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Abstract-In practical issues, categorical data and numerical
data usually coexist, and a unified data reduction technique for
hybrid data is desirable. In this paper, an information measure is
proposed for computing the discernibility power of a categorical
or numeric attribute. Based on the measure, a uniform definition
of significance of attributes with categorical values and numerical
values is proposed. Furthermore, an algorithm to obtain an
attribute reduct from hybrid data is presented, and one of its
accelerated version is also constructed. Experiments show that
these two algorithms can get the same reducts, and the classifi
cation accuracies of reduced datasets are similar with the ones
using Hu's algorithm. However, the accelerated version consumes
much less time than the original one and Hu's algorithm do.

I. INTRODUCTION

Rough set theory was proposed by Pawlak in 1982. Re
cently, it has become a popular mathematical framework for
pattern recognition, image processing, feature selection, neuro
computing, conflict analysis, decision support, data mining and
knowledge discovery process from large data sets [1], [17]. In
recent years, more attention has been paid to attribute reduc
tion in information systems and decision tables. Many types
of attribute reduction techniques have been proposed in the
last twenty years. Consistency of data [14], [17], dependence
degree [5], information entropy [22], discernibility matrix [21]
were employed to find reducts of an information system. In
[10]-[12], a new uncertainty measure of information systems
was proposed, which can be employed to compute an attribute
reduct. In [18], [19], the combination entropy was presented,
which can construct a heuristic function in a heuristic re
duction algorithm in rough set theory. j3-reduct proposed in
[26] provides a kind of attribute-reduction methods in the
variable precision rough set model. a-reduct and a-relative
reduct that allow the occurrence of additional inconsistency
were proposed in [16]. A new insight into the problem of
attribute reduction was provided in [24], [25]. Five kinds of
attribute reducts and their relationships in inconsistent systems
were investigated by [7], [9].

All above reduction approaches are only valid for informa
tion systems with categorical attributes. However, categorical
and numerical data usually coexists in real world databases.
Some generalizations of the model were proposed to deal with
this problem. Rough set theory and fuzzy set theory were
putted together and rough-fuzzy sets and fuzzy rough sets were
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defined in [2], [13]. The properties and axiomatization of fuzzy
rough set theory were analyzed in detail [15], [23], which has
been applied to data reduction [3], [4]. A fuzzy-rough attribute
reduction, called fuzzy-rough QUICKREDUCT algorithm,
was given in [6], [20] based on fuzzy dependency function,
which can measure the discernibility power of categorical
attributes and nominal attributes.

In this paper, we will introduce a fuzzy information measure
based on Liang's entropy, which can be used as an evaluation
of the discernibility power of a categorical or numeric attribute.
According to the properties of proposed information measure,
adding a new condition attribute into the information system,
the value of the measure will increase monotonously, which
reflexes that adding information will lead to enhancement of
the discernibility power of an attribute. Then we construct a
hybrid attribute reduction algorithm and accelerated version
based on the proposed measure, which is applicable to reduce
a hybrid dataset.

The rest of the paper are organized as follows. Some
preliminary concepts is reviewed in Section 2. In Section 3,
an new information measure based on Liang's entropy and
its properties are proposed. Section 4 gives a new reduction
algorithms and an accelerated version for hybrid data, and an
experimental analysis is performed, which shows the acceler
ated version consumes much less time than the original one
and the algorithm in [4] do. Section 5 concludes the paper.

II. PRELIMINARIES

In this section, we review some basic concepts such as fuzzy
equivalence relation, fuzzy partition, fuzzy lower approxima
tion and upper approximation.

Pawlak's rough set model can only deal with data containing
categorical values. As we know the real-world applications
usually contain categorical attributes and numerical attributes.
A hybrid information system can be written as (U, A= Ar u
AC), where U is the set of objects, Ar is numerical attributes,
and AC is categorical attributes.

A categorical attribute can induce a crisp equivalence rela
tion on the universe and generate a family of crisp information
granules, whereas a numerical attribute will give a fuzzy
equivalence relation and form a set of fuzzy information
granules. As crisp information granules are a special case of
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fuzzy ones, we will consider all of them as fuzzy ones in the
following.

Each non-empty subset 0 < A determines an fuzzy
equivalence relation Rc' which is corresponding to a fuzzy
equivalence as follows

Definition 3. Let S = (U, A) be a hybrid information system,
then the information measure of hybrid attribute set A is
defined as

E(A) = ..!. f)l- I[xiJxI ),
n n

i=l

where n denotes the cardinality of the universe U.

