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Abstract
The support vector machines (SVM) is difficult to deal with large datasets for its low training efficiency. One of the impor-
tant solutions has been developed by dividing a whole dataset into smaller subsets with data partition and combining the 
results of the classifiers over the divided subsets. However, traditional data partition approaches are difficult to preserve the 
class boundary of the dataset or control the size of divided subsets, so that their performance will be greatly influenced. To 
overcome this difficulty, we propose an accelerator for SVM algorithm based on the local geometrical information. In this 
algorithm, the feature space is divided into several regions with the approximately equal number of training instances by 
linear projection, and then each SVM classifier trained over the extended region only predicts the unlabeled instances within 
that original region. The proposed algorithm can not only hold the decision boundary of the raw data, but also saves a lot 
of execution time for implementing it in a parallel environment. Furthermore, the number of instances within each divided 
regions can be effectively controlled; it is conducive to choose the complexity of the execution in each of the processors. 
Experiments show that the classification performance of the proposed algorithm compares favorably with four state-of-the-
art algorithms with the least training time.

Keywords  Data partition · Feature space · Classification boundary · Training time · Linear projection

1  Introduction

The objective of classification task is to assign a label to 
an unlabeled instance. A well-known supervised classifica-
tion technique is SVM. SVM uses a nonlinear mapping to 
transform the original training instances into a higher dimen-
sion, and then searches for the linear optimal separating 

hyperplane, which separates the instances from two classes 
within this new dimension [1, 2]. Owning to its theoretical 
soundness and practical performance, SVM has been highly 
successful in practical applications, such as detection and 
recognition, handwritten character and digit recognition, text 
detection and categorization [3–9]. Moreover, SVM with 
Gaussian kernel has been demonstrated to be the best clas-
sifier expect random forest by evaluating 179 classifiers with 
121 UCI datasets [10].

Training an SVM classifier is equivalent to solving a 
convex quadratic programming (QP) problem, and it is 
characterized by a kernel matrix with a number of rows 
equal to the number of training instances. The traditional 
QP solver for SVM has a time complexity of O(N3) , where 
N is the number of training instances. Thus, it becomes 
computationally intractable as the size of the training data-
set is large. Moreover, its prediction time is proportional to 
the number of support vectors, it is also time-consuming 
significantly with an increase in training scale. Therefore, 
an increasing number of algorithms have been developed 
to speed up it. These algorithms can be categorized using 
a range of different taxonomies. Among them, we mention 
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training instances reduction algorithms and decomposition 
algorithms.

There are a lot of reduction algorithms. The principal 
idea of instance reduction is that the instances with dif-
ferent locations in the feature space have different con-
tributions to the training of SVM classifier [11, 12]. The 
training instances can be differentiated using two terms: 
overlapping and non-overlapping instances. Overlapping 
instances are those ones that can be sorted out by one 
class or another class at the same time. These instances 
are usually closed to the decision boundary. Furthermore, 
though the SVM classifier is trained using all the train-
ing instances, the decision plane is generated only using 
some critical instances which are called support vectors 
(SVS). Strictly speaking, SVS cannot be got before the 
training process of SVM, then most of the instance selec-
tion algorithms seek overlapping instances to replace SVS. 
However, due to the quadratic time complexity of this kind 
of algorithms, they still cost a lot of time for large-scale 
datasets.

On the other hand, there are a lot of decomposition algo-
rithms. These algorithms mainly divide the original training 
dataset into some subsets, and then train an SVM classifier 
on each subset [13, 14]. Among these kinds of algorithms, 
random partition and clustering are most common ways to 
data partition. Random partition means that all instances 
are separated into the same sized subsets randomly, but it 
does not consider the relationship among them. Conversely, 
clustering usually divides all training instances into a fam-
ily of subsets with different sizes according to the similarity 
relationship among them.

This paper has proposed a novel SVM algorithm based 
on the local geometrical information and data partition 
(L-SVM). In this algorithm, the kernel linear projection 
algorithm is introduced to detect the class boundary firstly. 
Then the feature space is divided into some regions, and the 
SVM classifiers are trained over the extend regions. Finally, 
the SVM classifier offers the predicted labels for the unla-
beled instances in the same region. Analysis and experi-
ments show that the proposed algorithm can effectively 
reduce the training time, but it could match with the clas-
sification performance of the original SVM. Furthermore, 
it has the additional advantage that we can adapt the size of 
the subproblems to the available resources.

The rest of this work is organized as follows. Section 2 
briefly reviews previous approaches for accelerating SVM 
training process, and their strengths and weaknesses are 
discussed. Section 3 proposes the L-SVM algorithm with 
some main properties. Section 4 reports experimental results 
on benchmark classification problems compared with four 
existing algorithms. Finally, Section 5 concludes the classifi-
cation performance, training time and potential applications 
of the proposed algorithm.

2 � Related work

The training process of the traditional SVM is always 
computationally intractable when dealing with large 
datasets, so more and more algorithms are developed to 
solve it. These algorithms are mainly categorized into 
two types according to the different strategies: filter and 
decomposition.

The filter algorithms choose a smaller instance sub-
set S by using various kinds of instance selection algo-
rithms, where the subset S includes critical instances of 
the training set T . Finally, train the SVM algorithm over 
the subset S. Specifically, these algorithms mainly try to 
seek the overlapping instances in the training set T. This 
kind of instances could fully and succinctly constitute the 
SVM classifier [15, 16]. As there are fewer overlapping 
instances than non-overlapping instances in most of the 
datasets, the obtained subset size could be normally small. 
So these algorithms could largely reduce the training time. 
Well-known filter algorithms include the algorithms based 
on nearest neighbor and clustering [17, 18], training-set-
consistent algorithm [19], the algorithm based on local 
geometrical and statistical information [20], and so on. 
A potential disadvantage of these algorithms is that they 
may need a long time for huge problems. Because these 
algorithms usually require to compute the distances among 
the training instances, and execute many passages over the 
training set to seek the critical instances. Furthermore, one 
kind of safe samples screening methods have been pro-
posed, and these methods aim to greatly reduce the scale 
of SVM by identifying and deleting the non-support vec-
tors [21–23]. Although this kind of methods can guarantee 
to achieve the same solution as solving the original prob-
lem, they first need to get an initial optimal solution with 
the training instances under a small value parameter, and 
then they compute a sequence of the optimal solutions at 
subsequent larger values of the parameter. Therefore, these 
methods cost a lot of time for getting the final optimal 
solution for using the all the data and continually search-
ing different solutions under different parameter values.

