
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400
https://doi.org/10.1007/s13042-018-0877-7

ORIGINAL ARTICLE

An accelerator for support vector machines based on the local
geometrical information and data partition

Yunsheng Song1,2 · Jiye Liang3 · Feng Wang3

Received: 8 October 2017 / Accepted: 18 September 2018 / Published online: 9 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The support vector machines (SVM) is difficult to deal with large datasets for its low training efficiency. One of the impor-
tant solutions has been developed by dividing a whole dataset into smaller subsets with data partition and combining the
results of the classifiers over the divided subsets. However, traditional data partition approaches are difficult to preserve the
class boundary of the dataset or control the size of divided subsets, so that their performance will be greatly influenced. To
overcome this difficulty, we propose an accelerator for SVM algorithm based on the local geometrical information. In this
algorithm, the feature space is divided into several regions with the approximately equal number of training instances by
linear projection, and then each SVM classifier trained over the extended region only predicts the unlabeled instances within
that original region. The proposed algorithm can not only hold the decision boundary of the raw data, but also saves a lot
of execution time for implementing it in a parallel environment. Furthermore, the number of instances within each divided
regions can be effectively controlled; it is conducive to choose the complexity of the execution in each of the processors.
Experiments show that the classification performance of the proposed algorithm compares favorably with four state-of-the-
art algorithms with the least training time.

Keywords Data partition · Feature space · Classification boundary · Training time · Linear projection

1 Introduction

The objective of classification task is to assign a label to
an unlabeled instance. A well-known supervised classifica-
tion technique is SVM. SVM uses a nonlinear mapping to
transform the original training instances into a higher dimen-
sion, and then searches for the linear optimal separating

hyperplane, which separates the instances from two classes
within this new dimension [1, 2]. Owning to its theoretical
soundness and practical performance, SVM has been highly
successful in practical applications, such as detection and
recognition, handwritten character and digit recognition, text
detection and categorization [3–9]. Moreover, SVM with
Gaussian kernel has been demonstrated to be the best clas-
sifier expect random forest by evaluating 179 classifiers with
121 UCI datasets [10].

Training an SVM classifier is equivalent to solving a
convex quadratic programming (QP) problem, and it is
characterized by a kernel matrix with a number of rows
equal to the number of training instances. The traditional
QP solver for SVM has a time complexity of O(N3) , where
N is the number of training instances. Thus, it becomes
computationally intractable as the size of the training data-
set is large. Moreover, its prediction time is proportional to
the number of support vectors, it is also time-consuming
significantly with an increase in training scale. Therefore,
an increasing number of algorithms have been developed
to speed up it. These algorithms can be categorized using
a range of different taxonomies. Among them, we mention

 * Jiye Liang
 ljy@sxu.edu.cn

 Yunsheng Song
 sys_sd@126.com

 Feng Wang
 sxuwangfeng@126.com

1 College of Information Science and Engineering, Shandong
Agricultural University, Taian 271018, Shandong, China

2 School of Computer and Information Technology, Shanxi
University, Taiyuan 030006, Shanxi, China

3 Key Laboratory of Computational Intelligence and Chinese
Information Processing of Ministry of Education, School
of Computer and Information Technology, Shanxi University,
Taiyuan 030006, Shanxi, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-018-0877-7&domain=pdf

2390 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

training instances reduction algorithms and decomposition
algorithms.

There are a lot of reduction algorithms. The principal
idea of instance reduction is that the instances with dif-
ferent locations in the feature space have different con-
tributions to the training of SVM classifier [11, 12]. The
training instances can be differentiated using two terms:
overlapping and non-overlapping instances. Overlapping
instances are those ones that can be sorted out by one
class or another class at the same time. These instances
are usually closed to the decision boundary. Furthermore,
though the SVM classifier is trained using all the train-
ing instances, the decision plane is generated only using
some critical instances which are called support vectors
(SVS). Strictly speaking, SVS cannot be got before the
training process of SVM, then most of the instance selec-
tion algorithms seek overlapping instances to replace SVS.
However, due to the quadratic time complexity of this kind
of algorithms, they still cost a lot of time for large-scale
datasets.

On the other hand, there are a lot of decomposition algo-
rithms. These algorithms mainly divide the original training
dataset into some subsets, and then train an SVM classifier
on each subset [13, 14]. Among these kinds of algorithms,
random partition and clustering are most common ways to
data partition. Random partition means that all instances
are separated into the same sized subsets randomly, but it
does not consider the relationship among them. Conversely,
clustering usually divides all training instances into a fam-
ily of subsets with different sizes according to the similarity
relationship among them.

This paper has proposed a novel SVM algorithm based
on the local geometrical information and data partition
(L-SVM). In this algorithm, the kernel linear projection
algorithm is introduced to detect the class boundary firstly.
Then the feature space is divided into some regions, and the
SVM classifiers are trained over the extend regions. Finally,
the SVM classifier offers the predicted labels for the unla-
beled instances in the same region. Analysis and experi-
ments show that the proposed algorithm can effectively
reduce the training time, but it could match with the clas-
sification performance of the original SVM. Furthermore,
it has the additional advantage that we can adapt the size of
the subproblems to the available resources.

The rest of this work is organized as follows. Section 2
briefly reviews previous approaches for accelerating SVM
training process, and their strengths and weaknesses are
discussed. Section 3 proposes the L-SVM algorithm with
some main properties. Section 4 reports experimental results
on benchmark classification problems compared with four
existing algorithms. Finally, Section 5 concludes the classifi-
cation performance, training time and potential applications
of the proposed algorithm.

2 Related work

The training process of the traditional SVM is always
computationally intractable when dealing with large
datasets, so more and more algorithms are developed to
solve it. These algorithms are mainly categorized into
two types according to the different strategies: filter and
decomposition.

The filter algorithms choose a smaller instance sub-
set S by using various kinds of instance selection algo-
rithms, where the subset S includes critical instances of
the training set T . Finally, train the SVM algorithm over
the subset S. Specifically, these algorithms mainly try to
seek the overlapping instances in the training set T. This
kind of instances could fully and succinctly constitute the
SVM classifier [15, 16]. As there are fewer overlapping
instances than non-overlapping instances in most of the
datasets, the obtained subset size could be normally small.
So these algorithms could largely reduce the training time.
Well-known filter algorithms include the algorithms based
on nearest neighbor and clustering [17, 18], training-set-
consistent algorithm [19], the algorithm based on local
geometrical and statistical information [20], and so on.
A potential disadvantage of these algorithms is that they
may need a long time for huge problems. Because these
algorithms usually require to compute the distances among
the training instances, and execute many passages over the
training set to seek the critical instances. Furthermore, one
kind of safe samples screening methods have been pro-
posed, and these methods aim to greatly reduce the scale
of SVM by identifying and deleting the non-support vec-
tors [21–23]. Although this kind of methods can guarantee
to achieve the same solution as solving the original prob-
lem, they first need to get an initial optimal solution with
the training instances under a small value parameter, and
then they compute a sequence of the optimal solutions at
subsequent larger values of the parameter. Therefore, these
methods cost a lot of time for getting the final optimal
solution for using the all the data and continually search-
ing different solutions under different parameter values.