Theorem 1. Let S = (U, A) be a hybrid information system.
If A is a categorical attribute set, then the information quantity
of attribute set A degenerates into

E(A) = f IXkl (1- IXkl),
k=l n n

where X k E UjA and UjA = {XI,X2 , · · · ,Xm } .

Proof. From I[Xi]xl = E;=l rij = IXkl, Xi E X k , we have
that

..!. t(1- I[XiJxI)
n n

i=l

E(A) =

where rij E [0,1] is the relation value of Xi and Xj.

Furthermore, the relation Rc satisfies:

(1) Reflectivity: Rc(x,x) = 1, "Ix E X;
(2) Symmetry: Rc(x,y) = Rc(y,x),Vx,y E X; and
(3) Transitivity: Rc(x, z) 2: miny{Rc(x, y), Rc(y, z)}.

The relation Rc partitions U into some fuzzy equiva-

lence classes given by UjRc = {[Xi]Rc}i=I' just UjO =
{[xi]c}i=l' where [Xi]Rc denotes the fuzzy e~uivalence class
determined by Xi as to a fuzzy attribute set C.

Definition 1. [3] Let S = (U, A) be a hybrid information
system, 0 < A. Th~ fuzzy equivalence class [Xi]Rc induced
by the attribute set C is defined as

[]
ril ri2 rin

Xi - = - + - + ... + -,
C Xl X2 Xn

where " +" means the union.

Obviously, [Xi]C is a fuzzy information granule. It is easy to
find that the definition of fuzzy equivalence classes is a natural
extension of crisp one. Furthermore, the cardinality [Xi]C is
defined as

n

I[Xi]cl = L rij·
j=l

Definition 2. [3] Let S = (U, A) be a hybrid information
system, 0 < A, X < U a crisp subset of objects. The lower
and upper approximation of X can be defined as

= f IXkl (1- IXkl).
k=l n n

This completes the proof. D

In the follows, we define the joint entropy and condition
entropy, respectively.

Definition 4. Let S = (U, A) be a hybrid information system,
A hybrid attribute set, and 0,D two disjoin subsets of A.
[Xi]C and [xi]b are f~zzy equivalence classes containing Xj
generated by C and D, respectively. The joint entropy of C
and D is defined as

III. A NEW INFORMATION MEASURE FOR HYBRID DATA

Defmition 5. Let S = (U, 0 U D) be a ~ybrid decision table,
C a hybrid condition attribute ~t and D a decision attribute
set. The conditional entropy of D with respect to C is defined
as

In this section, we will propose a new information measure
to evaluate the discernibility power of a hybrid attribute set.
Sequently, some useful property about this measure is given,
which is the fundament of the algorithms in the following
section.

Theorem 2. Let S = (U,O U D) be a hybrid decision table,
C a hybrid condition attribute set and D a decision attribute
set. The condition entropy and joint entropy satisfy

E(DIO) = E(O, D) - E(O).
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!,heorem 3. Let S = (U, CUD) be a !!ybrid decision table,
C a hybrid condition attribute set and D a decision attribute
set. If C1 < C2 <C, then

E(DIC1) ~ E(DIC2).

Proof. Let [Xi]C1 and [Xi]C2 ~e fuzzy_equivalence classe~

containing Xi generated by C1 and C2 , respectively. rt
denotes the element of ith row and jth column in the fuzzy
equi~alence matrix M (Rc) corresponding to fuzzy attribute
set C._ _

If rij2 = rij1, Vi, j < n, then E(DIC1) = E(Dlq2). O~h-

erwise, without any of generality, we suppose that r~; < r~~,

u, v :::; n. There are four different cases to be discoursed as
follows:

(1) rE; < rE~ < r~v. Fr~m the condition, we have

I[xu]c 1 - I[xu]c 1 = r~~ - r~;, and I[xu]c n [xu]DI -1 2 _ _ 1

I[XU]C2 n [xu]DI = r~~ - r~;. Then 1[XU]c11 - 1[XU]C2 1 

(I[xu]c n[xu]DI-I[xu ]C2n[xU]DI) = O. Similarly, I[XV]C1 1
I[xv]c t-(I[xv]c n[xv]i5I-I[xv]C2n[xV]i51) = O. Therefore,_ ~ _1_ _ _ _ _

E(DIC1) - E(DIC2) = 0, Le., E(DIC1) = E(DIC2).