Different from filter algorithms, decomposition algorithms 
train SVM classifier with all the training instances rather than 
some of them. There are three key steps in these algorithms. 
The first one is dividing the original training datasets into 
some subsets. The second one is training SVM classifier 
on each divided subset. And the last one is combining the 
results over all the subsets for predicting. Collobert et al. [24] 
randomly divided the training dataset into some subsets of 
approximately equal size and trained SVM classifiers sepa-
rately, then iteratively refined the data partition to obtain a 
good approximate estimate of raw SVM classifier. However, 
the experiments of this algorithm are taken on only two 
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datasets, and its performance still needed to be studied on 
much more datasets. Later, Graf [25] proposed a multilevel 
and parallel algorithm (CascadeSVM) to early identify the 
support vectors. Cascade SVM firstly divided the training data 
into some subsets. And then SVM algorithm was performed 
separately over each subset and the corresponding SVS were 
obtained. Finally, the obtained SVS were combined two-by-
two and filtered again until the global optimum was reached. 
However, it did not take the effect of data partition to the 
performance of CascadeSVM into account. Do and Poulet 
[14] applied k-means to partition the training data into k clus-
ters, and then constructed a SVM classifier on each cluster to 
classify the instances locally in a parallel way. Though this 
algorithm achieved a good performance on some datasets, 
it was difficult to theoretically show the error between the 
solution from the subproblems and the global solution. For 
this problem, Hsieh et al. [13] proposed and analyzed a novel 
divide-and-conquer solver for kernel SVM (DC-SVM). In the 
division step, the training data was partitioned into smaller 
subproblems by kernel clustering. And they theoretically 
showed the support vectors identified by the subproblem 
solution were likely to be support vectors of the entire kernel 
SVM problem. In the conquer step, the local solutions from 
the subproblems could converge quickly as suggested by their 
analysis. It was also theoretically shown that DC-SVM was 
likely to obtain the SVS as the same as the raw SVM problem. 
From above we could find that the performance of DC-SVM 
mainly depended on the results of the clustering. Furthermore, 
the size of divided subsets may be quite different, so that its 
training time may be quite different. The final finishing time 
depends on the time of training the largest subset. Though DC-
SVM has achieved a great deal of reduction on training time, 
it suffers from significant loss of accuracy because smaller 
partitions do not retain the distribution of the entire dataset. To 
overcome this difficulty, Singh et al. [26] proposed a distribu-
tion preserving kernel support vector machine (DIP-SVM) 
for big data. DIP-SVM employs K-means clustering on each 
of the classes into the same number of subsets, then merges 
the instances selecting from each subset according to uniform 
distribution into a new subset. The experiment results show 
DIP-SVM achieves a minimal loss in classification accuracy 
among other distributed support vector machine techniques 
on several benchmark datasets.

Besides, there are other algorithms to reduce the test time 
for dealing with SVM on large problems [27–30].

3 � Related concept

Let T = {(x1, y1), (x2, y2),… , (xN , yN)} denote the labeled 
training set, where xi is the ith instance described by m 
attributes, yi ∈ {−1, 1} is, its expected real-valued output, 
and N is the number of labeled instances.

Given the training dataset T, SVM transforms all the 
training instances into a higher dimension space  by a 
mapping function �(⋅) , and searches the optimal separat-
ing hyperplane �.�(x) + b = 0 that yields the largest margin 
( 2∕||�||2 ) between classes, where �, b are the weight vector 
and bias term, and ||�|| is the norm of � . The vector � is 
obtained by solving the following quadratic programming 
problem [31].

where � = (�1, �2,… , �N) are nonnegative slack variables 
which play a role in allowing a certain level of misclassifi-
cation for a non-separable case, C > 0 is an error tolerance 
parameter, and �(xi).�(xj) is the inner product between �(xi) 
and �(xj).

The optimal solution of problem (1) can be transferred 
into the convex quadratic problem by Lagrange multiplier 
algorithm [31],

where � = (�1, �2,… , �N) ∈ RN is the nonnegative Lagrange 
mult ipl ier  associated with training instances, 
� =

∑N

i=1
�iyi�(xi) , and K(xi, xj) is the function to avoid the 

costly calculation of inner products (�(xi),�(xj)) . Let 
�∗ = (�∗

1
, �∗

2
,… , �∗

N
) be the optimal solution of problem (1), 

we get the SVM classifier f (x) = sign(�∗
⋅ �(x) + b∗) , where 

�∗ =
∑N

i=1
�∗
i
yi�(xi) , b∗ = yj −

∑N

i=1
�∗
i
yiK(xi, xj) , and �∗

j
 is 

one element of �∗ that satisfies 0 < 𝛼∗
j
≤ C . It is noted that 

we do not observe any improvement in test accuracy by 
including the bias term similar as [27, 32], so we set b = 0 
in the following content.