Different from filter algorithms, decomposition algorithms
train SVM classifier with all the training instances rather than
some of them. There are three key steps in these algorithms.
The first one is dividing the original training datasets into
some subsets. The second one is training SVM classifier
on each divided subset. And the last one is combining the
results over all the subsets for predicting. Collobert et al. [24]
randomly divided the training dataset into some subsets of
approximately equal size and trained SVM classifiers sepa-
rately, then iteratively refined the data partition to obtain a
good approximate estimate of raw SVM classifier. However,
the experiments of this algorithm are taken on only two

2391International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

datasets, and its performance still needed to be studied on
much more datasets. Later, Graf [25] proposed a multilevel
and parallel algorithm (CascadeSVM) to early identify the
support vectors. Cascade SVM firstly divided the training data
into some subsets. And then SVM algorithm was performed
separately over each subset and the corresponding SVS were
obtained. Finally, the obtained SVS were combined two-by-
two and filtered again until the global optimum was reached.
However, it did not take the effect of data partition to the
performance of CascadeSVM into account. Do and Poulet
[14] applied k-means to partition the training data into k clus-
ters, and then constructed a SVM classifier on each cluster to
classify the instances locally in a parallel way. Though this
algorithm achieved a good performance on some datasets,
it was difficult to theoretically show the error between the
solution from the subproblems and the global solution. For
this problem, Hsieh et al. [13] proposed and analyzed a novel
divide-and-conquer solver for kernel SVM (DC-SVM). In the
division step, the training data was partitioned into smaller
subproblems by kernel clustering. And they theoretically
showed the support vectors identified by the subproblem
solution were likely to be support vectors of the entire kernel
SVM problem. In the conquer step, the local solutions from
the subproblems could converge quickly as suggested by their
analysis. It was also theoretically shown that DC-SVM was
likely to obtain the SVS as the same as the raw SVM problem.
From above we could find that the performance of DC-SVM
mainly depended on the results of the clustering. Furthermore,
the size of divided subsets may be quite different, so that its
training time may be quite different. The final finishing time
depends on the time of training the largest subset. Though DC-
SVM has achieved a great deal of reduction on training time,
it suffers from significant loss of accuracy because smaller
partitions do not retain the distribution of the entire dataset. To
overcome this difficulty, Singh et al. [26] proposed a distribu-
tion preserving kernel support vector machine (DIP-SVM)
for big data. DIP-SVM employs K-means clustering on each
of the classes into the same number of subsets, then merges
the instances selecting from each subset according to uniform
distribution into a new subset. The experiment results show
DIP-SVM achieves a minimal loss in classification accuracy
among other distributed support vector machine techniques
on several benchmark datasets.

Besides, there are other algorithms to reduce the test time
for dealing with SVM on large problems [27–30].

3 Related concept

Let T = {(x1, y1), (x2, y2),… , (xN , yN)} denote the labeled
training set, where xi is the ith instance described by m
attributes, yi ∈ {−1, 1} is, its expected real-valued output,
and N is the number of labeled instances.

Given the training dataset T, SVM transforms all the
training instances into a higher dimension space by a
mapping function �(⋅) , and searches the optimal separat-
ing hyperplane �.�(x) + b = 0 that yields the largest margin
(2∕||�||2) between classes, where �, b are the weight vector
and bias term, and ||�|| is the norm of � . The vector � is
obtained by solving the following quadratic programming
problem [31].

where � = (�1, �2,… , �N) are nonnegative slack variables
which play a role in allowing a certain level of misclassifi-
cation for a non-separable case, C > 0 is an error tolerance
parameter, and �(xi).�(xj) is the inner product between �(xi)
and �(xj).

The optimal solution of problem (1) can be transferred
into the convex quadratic problem by Lagrange multiplier
algorithm [31],

where � = (�1, �2,… , �N) ∈ RN is the nonnegative Lagrange
mult ipl ier associated with training instances,
� =

∑N

i=1
�iyi�(xi) , and K(xi, xj) is the function to avoid the

costly calculation of inner products (�(xi),�(xj)) . Let
�∗ = (�∗

1
, �∗

2
,… , �∗

N
) be the optimal solution of problem (1),

we get the SVM classifier f (x) = sign(�∗
⋅ �(x) + b∗) , where

�∗ =
∑N

i=1
�∗
i
yi�(xi) , b∗ = yj −

∑N

i=1
�∗
i
yiK(xi, xj) , and �∗

j
 is

one element of �∗ that satisfies 0 < 𝛼∗
j
≤ C . It is noted that

we do not observe any improvement in test accuracy by
including the bias term similar as [27, 32], so we set b = 0
in the following content.

4 L‑SVM algorithm

Given the training dataset T, L-SVM algorithm divides the
feature space into n regions i (

⋃n

i=1
i =) by linear

projection partition, and extends each region i to be ′
i ,

where i = 1, 2, 3,… , n . In this way, it could largely keep the
key instances and their neighbors still in the same regions
after partition. Then L-SVM trains the SVM classifier fi(x)
over each region ′

i
 . Finally, fi(x) only predicts the unlabeled

instances in the region i rather than others. An outline of
the algorithm is shown in Algorithm 1, and Fig. 1 describes
the process of this algorithm.

(1)
min 1∕2�����2 + C

N∑
i=1

�i

s.t. yi(�.�(xi)) ≥ 1 − �i
�i ≥ 0, i = 1, 2,… ,N

(2)min
0≤�i≤C

1

2

N∑
i,j=1

�i�jyiyjK(xi, xj) −

N∑
i=1

�i + b

N∑
i=1

�iyi

2392 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

Algorithm 1: L-SVM
Input : The training set T = {(x1, y1), (x2, y2), · · · , (xN , yN)}, the number of

subsets n, and the unlabeled instance set U = {x1, x2, · · · , xh}.
Output: The predicted label y1, y2, · · · , yh.

1 Divide the feature space X into n disjoint regions Xi, and extend the each region to
be Xi , i = 1, 2, · · · , n;
foreach i = 1 to n do

2 Train the SVM classifier fi(x) over the region Xi ;
end
foreach xj ∈ U do

for i = 1 to n do
if xj ∈ Xi then

3 yj = fi(xj)
end

end
end

4 Return y1, y2, · · · , yh.

Following this way, this algorithm has a great reduc-
tion in training time for dividing the original optimization
problem into n subproblems, and this issue has been proved
in the report of the experiments. Meanwhile, it is easy to
implement in a parallel environment, since the execution of
the SVM algorithm over each subset is performed indepen-
dently. Additionally, as the size of the subsets is a param-
eter of this algorithm, we can choose the complexity of the
execution in each of the processors.

