0028 0.0298 0.0025
30 0.0690 0.0028 0.0149 0.0025
31 0 0 0 0
32 0 0 0 0
33 0 0 0 0
34 0 0 0 0.0199
35 0.1034 0.0024 0.0746 0.0012
36 0.2069 0.0032 0.1194 0
37 0.0690 0.0012 0.0149 0.0004
38 0.0690 0.0008 0.0597 0.0002
39 0 0.0016 0.0597 0
40 0 0.0016 0 0.0004
41 0.0345 0.0020 0 0.0004
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Table 9: The value distributions of attribute 4
T1 T2 T3 T4 T5
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Figure 6: The changes of the new concept emerging degree and the old concept fading
degree in 5 consecutive time windows

concept change measured by the distance of two consecutive windows which
was greater than γ.

Figure 7 shows the relationships between the number of concept drifts and
the value of γ. We can see that the number of drifting-concepts decreases
as γ increases. When γ is greater than 0.07, the number of drifting-concepts
drops to zero, which means no concept change was identified. Therefore, γ
cannot be greater than 0.07 in this data set. To better reveal concept change
patterns, we set γ = 0.01 as default.

6. Conclusions

In this paper, we have presented a new method for trend analysis of
categorical data streams. In this method, a data labeling method has been
proposed by considering both the intra-cluster similarity and the inter-cluster
similarity. We have defined a new distance between concepts in two consec-
utive windows that is used to measure the concept change. The significance

21



  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

Threshold

T
he

 n
um

be
r 

of
 c

on
ce

pt
s−

dr
ift

in
g

 

 

Figure 7: The relationships between the number of concepts-drifting and γ

measure of attributes has also been defined to reveal the causes of concept
change. We have used a real data stream to demonstrate the usefulness of
the new algorithm in trend analysis.

The trend analysis algorithm proposed in this paper is applied to categor-
ical data streams. Our future work is to study the trend of concept change
in the case of continuous data by using the neighborhood rough set because
continuous data streams are widely available in real applications.
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