4 � L‑SVM algorithm

Given the training dataset T, L-SVM algorithm divides the 
feature space  into n regions i (

⋃n

i=1
i = ) by linear 

projection partition, and extends each region i to be  ′
i , 

where i = 1, 2, 3,… , n . In this way, it could largely keep the 
key instances and their neighbors still in the same regions 
after partition. Then L-SVM trains the SVM classifier fi(x) 
over each region  ′

i
 . Finally, fi(x) only predicts the unlabeled 

instances in the region i rather than others. An outline of 
the algorithm is shown in Algorithm 1, and Fig. 1 describes 
the process of this algorithm.

(1)
min 1∕2�����2 + C

N∑
i=1

�i

s.t. yi(�.�(xi)) ≥ 1 − �i
�i ≥ 0, i = 1, 2,… ,N

(2)min
0≤�i≤C

1

2

N∑
i,j=1

�i�jyiyjK(xi, xj) −

N∑
i=1

�i + b

N∑
i=1

�iyi
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Algorithm 1: L-SVM
Input : The training set T = {(x1, y1), (x2, y2), · · · , (xN , yN )}, the number of

subsets n, and the unlabeled instance set U = {x1, x2, · · · , xh}.
Output: The predicted label y1, y2, · · · , yh.

1 Divide the feature space X into n disjoint regions Xi, and extend the each region to
be Xi , i = 1, 2, · · · , n;
foreach i = 1 to n do

2 Train the SVM classifier fi(x) over the region Xi ;
end
foreach xj ∈ U do

for i = 1 to n do
if xj ∈ Xi then

3 yj = fi(xj)
end

end
end

4 Return y1, y2, · · · , yh.

Following this way, this algorithm has a great reduc-
tion in training time for dividing the original optimization 
problem into n subproblems, and this issue has been proved 
in the report of the experiments. Meanwhile, it is easy to 
implement in a parallel environment, since the execution of 
the SVM algorithm over each subset is performed indepen-
dently. Additionally, as the size of the subsets is a param-
eter of this algorithm, we can choose the complexity of the 
execution in each of the processors.

Dividing the training set T into n subsets Ti is an impor-
tant step for the L-SVM algorithm. And the number of the 
subsets n needs to be fixed by the user in advance. Further-
more, the SVM algorithm is applied on each subset indepen-
dently, the final finishing time of this algorithm depends on 
the size of the largest subset. So it is necessary to get the size 
of subsets to be approximately equal. Besides the execution 
time, generation ability is another key point which we pay 
attention to. As we all know, SVM has a distinguishable 
merit that it clarifies which instances are of importance to 
the training. And these instances are distributed near the 
class boundary, and fully and succinctly define the classifica-
tion task at hand [15, 31]. However, what should be noticed 
is that we should maintain the classification properties of 
these instances after dividing process: the original boundary 
classification instances remain the same. In this way, it could 
largely hold the decision boundary in the original dataset. 
Furthermore, it is well known that judging whether an 

instance near the decision boundary or not mainly depends 
on the consistency between it and its nearest neighbors [33]. 
If the instance has more heterogeneous neighbors in their 
class-membership, then it tends to locate near the decision 
boundary. Otherwise, it tends to be far from the decision 
boundary. So those key instances could still hold this prop-
erty in their own divided subsets as the original dataset, as 
long as we keep them and their heterogeneous neighbors 
in the same divided subset after data partition. In order to 
meet the above two requirements, we propose a novel data 
partition algorithm by linear projection.

4.1 � Data partition by linear projection

The locality of the instances could be largely kept by divid-
ing the feature space into some regions. The instances in 
the same region are divided into as one subset, and most 
instances and their nearest neighbors could be still in the 
same subset [34]. To achieve this aim, we project all the 
instances onto the optimal vector and then divide the projec-
tion into equal-sized subsets. Meanwhile, we prove that the 
algorithm is a kind of feature space partitions using mul-
tiple parallel hyperplanes. Furthermore, this data partition 
algorithm can deal with the large-scale dataset in a short 
time for its linear time completion. In the following, we will 
introduce this algorithm specifically.

4.1.1 � The obtain of the projected vector

Although this algorithm with a randomly projected vector 
also holds the locality of the most instances in the data-
set, it is difficult for the instances nearby the class bound-
ary. Because this kind of critical instances is much fewer 
than others in most of the dataset [35]. On the other hand, 
the linear projection is one of important data visualization 
algorithms, and it visualizes the high-dimensional data from 
one of all the possible angles determined by the projected 
vectors. Then it is useful for identifying structures in the 
data set, such as clusters and outliers [34, 36]. Furthermore, 
each base SVM classifier is trained over the divided sub-
set, thus the “equality” of the divided subsets could affect 

Fig. 1   The flow chart of the 
L-SVM algorithm
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its generation ability. If the instances of different classes in 
a subset separate well, then the SVM classifier over them 
could obtain a good classification ability. In order to prompt 
the divided subsets with the high “equality”, the projection 
vector � needs to be chosen properly.

Kernel Fisher’s linear discriminant (KFLD) is one of 
these algorithms, it projects the instances onto the optimal 
vector in the mapped space  , then it tries to separate the 
instances with different labels after projection. However, 
KFLD is difficult to deal with the large-scale data for com-
puting the similarity among all the instances. Therefore, we 
use �(v) to replace the optimal vector for its availability and 
simplicity, where v is the optimal solution by Fisher’s linear 
discriminant (FLD). We will simply introduce the process 
of solving the projected vector v in the following.