Dividing the training set T into n subsets Ti is an impor-
tant step for the L-SVM algorithm. And the number of the
subsets n needs to be fixed by the user in advance. Further-
more, the SVM algorithm is applied on each subset indepen-
dently, the final finishing time of this algorithm depends on
the size of the largest subset. So it is necessary to get the size
of subsets to be approximately equal. Besides the execution
time, generation ability is another key point which we pay
attention to. As we all know, SVM has a distinguishable
merit that it clarifies which instances are of importance to
the training. And these instances are distributed near the
class boundary, and fully and succinctly define the classifica-
tion task at hand [15, 31]. However, what should be noticed
is that we should maintain the classification properties of
these instances after dividing process: the original boundary
classification instances remain the same. In this way, it could
largely hold the decision boundary in the original dataset.
Furthermore, it is well known that judging whether an

instance near the decision boundary or not mainly depends
on the consistency between it and its nearest neighbors [33].
If the instance has more heterogeneous neighbors in their
class-membership, then it tends to locate near the decision
boundary. Otherwise, it tends to be far from the decision
boundary. So those key instances could still hold this prop-
erty in their own divided subsets as the original dataset, as
long as we keep them and their heterogeneous neighbors
in the same divided subset after data partition. In order to
meet the above two requirements, we propose a novel data
partition algorithm by linear projection.

4.1 Data partition by linear projection

The locality of the instances could be largely kept by divid-
ing the feature space into some regions. The instances in
the same region are divided into as one subset, and most
instances and their nearest neighbors could be still in the
same subset [34]. To achieve this aim, we project all the
instances onto the optimal vector and then divide the projec-
tion into equal-sized subsets. Meanwhile, we prove that the
algorithm is a kind of feature space partitions using mul-
tiple parallel hyperplanes. Furthermore, this data partition
algorithm can deal with the large-scale dataset in a short
time for its linear time completion. In the following, we will
introduce this algorithm specifically.

4.1.1 The obtain of the projected vector

Although this algorithm with a randomly projected vector
also holds the locality of the most instances in the data-
set, it is difficult for the instances nearby the class bound-
ary. Because this kind of critical instances is much fewer
than others in most of the dataset [35]. On the other hand,
the linear projection is one of important data visualization
algorithms, and it visualizes the high-dimensional data from
one of all the possible angles determined by the projected
vectors. Then it is useful for identifying structures in the
data set, such as clusters and outliers [34, 36]. Furthermore,
each base SVM classifier is trained over the divided sub-
set, thus the “equality” of the divided subsets could affect

Fig. 1 The flow chart of the
L-SVM algorithm

2393International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

its generation ability. If the instances of different classes in
a subset separate well, then the SVM classifier over them
could obtain a good classification ability. In order to prompt
the divided subsets with the high “equality”, the projection
vector � needs to be chosen properly.

Kernel Fisher’s linear discriminant (KFLD) is one of
these algorithms, it projects the instances onto the optimal
vector in the mapped space , then it tries to separate the
instances with different labels after projection. However,
KFLD is difficult to deal with the large-scale data for com-
puting the similarity among all the instances. Therefore, we
use �(v) to replace the optimal vector for its availability and
simplicity, where v is the optimal solution by Fisher’s linear
discriminant (FLD). We will simply introduce the process
of solving the projected vector v in the following.

Let X1 = {x
(1)

1
, x

(1)

2
,… , x(1)

n1
} and X2 = {x

(2)

1
, x

(2)

2
,… , x(2)

n2
}

be the instance subsets from class + 1 and − 1 respectably,
where n1 and n2 are the size of set X1 and X2 , n1 + n2 = N .
Each instance x is projected onto the vector v, and it is re-
expressed by a real number vTx , where vT is the transposition
of the vector v. In FLD, the criteria to measure the separation
of different classes is that minimizing the difference on the
instances in the same classes A0 and maximizing the differ-
ence between different classes B0 after projection, and A0,B0
are computed following the idea of variance analysis. Then
A0 and B0 can be computed as follows:

where A =
∑2

t=1

∑nt
j=1

(x
(t)

j
− x

(t)
)(x

(t)

j
− x

(t)
)T , B =

∑2

t=1
n
t

(x
(t)
− x)(x

(t)
− x)T , x =

∑2

t=1

∑nt
j=1

x
(t)

j
∕N , x(t) =

∑nt
j=1

x
(t)

j
∕nt ,

t = 1, 2.
The optimal projected vector v∗ is obtained by maximiz-

ing the function Δ(v) = vTBv∕vTAv , and the constraint con-
dition vTAv = 1 is added to get the unique solution. Solving
the above optimal problem, we can get the optimal projected
vector v∗ that is the eigenvector corresponding to the largest
eigenvalue, and Δ(v∗) = vT

∗
Bv∗ = �∗v

TAv∗ = �∗.

(3)

A0 =
2∑
t=1

nt∑
j=1

(vTx
(t)

j
− vTx

(t)
)2

= vT

�
2∑
t=1

nt∑
j=1

(x
(t)

j
− x

(t)
)(x

(t)

j
− x

(t)
)T

�
v

= vTAv.

(4)

B0 =
2∑
t=1

nt(v
Tx

(t)
− vTx)2

= vT

�
2∑
t=1

nt(x
(t)
− x)(x

(t)
− x)T

�
v

= vTBv.

4.1.2 Data partition

After getting the projected vector �(v∗) , we project all the
training instances onto it, and then dividing their projection
into approximately equal sized subsets. Concretely, under
the given threshold s of divided subset size, we first estimate
the number of divided subsets n = [N∕s] , where [N/s] is the
smallest integer larger than N/s. Then we compute the (k/n)-
quantile bk of the projection value pi = �(v∗)Txi = K(v∗, xi)
within T, i = 1, 2,… , n , k = 1, 2,… , n − 1 . Finally, accord-
ing to the relationship between projection value and quantile,
the set T is divided into n disjoint subsets Tj as following:

In this way, it produces n subsets of equal size, and each sub-
set Tj has about N/n instances with the property of quantile.
Furthermore, these divided subsets are the results of divid-
ing the feature space into regions of equal size and using the
instances within each region as subsets. In the following, we
give the related proof.

To meet the need of proof, we construct n − 1 hyperplane
Li ∶ �(v∗)Tx − bi = 0 with the same vector direction vector
�(v∗) . Then these hyperplanes divide the feature space
into n regions j , they are

Furthermore, if we use the instances within each region j
as a subset, then the divided subset Tj is obtained, where
j = 1, 2,… , n . So this data partition algorithm is also
one kind of feature space partition using these parallel
hyperplanes.