(2) -: < rE; < rE~. Similarly, one has 1 [xu]C1 1
1 [XU]C2 1 = rE~ - rE;, and l[xU]c1 n [xu]DI - I[XU]C2 n
[xu]DI = -: - -: = O. Then 1[xuJc11-1 [xuJc21- (I [XUJC1n
[xu]DI - I[XU]C2 n [xu]DI) > O. Similar to the above result,
I[xv]c I-I[xv]c 1- (I[xv]c n [xv]DI-I[xv]c n [xv]DI) > O.1 __ 2 __1 _~ __

Hence, E(DIC1) - E(DIC2) > 0, Le.E(DIC1) > E(DIC2).

(3) rE; <-t: < rE~. It follows from the existing condition

that I[xu]c 1- 1[xu]c 1 = rE~ - rE;, and I[xu]c n [xu]DI -1 2_ _ 1

l[xU]c2 n [xu]DI = r~v - r~;. Then 1[XU]c11 - 1[XU]c21 

(I[XU]c1n[xu]DI-I[xu]c n[xu]DI) > O. Similarly, l[xV ] C11-
I[xv]c 1 - (I[xv]c n [xvJDI - I[xv]c n [xv]DI) > O. Thus,
_~ _1_ _.:::J, __

E(DIC1) - E(DIC2) > 0, Le.E(DIC1) > E(DIC2).

(4) rE; < -t: < rE~. From the condition, we have
l[xU]c11-I[xu]C21 = r~~ -r~;, and I[XU]C1n[Xu]DI-I[xu]C2n
[xu]DI = r~v - r~;. Then l[xU]c11-I[xu]C21- (I[XU]C1 n
[xu]DI - l[xU]c2n [xu]DI) > O. In like manner, 1 [XV]c11 -

I[XV]C21- (l[xV]c1n [xv]DI-I[xv]C2 n [xv]DI) > O. Therefore,
E(DIC1) - E(DIC2) > 0, Le.E(DIC1) > E(DIC2).

This completes the proof. D

Theorem 3 states that adding a novel condition attribute
into the information system, the condition entropy value will
increase monotonously, which reflexes that adding information
will lead to enhancement of the discernibility power.

Definition 6. [3] Let S = (U, CUD) be a hybrid decision
table, Ca hybrid condition attribute set and D a crisp decision
attribute set. U/ D = {Y1, Y2 , • •• ,Ym} is a partition of U
generated by D. Then, the lower and upper approximations of
the decision D are defined as

The lower approximation of decision D also called positive
region, denoted as POSB(D). Let U' = U - POSc(D),
Eu(DIC) denote the condition entropy D with respect to
C in the universe U and EUI(DIC) denote the one in the
universe U'. When the universe U becomes U', the change
mechanism of conditional entropy will be explicitly explained
by following Theorem 4.

Theorem 4. Let S = (U, CUD) be a hybrid decision table,
C a hybrid condition attribute set and D a decision attribute
set. If U' = U - POSc(D), then

_ IU'I2 -
Eu(DIC) = -2Eu,(DIC).

n

Proof. For similarity, without any of generality, we sup
pose that Xl, ... ,xp belong the positive region and U' =
{ X p+1, ... , x n } . From the definition of positive region, we

have rZ < r8, Vj :::; n, if Xi E POSc(D). Furthermore,

the relationship Eu(DIC) and EUI(DIC) can be obtained as
follows

1 n

2 L(I[Xi]cl-I[Xi]C n [Xi]DI)
n i=l

1 ~~( c . {C D})2 L...J L...J r ij - nun r ij, r ij
n i=l j=l

1 ~ ~( c . {C D})+ n2 L...J L...J rij - nun rij, rij
i=p+1 j=l

1 n n

+ 2 L L (rZ -min{rZ,rf}})
n i=p+1j=p+1

1 ~ ~ ( c . {C D})2 L...J L...J r ij - nun r ij, r ij
n i=p+1j=p+1
IU'I2

--2Eu,(DIC).
n

This completes the proof. D

Definition 7. Let S = (U, CUD) be a hybrid decision table,
C a hybrid condition attribute set, p a decision attribute set,
and B ~ C. The significance a E B is defined as

Sigu(a,B, D) = E(DIB) - E(DIB U {a}).