Let X1 = {x
(1)

1
, x

(1)

2
,… , x(1)

n1
} and X2 = {x

(2)

1
, x

(2)

2
,… , x(2)

n2
} 

be the instance subsets from class + 1 and − 1 respectably, 
where n1 and n2 are the size of set X1 and X2 , n1 + n2 = N . 
Each instance x is projected onto the vector v, and it is re-
expressed by a real number vTx , where vT is the transposition 
of the vector v. In FLD, the criteria to measure the separation 
of different classes is that minimizing the difference on the 
instances in the same classes A0 and maximizing the differ-
ence between different classes B0 after projection, and A0,B0 
are computed following the idea of variance analysis. Then 
A0 and B0 can be computed as follows:

where A =
∑2

t=1

∑nt
j=1

(x
(t)

j
− x

(t)
)(x

(t)

j
− x

(t)
)T  , B =

∑2

t=1
n
t

(x
(t)
− x)(x

(t)
− x)T , x =

∑2

t=1

∑nt
j=1

x
(t)

j
∕N , x(t) =

∑nt
j=1

x
(t)

j
∕nt , 

t = 1, 2.
The optimal projected vector v∗ is obtained by maximiz-

ing the function Δ(v) = vTBv∕vTAv , and the constraint con-
dition vTAv = 1 is added to get the unique solution. Solving 
the above optimal problem, we can get the optimal projected 
vector v∗ that is the eigenvector corresponding to the largest 
eigenvalue, and Δ(v∗) = vT

∗
Bv∗ = �∗v

TAv∗ = �∗.

(3)

A0 =
2∑
t=1

nt∑
j=1

(vTx
(t)

j
− vTx

(t)
)2

= vT

�
2∑
t=1

nt∑
j=1

(x
(t)

j
− x

(t)
)(x

(t)

j
− x

(t)
)T

�
v

= vTAv.

(4)

B0 =
2∑
t=1

nt(v
Tx

(t)
− vTx)2

= vT

�
2∑
t=1

nt(x
(t)
− x)(x

(t)
− x)T

�
v

= vTBv.

4.1.2 � Data partition

After getting the projected vector �(v∗) , we project all the 
training instances onto it, and then dividing their projection 
into approximately equal sized subsets. Concretely, under 
the given threshold s of divided subset size, we first estimate 
the number of divided subsets n = [N∕s] , where [N/s] is the 
smallest integer larger than N/s. Then we compute the (k/n)-
quantile bk of the projection value pi = �(v∗)Txi = K(v∗, xi) 
within T, i = 1, 2,… , n , k = 1, 2,… , n − 1 . Finally, accord-
ing to the relationship between projection value and quantile, 
the set T is divided into n disjoint subsets Tj as following:

In this way, it produces n subsets of equal size, and each sub-
set Tj has about N/n instances with the property of quantile. 
Furthermore, these divided subsets are the results of divid-
ing the feature space into regions of equal size and using the 
instances within each region as subsets. In the following, we 
give the related proof.

To meet the need of proof, we construct n − 1 hyperplane 
Li ∶ �(v∗)Tx − bi = 0 with the same vector direction vector 
�(v∗) . Then these hyperplanes divide the feature space  
into n regions j , they are

Furthermore, if we use the instances within each region j 
as a subset, then the divided subset Tj is obtained, where 
j = 1, 2,… , n . So this data partition algorithm is also 
one kind of feature space partition using these parallel 
hyperplanes.

4.1.3 � The extension of regions

After partitioning the training dataset with the above algo-
rithm, we execute the SVM algorithm on each divided 
subset Tj of T and obtain n SVM classifiers fj(x) , where 
j = 1, 2,… , n . For the divided subset Tj that could preserve 
the local decision boundary of the training set in the region 
j , the SVM classifier fj(x) may be a good approximation 
of the original SVM classifier for the instances x ∈ j . 
However, the proposed data partition method is difficult 
to guarantee those critical instances nearby the boundaries 
(CINB) of divided region and their nearest neighbors in 
the same divided subsets. So there exist some regions that 

(5)

Tj =

⎧
⎪⎨⎪⎩

{(xi, yi) ∈ T ∶ pi < b1}, j = 1;

{(xi, yi) ∈ T ∶ bj−1 ≤ pi < bj}, j = 2,… , n − 1;

{(xi, yi) ∈ T ∶ pi ≥ bn−1}, j = n.

(6)j =

⎧⎪⎨⎪⎩

{xi ∈  ∶ pi < b1}, j = 1;

{xi ∈  ∶ bj−1 ≤ pi < bj}, j = 2,… , n − 1;

{xi ∈  ∶ pi ≥ bn−1}, j = n.
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cannot preserve the decision boundary of the training set 
within these regions well. To make up this defect, we extend 
the region j to make CINB far from the boundary of this 
region. As these divided regions are generated by dividing 
the feature space with multiple parallel hyperplanes, then 
we extend these regions by removing the location of these 
hyperplanes in the feature space.

Therefore, we need to calculate the ((j − �)∕n)-quantile uj 
and the ((j + �)∕n)-quantile dj besides (j/n)-quantile, where 
j = 1, 2,… , n − 1 . Then the regions can be extended as 
follows:

Meanwhile, the divided subset Tj is also enlarged, and the 
enlarged subsets T ′

j
 is noted as

In the above the operation of extending divided subsets, the 
parameter � controls the size of the extend subsets and loca-
tion of the extended regions in the feature space, and then it 
affects the classification performance and executing time of 
the SVM classifier over the subset. Compared with the 
divided region j , each extended region  ′

j
 increases some 

instances from its adjacent regions, and these instances are 
mainly located on the other sides of the boundaries of the 
region j , where j = 1, 2,… , n . Therefore, these increased 
instances could be the nearest neighbors of CINB, and they 
can help the extended region hold the local the decision 
boundary of the original training set within this region. 
Finally, the classification performance of the SVM classifi-
ers over the extended subsets can be improved. On the other 
hand, the size of the largest subset T ′

j
 is about 2� times larger 

than the set Tj and then the execution time of training SVM 
classifier over the extended subset T ′

j
 increases, where 

j = 2, 3,… , n − 1 . Through extensive experiments, we find 
that � = 0.05 is appropriate for the trade-off between the 
improved classification performance and the increased exe-
cution time. An outline of the algorithm is shown in 
Algorithm 2.