4.1.3 The extension of regions

After partitioning the training dataset with the above algo-
rithm, we execute the SVM algorithm on each divided
subset Tj of T and obtain n SVM classifiers fj(x) , where
j = 1, 2,… , n . For the divided subset Tj that could preserve
the local decision boundary of the training set in the region
j , the SVM classifier fj(x) may be a good approximation
of the original SVM classifier for the instances x ∈ j .
However, the proposed data partition method is difficult
to guarantee those critical instances nearby the boundaries
(CINB) of divided region and their nearest neighbors in
the same divided subsets. So there exist some regions that

(5)

Tj =

⎧
⎪⎨⎪⎩

{(xi, yi) ∈ T ∶ pi < b1}, j = 1;

{(xi, yi) ∈ T ∶ bj−1 ≤ pi < bj}, j = 2,… , n − 1;

{(xi, yi) ∈ T ∶ pi ≥ bn−1}, j = n.

(6)j =

⎧⎪⎨⎪⎩

{xi ∈ ∶ pi < b1}, j = 1;

{xi ∈ ∶ bj−1 ≤ pi < bj}, j = 2,… , n − 1;

{xi ∈ ∶ pi ≥ bn−1}, j = n.

2394 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

cannot preserve the decision boundary of the training set
within these regions well. To make up this defect, we extend
the region j to make CINB far from the boundary of this
region. As these divided regions are generated by dividing
the feature space with multiple parallel hyperplanes, then
we extend these regions by removing the location of these
hyperplanes in the feature space.

Therefore, we need to calculate the ((j − �)∕n)-quantile uj
and the ((j + �)∕n)-quantile dj besides (j/n)-quantile, where
j = 1, 2,… , n − 1 . Then the regions can be extended as
follows:

Meanwhile, the divided subset Tj is also enlarged, and the
enlarged subsets T ′

j
 is noted as

In the above the operation of extending divided subsets, the
parameter � controls the size of the extend subsets and loca-
tion of the extended regions in the feature space, and then it
affects the classification performance and executing time of
the SVM classifier over the subset. Compared with the
divided region j , each extended region ′

j
 increases some

instances from its adjacent regions, and these instances are
mainly located on the other sides of the boundaries of the
region j , where j = 1, 2,… , n . Therefore, these increased
instances could be the nearest neighbors of CINB, and they
can help the extended region hold the local the decision
boundary of the original training set within this region.
Finally, the classification performance of the SVM classifi-
ers over the extended subsets can be improved. On the other
hand, the size of the largest subset T ′

j
 is about 2� times larger

than the set Tj and then the execution time of training SVM
classifier over the extended subset T ′

j
 increases, where

j = 2, 3,… , n − 1 . Through extensive experiments, we find
that � = 0.05 is appropriate for the trade-off between the
improved classification performance and the increased exe-
cution time. An outline of the algorithm is shown in
Algorithm 2.

(7)
�
j
=

⎧
⎪⎨⎪⎩

{xi ∈ ∶ pi < d1}, j = 1;

{xi ∈ ∶ uj−1 ≤ pi < dj}, j = 2,… , n − 1;

{xi ∈ ∶ pi ≥ un−1}, j = n.

(8)

T �
j
=

⎧⎪⎨⎪⎩

{(xi, yi) ∈ T ∶ pi < d1}, j = 1;

{(xi, yi) ∈ T ∶ ui−1 ≤ pi < di}, j = 2,… , n − 1;

{(xi, yi) ∈ T ∶ pi ≥ un−1}, j = n.

Algorithm 2: Data partition based on linear projection (PDP)
Input : Dataset T = {(x1, y1), (x2, y2), · · · , (xN , yN)}, the subset size s and the

parameter τ .
Output: The subset Tj , T = Tj .

1 Compute the number of subsets n = [N/s];
2 Get the projection vector ω∗ using FLD;
3 Compute the projection ω∗T xi for each instance xi, where i = 1, 2, · · · , N ;
4 Divide the set T into n subsets Tj by the formula (5), j = 1, 2, 3, · · · , n;
5 Enlarge each divided subsets Tj to be Tj following the formula (8), j = 1, 2, 3, · · · , n;
6 Return Tj.

4.2 Parameter selection

The subset size s is a critical parameter for the L-SVM
algorithm, and it is proportional to the execution time. The
larger value of subset size, the more execution time of the
L-SVM algorithm. Furthermore, the divided subset size is
also closely related to keeping keep a certain locality in the
partition, where keeping the locality is conducive to identify
the classification boundary. If the divided subsets have less
number of instances after data partition, then it is difficult to
achieve this aim. A first natural choice would be the use of a
cross-validation procedure. However, automatic determina-
tion of the subset size s in a computationally efficient manner
is much more difficult due to the inability to reuse computa-
tions performed for different values of s. Fortunately, it is a
reasonable and effective choice for the subset size s = N0.7
in many situations for large-scale data [34, 37].

4.3 Complexity of our algorithm

The aim of this work is to obtain an algorithmology that is
able to scale up to large and even huge problems. Thus, an
analysis of the complexity of the algorithm is essential. We
divide the training dataset of N instances into n disjoint sub-
sets size of [N/s]. Let K be the number of operations needed
by the SVM algorithm to perform its task in an instance
subset of size N/n. For this original dataset, we must perform
SVM algorithm process once for each subset, that is, n times,
spending a time proportional to nK.

Besides, the data partition of the dataset should be con-
sidered apart from training SVM classifiers. This is because
that many different algorithms could be devised to per-
form data partition. PDP algorithm is implemented with a
complexity O(Nm2 + m3) using the matrix decomposition
approach to get the eigenvector, and it divides the train-
ing dataset into some subsets of equal size with the time
complexity O(Nlog(N)), where m is the number of features.
So PDP is a linear algorithm with the number of instances
and could cope with the larger-scale dataset. Furthermore,
PDP algorithm can be improved with a much more efficient
solution to inverse matrix when facing the high-dimensional
problem [38].

2395International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

5 Experimental analysis

5.1 Experimental setup

In order to make a comprehensive comparison between our
algorithm and other state-of-the-art algorithms, we have
selected a set of 8 benchmark datasets from the Libsvm
Repository [39] and UCI Machine Learning Repository
[40]. These binary-class datasets have larger than 10,000
instances, and their feature values are normalized in the
interval [0,1] to equalize the influence of attributes with
different range domains. These datasets are representative
of problems from medium to large size. A summary of these
datasets is shown in Table 1.

Four representative acceleration algorithms for SVM
are selected in this study: LIBSVM [39], early DC-SVM
(EDC-SVM) and DC-SVM [13], and DIP-SVM [26]. The
selection of these algorithms is based on their representa-
tiveness and popularity. LIBSVM algorithm is a classical
SVM algorithm with the modified sequential minimal opti-
mization, and it can effectively deal with the large data.
EDC-SVM algorithm and DC-SVM algorithm represent
the acceleration algorithms with data partition; they obtain
the less execution time than many state-of-the-art algo-
rithms, such as CascadeSVM [25], FastFood [29], SpSVM
[41], and LLSVM [42].