According to Theorem 4, we immediately get Corollary 1
and Corollary 2.

Corollary 1. Let S = (U, CUD) be a hybrid decision table,
C a !!ybri~ condition attribute set, D a decision attribute set
and B ~ C, the significance

S · (- B- D) IU'1 2

S · (- B- D)tgu a" = -2- tgu' a, , .
n
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Corollary 2. Let S = (U, CUD) be a hybrid decision table, C
a hybrid condition attribute set, D a decision attribute set, and
C1 <C2 <C. If SiguCa, C1 , D) < SiguCa, C2 , D), then

Corollary 2 states that the sequence of attribute significance
is unchangeable after deleting the objects in the positive
region.

IV. REDUCTION ALGORITHMS AND EXPERIMENTAL

ANALYSIS FOR HYBRID DATA

In this section, we employ the attribute significance pro
posed in Section III to construct an algorithm and its ac
celerated version for attribute reduction. Some experiments
are performed for comparing these two algorithms with Hu's
algorithm.

First, the algorithm based on new information measure can
be expressed as follows.

Algorithm 1. Attribute reduction for hybrid data based on the
information measure (ARHIM).

Input: An hybrid decision table (U,CUD), C = C" U C",
C" and C" are categorical and numerical attributes;
Output: One reduct RED.

Step 1: Compute the equivalence relation R-a, for all a E C;
Step 2: RED := 0;
Step 3: B := C- RED. Compute Sig(ai, RED, D) for each
ai E B;
Step 4: Select ak E B which satisfies Sig(ak' RED, D) =
max{Sig(ai, RED, D)};
Step 5: If Sig(ak' RED, D) > 0, RED := REDU {ak} and
go to Step 3, else return RED;
Step 6: end.

The following Algorithm 2 is the accelerated version of
Algorithm 1.

Algorithm 2. Accelerated attribute reduction for hybrid data
based on the information measure (AARHIM).

Input: An hybrid decision table (U, CUD), C= ceUcr , C"
and C" are categorical and numerical attributes, respectively;
Output: One reduct RED.

Step 1: Compute the equivalence relation R-a, for all a E C;
Step 2: RED := 0;
Step 3: B:= C-RED. Compute U':= U -POSB(D) and
Sigu,(ai,RED,D), for each ai E B;
Step 4: Select ak E B which satisfies Sigu' (ak' RED, D) =
max{Sigu' (ai, RED, D)};
Step 5: If Sigu,(ak,RED,D) > 0, RED := RED U {ak}
and go to Step 3, else return RED;
Step 6: end.

In classical rough set theory, a reduct is defined as a subset
of attributes which has the same value of information measure

as the full attribute set. By means of literature [4], it is not nec
essarily the case in the fuzzy-rough approaches. Therefore, the
algorithms will stop if the condition Sigu' (ak' RED, D) :::; A
is satisfied, where A is a degree threshold.

In order to compare ARHIM, AARHIM and the algorithm
in [4] (Sequently, called as Hu's algorithm), we use three
datasets (Credit, Heart and Wine) from the UCI repository
of machine learning databases, whose explicit denotation is in
Table 1. We can find that there are some numerical attributes
in all of the datasets, and some datasets contain categorical
attributes in the same time.

For constructing fuzzy similarity relation matrix, we firstly
normalize the numerical attribute cp E C" into the interval
[0,1] with

Furthermore, the value of the fuzzy similarity degree r~;
between objects Xi and Xj with respect to a numerical attribute
cp E C" is computed as

{

I - 4 X If(Xi, cp) - f(xj, cp)l,

r~; = iflf(xi,cp) - f(xj,cp)1 :::; 0.25;

0, otherwise.

And, the value of the fuzzy similarity degree r~J between
objects Xi and Xj with a categorical attribute cq E C" is
computed as

r?? = {I, f(Xi, cq) = f(xj, cq), VCq E Ce
;

~J 0, otherwise.

Thus, the matrix M(Rck ) = (rfJ)nxn is corresponding
to a fuzzy similarity relation Rck , which is determined by a
categorical or numerical attribute Ck E C. A fuzzy similarity
relation Rc derived from C can be obtained by the formulation
rij = min {rfJ }, which is also corresponding to a matrix

ckEC

M(Rc) = (rB)nxn. A fuzzy equivalence relation from
Rc with max-min transitivity operation [8]. In practice the
operation cannot be effectively conducted and we directly
search reducts with a similarity relations.