(7)
�
j
=

⎧
⎪⎨⎪⎩

{xi ∈  ∶ pi < d1}, j = 1;

{xi ∈  ∶ uj−1 ≤ pi < dj}, j = 2,… , n − 1;

{xi ∈  ∶ pi ≥ un−1}, j = n.

(8)

T �
j
=

⎧⎪⎨⎪⎩

{(xi, yi) ∈ T ∶ pi < d1}, j = 1;

{(xi, yi) ∈ T ∶ ui−1 ≤ pi < di}, j = 2,… , n − 1;

{(xi, yi) ∈ T ∶ pi ≥ un−1}, j = n.

Algorithm 2: Data partition based on linear projection (PDP)
Input : Dataset T = {(x1, y1), (x2, y2), · · · , (xN , yN )}, the subset size s and the

parameter τ .
Output: The subset Tj , T = Tj .

1 Compute the number of subsets n = [N/s];
2 Get the projection vector ω∗ using FLD;
3 Compute the projection ω∗T xi for each instance xi, where i = 1, 2, · · · , N ;
4 Divide the set T into n subsets Tj by the formula (5), j = 1, 2, 3, · · · , n;
5 Enlarge each divided subsets Tj to be Tj following the formula (8), j = 1, 2, 3, · · · , n;
6 Return Tj.

4.2 � Parameter selection

The subset size s is a critical parameter for the L-SVM 
algorithm, and it is proportional to the execution time. The 
larger value of subset size, the more execution time of the 
L-SVM algorithm. Furthermore, the divided subset size is 
also closely related to keeping keep a certain locality in the 
partition, where keeping the locality is conducive to identify 
the classification boundary. If the divided subsets have less 
number of instances after data partition, then it is difficult to 
achieve this aim. A first natural choice would be the use of a 
cross-validation procedure. However, automatic determina-
tion of the subset size s in a computationally efficient manner 
is much more difficult due to the inability to reuse computa-
tions performed for different values of s. Fortunately, it is a 
reasonable and effective choice for the subset size s = N0.7 
in many situations for large-scale data [34, 37].

4.3 � Complexity of our algorithm

The aim of this work is to obtain an algorithmology that is 
able to scale up to large and even huge problems. Thus, an 
analysis of the complexity of the algorithm is essential. We 
divide the training dataset of N instances into n disjoint sub-
sets size of [N/s]. Let K be the number of operations needed 
by the SVM algorithm to perform its task in an instance 
subset of size N/n. For this original dataset, we must perform 
SVM algorithm process once for each subset, that is, n times, 
spending a time proportional to nK.

Besides, the data partition of the dataset should be con-
sidered apart from training SVM classifiers. This is because 
that many different algorithms could be devised to per-
form data partition. PDP algorithm is implemented with a 
complexity O(Nm2 + m3) using the matrix decomposition 
approach to get the eigenvector, and it divides the train-
ing dataset into some subsets of equal size with the time 
complexity O(Nlog(N)), where m is the number of features. 
So PDP is a linear algorithm with the number of instances 
and could cope with the larger-scale dataset. Furthermore, 
PDP algorithm can be improved with a much more efficient 
solution to inverse matrix when facing the high-dimensional 
problem [38].
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5 � Experimental analysis

5.1 � Experimental setup

In order to make a comprehensive comparison between our 
algorithm and other state-of-the-art algorithms, we have 
selected a set of 8 benchmark datasets from the Libsvm 
Repository [39] and UCI Machine Learning Repository 
[40]. These binary-class datasets have larger than 10,000 
instances, and their feature values are normalized in the 
interval [0,1] to equalize the influence of attributes with 
different range domains. These datasets are representative 
of problems from medium to large size. A summary of these 
datasets is shown in Table  1.

Four representative acceleration algorithms for SVM 
are selected in this study: LIBSVM [39], early DC-SVM 
(EDC-SVM) and DC-SVM [13], and DIP-SVM [26]. The 
selection of these algorithms is based on their representa-
tiveness and popularity. LIBSVM algorithm is a classical 
SVM algorithm with the modified sequential minimal opti-
mization, and it can effectively deal with the large data. 
EDC-SVM algorithm and DC-SVM algorithm represent 
the acceleration algorithms with data partition; they obtain 
the less execution time than many state-of-the-art algo-
rithms, such as CascadeSVM [25], FastFood [29], SpSVM 
[41], and LLSVM [42].

The estimation performance of algorithms on a set of 
benchmark problems is the most usual way for evaluating 
acceleration algorithms for SVM. Accuracy (Acc) [43], 
Cohen′ s Kappa (Kappa) [44] and executing time (ET) in s 
are adopted to evaluate the performance of their simplicity 
and successful application, where the first two measures 
evaluate generalization ability and the last one measures 
their execution time. Acc is the number of successful hits 
relative to the total number of classifications, and Kappa is 
a compensate of accuracy and takes random successes into 
consideration as a standard, in the same way as the AUC 
measure [44]. The values of Acc and Kappa are both in the 
interval [0,1], and the classification ability of classifiers 
is increasing by the enlarging values. For estimating the 

values of these indexes, we used a k-fold cross-validation 
method. In this method, the available data is divided into 
k approximately equal subsets. Then, the algorithm is 
learned k times, in turn, using each one of the k subsets as 
a test set, and the remaining k − 1 subsets as a training set. 
The final result is the average test result of the k subsets. 
A fairly standard value for k is k = 10.

For evaluating the difference between our algorithm and 
each of the other algorithms, the Wilcoxon signed rank test 
[45] is used for its limited commensurability and without 
the hypothesis normal distributions or homogeneity of 
variance [46]. The Wilcoxon signed rank test is used to 
perform a paired, two-sided signed rank test of the null 
hypothesis that there is no significant difference between 
our algorithm and each of the other algorithms, against 
the alternative that there is a significant difference. Under 
the given significance level � , the p value of the test is 
computed to judge whether the difference between them 
exists or not. If the p value is smaller than � , it indicates a 
rejection of the null hypothesis at the significance level � , 
against that it indicates a failure to reject the null hypoth-
esis at the significance level �.