The estimation performance of algorithms on a set of
benchmark problems is the most usual way for evaluating
acceleration algorithms for SVM. Accuracy (Acc) [43],
Cohen′ s Kappa (Kappa) [44] and executing time (ET) in s
are adopted to evaluate the performance of their simplicity
and successful application, where the first two measures
evaluate generalization ability and the last one measures
their execution time. Acc is the number of successful hits
relative to the total number of classifications, and Kappa is
a compensate of accuracy and takes random successes into
consideration as a standard, in the same way as the AUC
measure [44]. The values of Acc and Kappa are both in the
interval [0,1], and the classification ability of classifiers
is increasing by the enlarging values. For estimating the

values of these indexes, we used a k-fold cross-validation
method. In this method, the available data is divided into
k approximately equal subsets. Then, the algorithm is
learned k times, in turn, using each one of the k subsets as
a test set, and the remaining k − 1 subsets as a training set.
The final result is the average test result of the k subsets.
A fairly standard value for k is k = 10.

For evaluating the difference between our algorithm and
each of the other algorithms, the Wilcoxon signed rank test
[45] is used for its limited commensurability and without
the hypothesis normal distributions or homogeneity of
variance [46]. The Wilcoxon signed rank test is used to
perform a paired, two-sided signed rank test of the null
hypothesis that there is no significant difference between
our algorithm and each of the other algorithms, against
the alternative that there is a significant difference. Under
the given significance level � , the p value of the test is
computed to judge whether the difference between them
exists or not. If the p value is smaller than � , it indicates a
rejection of the null hypothesis at the significance level � ,
against that it indicates a failure to reject the null hypoth-
esis at the significance level �.

We use LIBSVM as the default solver for EDC-SVM,
DC-SVM, DIP-SVM, and L-SVM. It is noted that the num-
ber of subsets (NS) affects the performance of these algo-
rithms, especially for the training time. So we should com-
pare their performance under the same number of subsets.
According to the suggestion in [13], DC-SVM divides the
data into 4i subsets at i-th level operation and NS = 64 for
EDC-SVM, where i = 1, 2, 3, 4, 5 . As this parameter set-
ting does not consider the size of the original data, so that
the efficiency of two algorithms are affected. Meanwhile,
it seems that NS = N0.3 is an effective choice with the con-
clusion in [37], where N is the size of the original dataset.
Therefore, we compare their performance under the fixed
parameter (NS = 64) and adaptive parameter NS = N0.3 .
On the other hand, it has been shown in [10] that for most
datasets the optimal kernel function for SVM classification
is Gaussian kernel function. So we use radial basis function
(RBF) exp(−�|xi − xj|2) . Furthermore, We choose the default
parameter in LIBSVM. In the following, a significance level
of � = 0.05 is used. All the experiments are carried out in
MATLAB R2013a on Windows 7 running on a PC with
system configuration Intel(R) Xeon(R) e5-16200 CPU (3.60
GHz) with 16.00 GB of RAM.

5.2 Experimental results under the fixed NS

In this section, we compare the above algorithms perfor-
mance from the view of the classification performance and
training time under the fixed NS.

Table 1 Summary of the used data sets

Dataset Size Features Classes

Cifar 60,000 3072 2
Cod-rna 59,535 8 2
Covtype 581,012 54 2
Ijcnn1 141,691 22 2
MiniBooNE 130,065 50 2
Skin-nonskin 245,057 3 2
Susy 5,000,000 18 2
Webspam 350,000 254 2

2396 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

5.2.1 Classification performance

Table 2 lists the classification performance measured by Acc
and Kappa of these algorithms on different datasets.

Table 2 indicts that L-SVM obtains a higher classifica-
tion accuracy than other algorithms, especially for data sets
including Cod-rna, Covtype, MiniBooNE and Susy. And it
is not worse than other algorithms on the rest of datasets.
Moreover, the mean of Acc of these algorithms are 0.925,
0.901, 0.912, 0.913 and 0.909, as well as their median of
Acc are 0.956, 0.917, 0.944, 0.937 and 0.944 respectively in
the last row of Table 1. So L-SVM obtains the similar clas-
sification accuracy as LIBSVM, DIP-SVM and DC-SVM,
but better than EDC-SVM.

For another classification performance measurement
Kappa, L-SVM is better than other algorithms on Cod-rna
and MinniNooNE datasets, and it is not worse than others on
the rest of datasets from the Table 2. Meanwhile, the mean
of Kappa of these algorithms on different datasets are 0.815,
0.766, 0.797, 0.801 and 0.801, and their medians of Kappa
are 0.847, 0.737, 0.811, 0.814 and 0.805. It obviously shows
that L-SVM obtains the similar Kappa as LIBSVM, EDC-
SVM and DIP-SVM, but better than EDC-SVM.

Finally, in order to provide an accurate evaluation of the
probability of obtaining the observed outcomes by chance,
the Wilcoxon signed rank test is used to compare the per-
formance between L-SVM and each one of these four algo-
rithms. The p values of the Wilcoxon signed rank test on Acc
are 0.039, 0.313, 0.195 and 0.250, and p values for Kappa
are 0.078, 0.641, 0.297 and 0.617.

In conclusion, L-SVM exists a significant difference in
classification performance with EDC-SVM, and no sig-
nificant differences with other algorithms. In the L-SVM
algorithm, it largely keeps the training instances and their
nearest neighbors with different labels in the same divided
regions, and then each divided region can hold the original
decision boundary over this region. Therefore, it could hold

the original classification boundary, and obtains the similar
predictive ability as LIBSVM, EDC-SVM and DIP-SVM.

5.2.2 The training time

Besides the classification performance, the executing time is
another measurement to evaluate the performances of these
algorithms. As is well-known, algorithms with less execut-
ing time are more suitable for dealing with the large-scale
problems in application. Table 3 lists the relative speed (RS)
of these four algorithms. The relative speed is defined as
the ratio of executing time (in s) between each of four three
decomposition algorithms and LIBSVM on each dataset.