To compare the consuming time resulted from our algo
rithms with the one performing Hu's algorithm, we divide
each of these three datasets into ten parts with equal size.
The first part is regarded as the 1st dataset, the combination
of the first part and the second part is viewed as the 2nd
dataset, the combination of the 2nd dataset and the third part
is regarded as the 3rd dataset, ... , the combination of all ten
parts is viewed as the 10th dataset. These datasets can be used
to calculate time consumed by ARHIM, AARHIM and Hu's
algorithm. These algorithms are run on a personal computer
with Windows XP with Pentium D 3.4GHz CPU and 1GB
memory. The software is Visual C#.
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Tables 2-4 show the comparisons of numbers of selected at
tributes, classification accuracies and consuming time through
using ARHIM, AARHIM and Hu's algorithm with regard to
three different datasets in Table 1, where Nl and N2 are
the numbers of attributes using our algorithms (ARHIM and
AARHIM) and Hu's algorithm, respectively. Accuracy 1, Ac
curacy 2 and Accuracy 3 are the classification accuracies with
the original datasets, the reduced datasets derived from our
algorithms (ARHIM and AARHIM) and the ones proceeded
by Hu's algorithm, respectively, Time 1, Time 2 and Time 3
indicate the consuming time of ARHIM, AARHIM and Hu's
algrithm. The classical classification learning algorithms RBF
SVM is introduced to evaluate the selected attributes. All of
the classification accuracies are obtained with lO-fold cross
validation. Moreover, the time consuming of reduction for the
three datasets are explicitly illustrated in Figures 1-3.

35

Figure 3: The time consumed by Hu's algorithm, ARHIM and
AARHIM with the size of universe (data set Wine)

It is easy to find from Tables 2-4 that the classification ac
curacies of the datasets through using our algorithms(ARHIM
and AARHIM) are similar to those employed Hu's method,
which can obtain more precise classification than the original
datasets in most cases. Meanwhile, we can note the proposed
algorithms delete many unimportant attributes from original
data, by which the number of attribute of reduced datasets is
same as or a little more than the one using Hu's algorithm.
Furthermore, from Tables 2-4 and Figures 1-3, we can obtain
that the computing time of each of these three algorithms
increases with the increase of the size of data. As one of the
important advantages of the AARHIM, as shown in Figures 1
3, we see that the consuming time of the algorithm AARHIM
is much less than the original counterpart and Hu's algorithm.
Furthermore, the advantage of the algorithm AARHIM will be
much better when the size of the dataset increases.

V. CONCLUSION

In this paper, a new information measure is proposed,
which can evaluate the discernibility power of a categor
ical or numeric attribute. It can overcome the limitations
of Pawlak's rough set model that just works in categorical
data. Furthermore, the proposed information measure will be
degraded to Liang's entropy when a dataset consists only
of categorical data. Based on the measure, a representative
heuristic algorithm and its accelerated version are presented,
respectively. Experimental analyses on three UCI datasets
show that an attribute reduct can be obtained by our two
new algorithms, and the classification accuracies of reduced
datasets are similar with the ones using Hu's algorithm. Above
all, the accelerated version (AARHIM) consumes much less
computing time than the ARHIM and Hu's algorithm.
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Figure 1: The time consumed by Hu's algorithm, ARHIM and
AARHIM with the size of universe (data set Credit)

Figure 2: The time consumed by Hu's algorithm, ARHIM and
AARHIM with the size of universe (data set Heart)
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1
2
3