We use LIBSVM as the default solver for EDC-SVM, 
DC-SVM, DIP-SVM, and L-SVM. It is noted that the num-
ber of subsets (NS) affects the performance of these algo-
rithms, especially for the training time. So we should com-
pare their performance under the same number of subsets. 
According to the suggestion in [13], DC-SVM divides the 
data into 4i subsets at i-th level operation and NS = 64 for 
EDC-SVM, where i = 1, 2, 3, 4, 5 . As this parameter set-
ting does not consider the size of the original data, so that 
the efficiency of two algorithms are affected. Meanwhile, 
it seems that NS = N0.3 is an effective choice with the con-
clusion in [37], where N is the size of the original dataset. 
Therefore, we compare their performance under the fixed 
parameter ( NS = 64 ) and adaptive parameter NS = N0.3 . 
On the other hand, it has been shown in [10] that for most 
datasets the optimal kernel function for SVM classification 
is Gaussian kernel function. So we use radial basis function 
(RBF) exp(−�|xi − xj|2) . Furthermore, We choose the default 
parameter in LIBSVM. In the following, a significance level 
of � = 0.05 is used. All the experiments are carried out in 
MATLAB R2013a on Windows 7 running on a PC with 
system configuration Intel(R) Xeon(R) e5-16200 CPU (3.60 
GHz) with 16.00 GB of RAM.

5.2 � Experimental results under the fixed NS

In this section, we compare the above algorithms perfor-
mance from the view of the classification performance and 
training time under the fixed NS.

Table 1   Summary of the used data sets

Dataset Size Features Classes

Cifar 60,000 3072 2
Cod-rna 59,535 8 2
Covtype 581,012 54 2
Ijcnn1 141,691 22 2
MiniBooNE 130,065 50 2
Skin-nonskin 245,057 3 2
Susy 5,000,000 18 2
Webspam 350,000 254 2
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5.2.1 � Classification performance

Table 2 lists the classification performance measured by Acc 
and Kappa of these algorithms on different datasets.

Table 2 indicts that L-SVM obtains a higher classifica-
tion accuracy than other algorithms, especially for data sets 
including Cod-rna, Covtype, MiniBooNE and Susy. And it 
is not worse than other algorithms on the rest of datasets. 
Moreover, the mean of Acc of these algorithms are 0.925, 
0.901, 0.912, 0.913 and 0.909, as well as their median of 
Acc are 0.956, 0.917, 0.944, 0.937 and 0.944 respectively in 
the last row of Table 1. So L-SVM obtains the similar clas-
sification accuracy as LIBSVM, DIP-SVM and DC-SVM, 
but better than EDC-SVM.

For another classification performance measurement 
Kappa, L-SVM is better than other algorithms on Cod-rna 
and MinniNooNE datasets, and it is not worse than others on 
the rest of datasets from the Table 2. Meanwhile, the mean 
of Kappa of these algorithms on different datasets are 0.815, 
0.766, 0.797, 0.801 and 0.801, and their medians of Kappa 
are 0.847, 0.737, 0.811, 0.814 and 0.805. It obviously shows 
that L-SVM obtains the similar Kappa as LIBSVM, EDC-
SVM and DIP-SVM, but better than EDC-SVM.

Finally, in order to provide an accurate evaluation of the 
probability of obtaining the observed outcomes by chance, 
the Wilcoxon signed rank test is used to compare the per-
formance between L-SVM and each one of these four algo-
rithms. The p values of the Wilcoxon signed rank test on Acc 
are 0.039, 0.313, 0.195 and 0.250, and p values for Kappa 
are 0.078, 0.641, 0.297 and 0.617.

In conclusion, L-SVM exists a significant difference in 
classification performance with EDC-SVM, and no sig-
nificant differences with other algorithms. In the L-SVM 
algorithm, it largely keeps the training instances and their 
nearest neighbors with different labels in the same divided 
regions, and then each divided region can hold the original 
decision boundary over this region. Therefore, it could hold 

the original classification boundary, and obtains the similar 
predictive ability as LIBSVM, EDC-SVM and DIP-SVM.

5.2.2 � The training time

Besides the classification performance, the executing time is 
another measurement to evaluate the performances of these 
algorithms. As is well-known, algorithms with less execut-
ing time are more suitable for dealing with the large-scale 
problems in application. Table 3 lists the relative speed (RS) 
of these four algorithms. The relative speed is defined as 
the ratio of executing time (in s) between each of four three 
decomposition algorithms and LIBSVM on each dataset.

In Table 3, it is obviously that RS of L-SVM is much 
larger than that of other four algorithms on the most of the 
datasets. So L-SVM has the least execution time among four 
algorithms on these datasets. Besides, the p values obtained 
by Wilcoxon signed rank test between L-SVM and each one 
of other algorithms are 0.0078, 0.0078, 0.0078, less than the 
given significant level 0.05. So L-SVM and other algorithms 
exist the significant differences in training time. The reason 
for this issue is that they have different training process. 
L-SVM trains SVM classifiers over the divided subsets of 

Table 2   Acc and Kappa of five 
algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM LIBSVM