In Table 3, it is obviously that RS of L-SVM is much
larger than that of other four algorithms on the most of the
datasets. So L-SVM has the least execution time among four
algorithms on these datasets. Besides, the p values obtained
by Wilcoxon signed rank test between L-SVM and each one
of other algorithms are 0.0078, 0.0078, 0.0078, less than the
given significant level 0.05. So L-SVM and other algorithms
exist the significant differences in training time. The reason
for this issue is that they have different training process.
L-SVM trains SVM classifiers over the divided subsets of

Table 2 Acc and Kappa of five
algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM LIBSVM

Acc Kappa Acc Kappa Acc Kappa Acc Kappa Acc Kappa

Cifar 0.961 0.909 0.919 0.912 0.969 0.914 0.968 0.914 0.966 0.929
Cod-rna 0.960 0.906 0.914 0.796 0.923 0.818 0.915 0.886 0.922 0.816
Covtype 0.857 0.698 0.839 0.678 0.842 0.685 0.843 0.698 0.806 0.682
Ijcnn1 0.956 0.732 0.949 0.613 0.970 0.803 0.958 0.673 0.969 0.794
MiniBooNE 0.899 0.788 0.827 0.632 0.836 0.656 0.864 0.742 0.855 0.692
Skin-nonskin 0.998 0.985 0.994 0.981 0.993 0.979 0.994 0.984 0.994 0.981
Susy 0.812 0.587 0.796 0.582 0.800 0.595 0.793 0.584 0.796 0.583
Webspam 0.956 0.916 0.968 0.934 0.965 0.926 0.968 0.924 0.967 0.930
Average 0.925 0.815 0.901 0.766 0.912 0.797 0.913 0.801 0.909 0.801
Median 0.956 0.847 0.917 0.737 0.944 0.811 0.937 0.814 0.944 0.805

Table 3 RS of four algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Cifar 33.50 6.44 1.73 16.96
Cod-rna 176.21 5.72 2.29 13.61
Covtype 87.81 33.29 10.01 64.02
Ijcnn1 123.23 10.28 2.27 27.05
MiniBooNE 214.70 21.68 1.78 38.03
Skin-nonskin 125.61 4.35 1.72 12.42
Susy 2.61 1.34 1.10 1.38
Webspam 84.99 24.48 1.26 64.41
Mean 106.08 13.45 2.77 29.73
Median 105.52 10.28 1.78 22.01

2397International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

the entire dataset just once, while both DC-SVM and DIP-
SVM need multilevel training process, and they use the
divided subsets of the entire dataset or support vectors set
at each level.

Though EDC-SVM has the similar training process, the
sizes of divided subsets are quite different. As we all know,
the executing time of the EDC-SVM and L-SVM with data
partition depends on the size of the largest subset. So EDC-
SVM has the longer training time than L-SVM. In order to
corroborate this statement, we compute the ratio (R) between
the size of the largest divided subset and the size of the origi-
nal dataset, and use its value on different datasets to cor-
roborate the above statement. Furthermore, we also compare
the execution time of PDP and kernel K-means clustering
partition (KKCDP). Table 4 lists ET (in s) and R of PDP and
KKCDP on different datasets.

It shows that the R of PDP has a constant value, and it is
smaller than KKCDP on all the datasets in Table 4. Espe-
cially, the value of R obtained by KKCDP is tens of times
smaller than PDP on Cifa, Skin-noskin and Cod-rna datasets,
and the value of RS of L-SVM is also tens of times shorter
than EDC-SVM on these datasets. Meanwhile, the p value
of the test on R between PDP and KKCPD is 0.0078, less
than 0.05, so it exists a significant difference on R under the

given significant level 0.05. So this result corroborates that
the execution time of L-SVM is much shorter than EDC-
SVM on all the datasets.

Furthermore, we also compare the execution time of PDP
and KKCDP. It indices that the execution time of PDP is
less than KKCDP on all the datasets except Cifa in Table 4.
And the p value of test on ET between PDP and KKCPD is
0.0078, less than 0.05, so it exists significant difference on
ET under the given significant level 0.05. The time com-
plexity of PDP and KKCDP are O(Nm3) and O(Nnm + n2m)
respectively, where m is the number features in the dataset
and n is the number of sampled instances. Although both
PDP and KKCDP have the linear time complexity with the
number of training instances, KKCDP needs many itera-
tions to get the final result. So the execution time of KKCDP
is much longer than PDP on the low-dimensional dataset.
Because PDP costs a lot of time to get the optimal eigen-
vector for the high-dimensional problem, then its execution
time is longer than KKCDP on dataset Cifa. Compared with
the time of training the SVM classifiers, the execution time
of PDP is a small fraction of the total execution time of the
L-SVM algorithm. Therefore, the L-SVM algorithm can
effectively deal with the high-dimensional problem, and this
issue is verified by the result on data Cifa in Table 3.

5.3 Experimental results under the adaptive NS

Different from the above section, we compare our algorithm
with other four algorithms under adaptive NS in this section.

5.3.1 Classification performance

Table 5 lists Acc and Kappa of these four algorithms on
different datasets.

Compared with other algorithms, L-SVM has the largest
value of Acc on Cod-rna and MiniBooNE datasets, and it

Table 4 R and ET of two ways on 8 datasets

Dataset PDP KKCDP

R ET R ET

Cifar 0.02 37.70 0.98 8.50
Cod-rna 0.02 0.09 0.40 6.92
Covtype 0.02 0.63 0.09 13.8
Ijcnn1 0.02 0.07 0.10 3.3
MiniBooNE 0.02 0.09 0.09 2.11
Skin-nonskin 0.02 0.04 0.24 5.24
Susy 0.02 2.64 0.05 115.61
Webspam 0.02 0.72 0.14 10.98

Table 5 Acc and Kappa of four
algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Acc Kappa Acc Kappa Acc Kappa Acc Kappa

Cifar 0.962 0.911 0.948 0.881 0.965 0.917 0.958 0.904
Cod-rna 0.962 0.911 0.917 0.818 0.933 0.828 0.953 0.888
Covtype 0.840 0.680 0.829 0.678 0.845 0.687 0.845 0.687
Ijcnn1 0.960 0.752 0.949 0.610 0.956 0.773 0.961 0.773
MiniBooNE 0.900 0.789 0.831 0.642 0.841 0.686 0.891 0.756
Skin-nonskin 0.991 0.975 0.993 0.978 0.994 0.979 0.994 0.979
Susy 0.796 0.582 0.792 0.576 0.801 0.565 0.806 0.568
Webspam 0.968 0.934 0.953 0.931 0.961 0.936 0.960 0.937
Average 0.922 0.817 0.902 0.764 0.912 0.796 0.921 0.812
Median 0.961 0.850 0.933 0.748 0.945 0.801 0.956 0.831

2398 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

has no less value of Acc than others on the rest datasets in
Table 5. Meanwhile, the mean of Acc of these algorithms
are 0.922, 0.902, 0.912, 0.922 and 0.909, as well as their
median of Acc are 0.961, 0.933, 0.945,0.956 and 0.944,
respectively in the last row of Table 5. On average, L-SVM
obtains the similar classification accuracy as DC-SVM, DIP-
SVM and LIBSVM, DC-SVM but better than EDC-SVM.
In term of Kappa, L-SVM has the largest value on Cod-rna
and MiniBooNE datasets, and it has the similar value on
the rest datasets in Table 5. Furthermore, we also find that
L-SVM has the larger value of Kappa than EDC-SVM from
the view of mean and median, and it has the similar Kappa
value with DC-SVM, DIP-SVM and LIBSVM. Finally, the
p values of the Wilcoxon signed rank test on Acc between
L-SVM and each one of four algorithms are 0.016, 0.445,
0.711 and 0.469; similarly, the p values on Kappa are 0.031,
0.844 , 0.484 and 1. According to the judging rule, L-SVM
has a significant difference on Acc and Kappa with EDC-
SVM, while it has no significant difference with DC-SVM,
LIBSVM and DIP-SVM. So L-SVM obtains the better clas-
sification than EDC-SVM, and it could match DC-SVM,
DIP-SVM and LIBSVM.