Data sets
Credit
Heart
Wine

TABLE I: Data sets description
Samples Numerical features

690 6
270 7
178 13

Categorical features
9
6
o

Classes
2
2
3

Time3
0.1094
1.2969
2.9219
5.1406
7.8594

10.8594
14.6250
19.8750
24.3750
30.2344

Time 2
0.1094
0.7344
1.6094
2.9063
5.0469
7.2188
8.8906

12.0469
14.8750
17.7813

1 1 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.1250
6 7 0.7099±0.0966 0.7462±0.1029 0.7253±0.1045 1.2344
1 1 0.7627±0.0501 0.7737±0.0268 0.7737±0.0268 2.7813
3 3 0.7992±0.1133 0.7613±0.0200 0.7613±0.0200 5.1719
3 1 0.8059±0.1718 0.8118±0.1757 0.8118±0.1757 7.9688
2 1 0.8363±0.1879 0.8412±0.1911 0.8412±0.1911 10.9688
2 2 0.8602±0.1945 0.8644±0.1968 0.8644±0.1968 15.0313
2 1 0.8318±0.2062 0.8354±0.2084 0.8354±0.2084 19.6719
2 1 0.8440±0.1716 0.8440±0.1716 0.8440±0.1716 24.0625
2 1 0.8548±0.1851 0.8548±0.1851 0.8548±0.1851 29.7188

1
2
3
4
5
6
7
8
9
10

NO.

TABLE II: Comparison of attribute number in reducts, classification accuracy and consuming time with Credit
Feature Accuracy _=:--T_im~e~----===--__----===-----=-_

Nl N2 Accuracy1 Accuracy2 Accuracy3 Time 1

0.0938
0.1875
0.3906
0.7031
1.0469
1.4531
1.9063
2.5000
3.2188
3.9063

Time 3
0.0781
0.1563
0.3125
0.5000
0.6563
1.0000
1.3438
1.6250
2.1250
2.7656

Time 2
1 1 0.8667±0.2331 0.8833±0.1933 0.8833±0.1933 0.0781
5 4 0.7778±0.2572 0.8578±0.1657 0.8467±0.2201 0.1875
8 6 0.8432±0.1339 0.8414±0.1496 0.8414±0.1496 0.4531
6 6 0.8019±0.1629 0.8273±0.1385 0.8273±0.1385 0.7031
8 8 0.8329±0.1036 0.8483±0.1164 0.8483±0.1164 1.0313
9 8 0.8291±0.1073 0.8406±0.0996 0.8354±0.1039 1.4688
6 7 0.8152±0.0873 0.8307±0.0935 0.8307±0.0935 2.0156
8 8 0.8426±0.0488 0.8424±0.0541 0.8424±0.0541 2.4688
9 8 0.8442±0.0688 0.8524±0.0674 0.8362±0.0738 2.4688
5 6 0.8333±0.0531 0.8333±0.0531 0.8296±0.0558 4.0469

1
2
3
4
5
6
7
8
9
10

NO.

TABLE ITI: Comparison of attribute number in reducts, classification accuracy and consuming time with Heart
Feature Accuracy ---===-T_i_m-::-e_--==_--::--_=-=--_=---

Nl N2 Accuracy1 Accuracy2 Accuracy3 Time 1

0.0938
0.1875
0.2813
0.4688
0.7344
1.0156
1.3750
1.7500
2.1719
2.9063

Time 3
0.0781
0.1407
0.1875
0.3125
0.5156
0.6250
0.9375
1.2500
1.5469
1.8438

Time 2
4 3 0.9000±0.3162 0.9000±0.3162 0.8500±0.3375 0.0781
8 8 0.9750±0.0790 0.9750±0.0790 1.0000±0.0000 0.1719
8 8 0.9800±0.0632 0.9800±0.0632 0.9800±0.0632 0.2500
7 4 0.9857±0.0452 0.9857±0.0452 0.9900±0.0316 0.4688
5 7 0.9778±0.0468 0.9889±0.0351 0.9889±0.0351 0.7969
5 4 0.9909±0.0287 0.9832±0.0355 0.9832±0.0355 1.0781
8 4 0.9833±0.0351 0.9833±0.0351 0.9861±0.0300 1.4531
10 4 0.9867±0.0281 0.9867±0.0281 0.9933±0.0211 1.8750
7 7 0.9938±0.0198 0.9892±0.0231 0.9892±0.0231 2.3438
11 6 0.9889±0.0234 0.9833±0.0268 0.9833±0.0268 2.7968

1
2
3
4
5
6
7
8
9
10

NO.

TABLE IV: Comparison of attribute number in reducts, classification accuracy and consuming time with Wine
Feature Accuracy ---===-T_i_m-::-e_--==_--::--_=-=--_=---

Nl N2 Accuracy1 Accuracy2 Accuracy3 Time 1

province (No. 2008011038, 2009021017-1) and the foundation
of key laboratory for computational intelligence and Chinese
information processing, ministry of education, China.
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