Acc Kappa Acc Kappa Acc Kappa Acc Kappa Acc Kappa

Cifar 0.961 0.909 0.919 0.912 0.969 0.914 0.968 0.914 0.966 0.929
Cod-rna 0.960 0.906 0.914 0.796 0.923 0.818 0.915 0.886 0.922 0.816
Covtype 0.857 0.698 0.839 0.678 0.842 0.685 0.843 0.698 0.806 0.682
Ijcnn1 0.956 0.732 0.949 0.613 0.970 0.803 0.958 0.673 0.969 0.794
MiniBooNE 0.899 0.788 0.827 0.632 0.836 0.656 0.864 0.742 0.855 0.692
Skin-nonskin 0.998 0.985 0.994 0.981 0.993 0.979 0.994 0.984 0.994 0.981
Susy 0.812 0.587 0.796 0.582 0.800 0.595 0.793 0.584 0.796 0.583
Webspam 0.956 0.916 0.968 0.934 0.965 0.926 0.968 0.924 0.967 0.930
Average 0.925 0.815 0.901 0.766 0.912 0.797 0.913 0.801 0.909 0.801
Median 0.956 0.847 0.917 0.737 0.944 0.811 0.937 0.814 0.944 0.805

Table 3   RS of four algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Cifar 33.50 6.44 1.73 16.96
Cod-rna 176.21 5.72 2.29 13.61
Covtype 87.81 33.29 10.01 64.02
Ijcnn1 123.23 10.28 2.27 27.05
MiniBooNE 214.70 21.68 1.78 38.03
Skin-nonskin 125.61 4.35 1.72 12.42
Susy 2.61 1.34 1.10 1.38
Webspam 84.99 24.48 1.26 64.41
Mean 106.08 13.45 2.77 29.73
Median 105.52 10.28 1.78 22.01
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the entire dataset just once, while both DC-SVM and DIP-
SVM need multilevel training process, and they use the 
divided subsets of the entire dataset or support vectors set 
at each level.

Though EDC-SVM has the similar training process, the 
sizes of divided subsets are quite different. As we all know, 
the executing time of the EDC-SVM and L-SVM with data 
partition depends on the size of the largest subset. So EDC-
SVM has the longer training time than L-SVM. In order to 
corroborate this statement, we compute the ratio (R) between 
the size of the largest divided subset and the size of the origi-
nal dataset, and use its value on different datasets to cor-
roborate the above statement. Furthermore, we also compare 
the execution time of PDP and kernel K-means clustering 
partition (KKCDP). Table 4 lists ET (in s) and R of PDP and 
KKCDP on different datasets.

It shows that the R of PDP has a constant value, and it is 
smaller than KKCDP on all the datasets in Table 4. Espe-
cially, the value of R obtained by KKCDP is tens of times 
smaller than PDP on Cifa, Skin-noskin and Cod-rna datasets, 
and the value of RS of L-SVM is also tens of times shorter 
than EDC-SVM on these datasets. Meanwhile, the p value 
of the test on R between PDP and KKCPD is 0.0078, less 
than 0.05, so it exists a significant difference on R under the 

given significant level 0.05. So this result corroborates that 
the execution time of L-SVM is much shorter than EDC-
SVM on all the datasets.

Furthermore, we also compare the execution time of PDP 
and KKCDP. It indices that the execution time of PDP is 
less than KKCDP on all the datasets except Cifa in Table 4. 
And the p value of test on ET between PDP and KKCPD is 
0.0078, less than 0.05, so it exists significant difference on 
ET under the given significant level 0.05. The time com-
plexity of PDP and KKCDP are O(Nm3) and O(Nnm + n2m) 
respectively, where m is the number features in the dataset 
and n is the number of sampled instances. Although both 
PDP and KKCDP have the linear time complexity with the 
number of training instances, KKCDP needs many itera-
tions to get the final result. So the execution time of KKCDP 
is much longer than PDP on the low-dimensional dataset. 
Because PDP costs a lot of time to get the optimal eigen-
vector for the high-dimensional problem, then its execution 
time is longer than KKCDP on dataset Cifa. Compared with 
the time of training the SVM classifiers, the execution time 
of PDP is a small fraction of the total execution time of the 
L-SVM algorithm. Therefore, the L-SVM algorithm can 
effectively deal with the high-dimensional problem, and this 
issue is verified by the result on data Cifa in Table 3.

5.3 � Experimental results under the adaptive NS

Different from the above section, we compare our algorithm 
with other four algorithms under adaptive NS in this section.

5.3.1 � Classification performance

Table 5 lists Acc and Kappa of these four algorithms on 
different datasets.

Compared with other algorithms, L-SVM has the largest 
value of Acc on Cod-rna and MiniBooNE datasets, and it 

Table 4   R and ET of two ways on 8 datasets

Dataset PDP KKCDP

R ET R ET

Cifar 0.02 37.70 0.98 8.50
Cod-rna 0.02 0.09 0.40 6.92
Covtype 0.02 0.63 0.09 13.8
Ijcnn1 0.02 0.07 0.10 3.3
MiniBooNE 0.02 0.09 0.09 2.11
Skin-nonskin 0.02 0.04 0.24 5.24
Susy 0.02 2.64 0.05 115.61
Webspam 0.02 0.72 0.14 10.98

Table 5   Acc and Kappa of four 
algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Acc Kappa Acc Kappa Acc Kappa Acc Kappa