5.3.2 The training time

Besides the classification performance, the training time is
another important measure to evaluate the performance of
algorithms. Similarly as Table 3, Table 6 shows the RS on
different datasets for L-SVM, EDC-SVM, DC-SVM and
DIP-SVM.

It shows that L-SVM has the largest RS on all the datasets
than EDC-SVM, DC-SVM and DIP-SVM. In fact, the RS
of L-SVM is larger tens times than DC-SVM and EDC-
SVM on dataset Skin-noskin, and it has several times faster
than them on the rest of datasets. Therefore, L-SVM has the
least training time among four algorithms on these datasets.
Besides, the p values obtained by Wilcoxon signed rank test
between L-SVM and each one of other algorithms are all

0.0078, less than the given significant level 0.05. So L-SVM
and other algorithms exist a significant difference on train-
ing time.

As the execution time of these algorithm depends on the
size of the largest divided subset, we compute the ratio of
size R between the largest divided subset and original data
to corroborate the above conclusion. Furthermore, We also
compare the execution time of two kinds of data partition.
Table 7 lists ET and R of PDP and KKCDP over different
datasets.

It obviously shows that PDP has a much smaller value
of R than KKCDP on all the datasets from Table 7. Specifi-
cally, the value of R obtained by KKCDP is tens of times
larger than PDP on Cifa and Cod-rna datasets, and several
times larger than PDP on the rest of datasets. So the size
of largest divided subsets produced by PDP is smaller than
KKCDP, and the time spent by L-SVM is also less than
EDC-SVM and DC-SVM. Meanwhile, the execution time
of PDP is also much less than KKCDP on all the datasets
except Cifa. As the time complexity of PDP is the third
power of the dimension of data, then its execution time
becomes longer for the high-dimension dataset Cifa. How-
ever, the execution time of PDP algorithm is a small frac-
tion of the total execution time of the L-SVM algorithm,
it can effectively deal with the high-dimensional problem.

6 Conclusion

In this paper, we propose a novel algorithm for accelerating
SVM. It is applicable to the similar algorithms that training
learners use the geometric structure information of dataset
without any modification. This algorithm divides the train-
ing dataset into some subsets of approximately equal size
with the linear projection, and it could largely hold the class
boundary as far as possible. In the predicted process, the
divided regions to which the test instances belong are firstly
recognized, then they are classified by the SVM classifiers

Table 6 RS of four algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Cifar 8.71 2.25 1.56 5.64
Cod-rna 274.41 69.67 29.92 125.63
Covtype 89.09 24.91 10.64 48.24
Ijcnn1 70.41 9.59 5.20 45.69
MiniBooNE 110.85 15.63 12.23 55.98
Skin-nonskin 78.16 3.92 6.28 48.61
Susy 2.64 1.70 1.33 1.96
Webspam 77.38 17.16 7.27 35.69
Mean 88.96 18.11 9.30 45.93
Median 77.77 12.61 6.77 46.97

Table 7 R and ET of two ways on 8 datasets

Dataset PDP KKCDP

R ET R ET

Cifar 0.04 37.89 0.98 8.79
Cod-rna 0.02 0.10 0.42 7.04
Covtype 0.02 0.63 0.07 14.23
Ijcnn1 0.03 0.07 0.10 3.41
MiniBooNE 0.03 0.09 0.09 2.14
Skin-nonskin 0.03 0.04 0.22 5.32
Susy 0.01 2.67 0.03 120.29
Webspam 0.02 0.74 0.16 11.03

2399International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

over the recognized regions. Experiments show that the pro-
posed algorithm is able to match the classification perfor-
mance of four state-of-the-art SVM acceleration algorithms
while it has the least training time among them.

The divide-and-conquer approach is one of the most com-
monly used ways to deal with the large-scale problem. Hence,
this paper provides an efficient algorithm for dividing the dif-
ficult problem into some feasible subproblems and combining
their solutions. Additionally, the proposed algorithm provides
a promising way for the large-scale classification problem,
such as face recognition, text detection and categorization,
sentiment classification and so on. It is noted that the num-
ber of divided subsets should be adaptively determinate the
optimal values for different datasets. Besides, our algorithm
does not fully consider the high-dimension problems. Then
these problems are two parts of our future work.

Acknowledgements This work was supported by the National Natu-
ral Science Foundation of China (No. 61432011, No. U1435212, and
No. 61876103), the Project of Key Research and Development Plan of
Shanxi Province (201603D111014), and the 1331 Engineering Project
of Shanxi Province, China.

References

 1. Bosner B, Guyon I, Vapnik V (1992) A training algorithm for
optimal margin classifier. In: Proceedings of the 5th annual ACM
workshop on computational learning theory, pp 144–152

 2. Doran G, Ray S (2014) A theoretical and empirical analysis of
support vector machine methods for multiple-instance classifica-
tion. Mach Learn 97(1–2):79–102

 3. Chen W, Shao Y, Hong N (2014) Laplacian smooth twin sup-
port vector machine for semi-supervised classification. Int J Mach
Learn Cybern 5(3):459–468

 4. Li C, Huang Y, Wu H, Shao Y, Yang Z (2016) Multiple recursive
projection twin support vector machine for multi-class classifica-
tion. Int J Mach Learn Cybern 7(5):729–740

 5. Abe S (2016) Fusing sequential minimal optimization and new-
tons method for support vector training. Int J Mach Learn Cybern
7(3):345–364

 6. Yang Z, Wu H, Li C, Shao Y (2016) Least squares recursive pro-
jection twin support vector machine for multi-class classification.
Int J Mach Learn Cybern 7(3):411–426

 7. Peng X, Kong L, Chen D (2017) A structural information-based
twin-hypersphere support vector machine classifier. Int J Mach
Learn Cybern 8(1):295–308

 8. Ding S, Zhu Z, Zhang X (2017a) An overview on semi-supervised
support vector machine. Neural Comput Appl 28(5):969–978

 9. Ding S, Zhang X, An Y, Xue Y (2017b) Weighted linear loss mul-
tiple birth support vector machine based on information granula-
tion for multi-class classification. Pattern Recognit 67:32–46

 10. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014)
Do we need hundreds of classifiers to solve real world classifica-
tion problems? J Mach Learn Res 15(1):3133–3181