Cifar 0.962 0.911 0.948 0.881 0.965 0.917 0.958 0.904
Cod-rna 0.962 0.911 0.917 0.818 0.933 0.828 0.953 0.888
Covtype 0.840 0.680 0.829 0.678 0.845 0.687 0.845 0.687
Ijcnn1 0.960 0.752 0.949 0.610 0.956 0.773 0.961 0.773
MiniBooNE 0.900 0.789 0.831 0.642 0.841 0.686 0.891 0.756
Skin-nonskin 0.991 0.975 0.993 0.978 0.994 0.979 0.994 0.979
Susy 0.796 0.582 0.792 0.576 0.801 0.565 0.806 0.568
Webspam 0.968 0.934 0.953 0.931 0.961 0.936 0.960 0.937
Average 0.922 0.817 0.902 0.764 0.912 0.796 0.921 0.812
Median 0.961 0.850 0.933 0.748 0.945 0.801 0.956 0.831
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has no less value of Acc than others on the rest datasets in 
Table 5. Meanwhile, the mean of Acc of these algorithms 
are 0.922, 0.902, 0.912, 0.922 and 0.909, as well as their 
median of Acc are 0.961, 0.933, 0.945,0.956 and 0.944, 
respectively in the last row of Table 5. On average, L-SVM 
obtains the similar classification accuracy as DC-SVM, DIP-
SVM and LIBSVM, DC-SVM but better than EDC-SVM. 
In term of Kappa, L-SVM has the largest value on Cod-rna 
and MiniBooNE datasets, and it has the similar value on 
the rest datasets in Table 5. Furthermore, we also find that 
L-SVM has the larger value of Kappa than EDC-SVM from 
the view of mean and median, and it has the similar Kappa 
value with DC-SVM, DIP-SVM and LIBSVM. Finally, the 
p values of the Wilcoxon signed rank test on Acc between 
L-SVM and each one of four algorithms are 0.016, 0.445, 
0.711 and 0.469; similarly, the p values on Kappa are 0.031, 
0.844 , 0.484 and 1. According to the judging rule, L-SVM 
has a significant difference on Acc and Kappa with EDC-
SVM, while it has no significant difference with DC-SVM, 
LIBSVM and DIP-SVM. So L-SVM obtains the better clas-
sification than EDC-SVM, and it could match DC-SVM, 
DIP-SVM and LIBSVM.

5.3.2 � The training time

Besides the classification performance, the training time is 
another important measure to evaluate the performance of 
algorithms. Similarly as Table 3, Table 6 shows the RS on 
different datasets for L-SVM, EDC-SVM, DC-SVM and 
DIP-SVM.

It shows that L-SVM has the largest RS on all the datasets 
than EDC-SVM, DC-SVM and DIP-SVM. In fact, the RS 
of L-SVM is larger tens times than DC-SVM and EDC-
SVM on dataset Skin-noskin, and it has several times faster 
than them on the rest of datasets. Therefore, L-SVM has the 
least training time among four algorithms on these datasets. 
Besides, the p values obtained by Wilcoxon signed rank test 
between L-SVM and each one of other algorithms are all 

0.0078, less than the given significant level 0.05. So L-SVM 
and other algorithms exist a significant difference on train-
ing time.

As the execution time of these algorithm depends on the 
size of the largest divided subset, we compute the ratio of 
size R between the largest divided subset and original data 
to corroborate the above conclusion. Furthermore, We also 
compare the execution time of two kinds of data partition. 
Table 7 lists ET and R of PDP and KKCDP over different 
datasets.

It obviously shows that PDP has a much smaller value 
of R than KKCDP on all the datasets from Table 7. Specifi-
cally, the value of R obtained by KKCDP is tens of times 
larger than PDP on Cifa and Cod-rna datasets, and several 
times larger than PDP on the rest of datasets. So the size 
of largest divided subsets produced by PDP is smaller than 
KKCDP, and the time spent by L-SVM is also less than 
EDC-SVM and DC-SVM. Meanwhile, the execution time 
of PDP is also much less than KKCDP on all the datasets 
except Cifa. As the time complexity of PDP is the third 
power of the dimension of data, then its execution time 
becomes longer for the high-dimension dataset Cifa. How-
ever, the execution time of PDP algorithm is a small frac-
tion of the total execution time of the L-SVM algorithm, 
it can effectively deal with the high-dimensional problem.

6 � Conclusion

In this paper, we propose a novel algorithm for accelerating 
SVM. It is applicable to the similar algorithms that training 
learners use the geometric structure information of dataset 
without any modification. This algorithm divides the train-
ing dataset into some subsets of approximately equal size 
with the linear projection, and it could largely hold the class 
boundary as far as possible. In the predicted process, the 
divided regions to which the test instances belong are firstly 
recognized, then they are classified by the SVM classifiers 

Table 6   RS of four algorithms on 8 datasets

Dataset L-SVM EDC-SVM DC-SVM DIP-SVM

Cifar 8.71 2.25 1.56 5.64
Cod-rna 274.41 69.67 29.92 125.63
Covtype 89.09 24.91 10.64 48.24
Ijcnn1 70.41 9.59 5.20 45.69
MiniBooNE 110.85 15.63 12.23 55.98
Skin-nonskin 78.16 3.92 6.28 48.61
Susy 2.64 1.70 1.33 1.96
Webspam 77.38 17.16 7.27 35.69
Mean 88.96 18.11 9.30 45.93
Median 77.77 12.61 6.77 46.97

Table 7   R and ET of two ways on 8 datasets

Dataset PDP KKCDP

R ET R ET

Cifar 0.04 37.89 0.98 8.79
Cod-rna 0.02 0.10 0.42 7.04
Covtype 0.02 0.63 0.07 14.23
Ijcnn1 0.03 0.07 0.10 3.41
MiniBooNE 0.03 0.09 0.09 2.14
Skin-nonskin 0.03 0.04 0.22 5.32
Susy 0.01 2.67 0.03 120.29
Webspam 0.02 0.74 0.16 11.03
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over the recognized regions. Experiments show that the pro-
posed algorithm is able to match the classification perfor-
mance of four state-of-the-art SVM acceleration algorithms 
while it has the least training time among them.

The divide-and-conquer approach is one of the most com-
monly used ways to deal with the large-scale problem. Hence, 
this paper provides an efficient algorithm for dividing the dif-
ficult problem into some feasible subproblems and combining 
their solutions. Additionally, the proposed algorithm provides 
a promising way for the large-scale classification problem, 
such as face recognition, text detection and categorization, 
sentiment classification and so on. It is noted that the num-
ber of divided subsets should be adaptively determinate the 
optimal values for different datasets. Besides, our algorithm 
does not fully consider the high-dimension problems. Then 
these problems are two parts of our future work.
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