 11. Cachin C (1994) Pedagogical pattern selection strategies. Neural
Netw 7(1):175–181

 12. Foody GM (1999) The significance of border training patterns in
classification by a feedforward neural network using back propa-
gation learning. Int J Remote Sens 20(18):3549–3562

 13. Hsieh CJ, Si S, Dhillon IS (2014) A divide-and-conquer solver
for kernel support vector machines. In: Proceedings of the 31th
international conference on machine learning, pp 566–574

 14. Do TN, Poulet F (2015) Random local SVMS for classifying large
datasets. In: Proceedings of the second international conference
on future data and security engineering, pp 3–15

 15. Poggio T, Cauwenberghs G (2001) Incremental and decremental
support vector machine learning. In: Advances in neural informa-
tion processing systems, pp 409–415

 16. Pontil M, Verri A (1998) Properties of support vector machines.
Neural Comput 10(4):955–974

 17. Koggalage R, Halgamuge S (2004) Reducing the number of train-
ing samples for fast support vector machine classification. Neural
Inf Process Lett Rev 2(3):57–65

 18. Lyhyaoui A, Martinez M, Mora I, Vaquez M, Sancho JL, Figue-
iras-Vidal AR (1999) Sample selection via clustering to con-
struct support vector-like classifiers. IEEE Trans Neural Netw
10(6):1474–1481

 19. Angiulli F, Astorino A (2010) Scaling up support vector machines
using nearest neighbor condensation. IEEE Trans Neural Netw
21(2):351–357

 20. Li Y, Maguire L (2011) Selecting critical patterns based on local
geometrical and statistical information. IEEE Trans Pattern Anal
Mach Intell 33(6):1189–1201

 21. Wang J, Wonka P, Ye J (2013) Scaling SVM and least absolute
deviations via exact data reduction. Comput Sci 2013:523–531

 22. Pan X, Yang Z, Xu Y, Wang L (2018a) Safe screening rules for
accelerating twin support vector machine classification. IEEE
Trans Neural Netw Learn Syst 29(5):1876–1887

 23. Pan X, Pang X, Wang H, Xu Y (2018b) A safe screening based
framework for support vector regression. Neurocomputing
287:163–172

 24. Collobert R, Bengio S, Bengio Y (2002) A parallel mix-
ture of SVMS for very large scale problems. Neural Comput
14(5):1105–1114

 25. Graf HP, Cosatto E, Bottou L, Dourdanovic I, Vapnik V (2004)
Parallel support vector machines: The cascade SVM. In: Advances
in neural information processing systems, pp 521–528

 26. Singh D, Roy D, Mohan CK (2017) Dip-SVM: distribution pre-
serving kernel support vector machine for big data. IEEE Trans
Big Data 3(1):79–90

 27. Keerthi SS, Chapelle O, DeCoste D (2006) Building support vec-
tor machines with reduced classifier complexity. J Mach Learn
Res 7(Jul):1493–1515

 28. Zhang K, Lan L, Wang Z, Moerchen F (2012) Scaling up kernel
SVM on limited resources: A low-rank linearization approach. In:
Artificial intelligence and statistics, pp 1425–1434

 29. Le Q, Sarlós T, Smola A (2013) Fastfood-approximating kernel
expansions in loglinear time. In: Proceedings of the 30th interna-
tional conference on machine learning, pp 16–21

 30. Jose C, Goyal P, Aggrwal P, Varma M (2013) Local deep kernel
learning for efficient non-linear SVM prediction. In: Proceed-
ings of the 30th international conference on machine learning, pp
486–494

 31. Vapnik V (2013) The nature of statistical learning theory.
Springer, New York

 32. Joachims T (2006) Training linear SVMs in linear time. In: Pro-
ceedings of the 12th ACM SIGKDD international conference on
knowledge discovery and data mining, ACM, pp 217–226

 33. Shin H, Cho S (2007) Neighborhood property-based pattern selec-
tion for support vector machines. Neural Comput 19(3):816–855

 34. García-Osorio C, de Haro-García A, García-Pedrajas N (2010)
Democratic instance selection: a linear complexity instance selec-
tion algorithm based on classifier ensemble concepts. Artif Intell
174(5):410–441

2400 International Journal of Machine Learning and Cybernetics (2019) 10:2389–2400

1 3

 35. Garcia S, Derrac J, Cano J, Herrera F (2012) Prototype selection
for nearest neighbor classification: taxonomy and empirical study.
IEEE Trans Pattern Anal Mach Intell 34(3):417–435

 36. Asimov D (1985) The grand tour: a tool for viewing multidimen-
sional data. SIAM J Sci Stat Comput 6(1):128–143

 37. Kleiner A, Talwalkar A, Sarkar P, Jordan MI (2014) A scalable
bootstrap for massive data. J R Stat Soc Ser B (Stat Methodol)
76(4):795–816

 38. Zhang X (2004) Matrix analysis and application. Tsinghua Uni-
versity Press, Beijing

 39. Chang CC, Lin CJ (2011) Libsvm: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):27

 40. Bache K, Lichman M (2017) UCI machine learning repository.
http://archi ve.ics.uci.edu/ml/datas ets.html

 41. Kugler M, Kuroyanagi S, Nugroho AS, Iwata A (2006) Comb-
net-iii: a support vector machine based large scale classifier with
probabilistic framework. IEICE Trans Inf Syst 89(9):2533–2541

 42. Wang Z, Djuric N, Crammer K, Vucetic S (2011) Trading repre-
sentability for scalability: adaptive multi-hyperplane machine for

nonlinear classification. In: Proceedings of the 17th ACM SIG-
KDD international conference on knowledge discovery and data
mining, pp 24–32

 43. Han J, Pei J, Kamber M (2011) Data mining: concepts and tech-
niques. Margan Kaufmann, San Francisco

 44. Ben-David A (2007) A lot of randomness is hiding in accuracy.
Eng Appl Artif Intell 20(7):875–885

 45. Wilcoxon F (1992) Individual comparisons by ranking methods.
Springer, New York

 46. Demšar J (2006) Statistical comparisons of classifiers over mul-
tiple data sets. J Mach Learn Res 7(Jan):1–30

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

http://archive.ics.uci.edu/ml/datasets.html

	An accelerator for support vector machines based on the local geometrical information and data partition
	Abstract
	1 Introduction
	2 Related work
	3 Related concept
	4 L-SVM algorithm
	4.1 Data partition by linear projection
	4.1.1 The obtain of the projected vector
	4.1.2 Data partition
	4.1.3 The extension of regions

	4.2 Parameter selection
	4.3 Complexity of our algorithm

	5 Experimental analysis
	5.1 Experimental setup
	5.2 Experimental results under the fixed NS
	5.2.1 Classification performance
	5.2.2 The training time

	5.3 Experimental results under the adaptive NS
	5.3.1 Classification performance
	5.3.2 The training time

	6 Conclusion
	Acknowledgements
	References

