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itations. First, GCN-based methods are restricted by the oversmoothing issue that limits
their ability to extract knowledge from distant but informative nodes. Second, most avail-
able GCN-based methods exploit only the feature information of unlabeled nodes, and the
pseudo-labels of unlabeled nodes, which contain important information about the data dis-
. . . tribution, are not fully utilized. To address these issues, we propose a novel end-to-end
Semi-supervised learning . . . .
Graph convolutional networks ensemble framework, .Wthh is named mixed-order graph Fonvqlutlonal networks
Oversmoothing (MOGCN). MOGCN consists of two modules. (1) It constructs multiple simple GCN learners
Mixed-order with multi-order adjacency matrices, which can directly capture the high-order connectiv-
ity among the nodes to alleviate the problem of oversmoothing. (2) To efficiently combine
the results from multiple GCN learners, MOGCN employs a novel ensemble module, in
which the pseudo-labels of unlabeled nodes from various GCN learners are used to aug-
ment the diversity among the learners. We conduct experiments on three public bench-
mark datasets to evaluate the performance of MOGCN on semi-supervised node
classification tasks. The experimental results demonstrate that MOGCN consistently out-
performs state-of-the-art methods.
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1. Introduction

The success of machine learning algorithms typically depends on the data representation [4]. Deep learning [25], as one of
the representation learning [7,17,18,27,28] methods, has made substantial breakthroughs in many fields, such as image
vision, speech recognition, and natural language understanding. However, most deep learning models usually work under
the supervised setting, in which the labels of training samples are assumed to be known. It is highly difficult and expensive
to obtain labels for training samples in practical applications. Thus, deep learning will be impossible in scenarios in which
labeled samples are extremely rare.

Fortunately, in many real-world tasks, unlabeled samples are readily available. Although unlabeled samples are unable to
provide label information, they contain important information about the data distribution. Therefore, as one of the major
paradigms for the exploitation of unlabeled samples, semi-supervised learning [38], which exploits unlabeled samples
together with labeled samples to improve learning performance, has received widespread attention. Among established
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semi-supervised learning models, graph-based methods, especially graph convolutional networks (GCN) methods [23], have
been demonstrated to be the most effective approaches. GCN-based methods use a message-passing scheme, in which each
node aggregates features from its neighboring nodes to update its own feature vector. After K message-passing rounds or
when the depth of GCN has increased to K layers, a node can aggregate information from nodes up to K hops away in the
graph. Thus similar nodes have similar representations.

Despite their enormous success, the classification performance of GCN-based methods decreases rapidly when labeled
training nodes are scarce. The decline in performance is due mainly to the following two reasons. First, according to the
message-passing mechanism that is adopted by GCN-based methods, they explore different neighbor information of nodes
by increasing the number of layers. As the depth increases, GCN-based methods mix the features of the nodes from different
connections of neighbors and render them indistinguishable. This phenomenon is explained by [26] as an oversmoothing
issue that can be observed even for small values of K (as low as K = 3). However, when the depth is too small, it is difficult
to extract the knowledge from distant but informative nodes, i.e., remote hops of neighbors for the current node. Second,
most available GCN-based methods exploit only the feature information of unlabeled nodes. However, pseudo-labels, which
contain important information about the data distribution, are not fully utilized. In summary, these two drawbacks limit
their ability to spread the node feature information to other nodes in the graph effectively, thereby leading to poor trainabil-
ity and expressivity.

Based on the aforementioned analysis, we argue that a key direction of the construction of graph convolutional network
models lies in the efficient exploration and combination of information from various connections of neighbors. In this paper,
we propose a novel end-to-end ensemble framework, which is named mixed-order graph convolutional networks (MOGCN).
First, instead of using the method of increasing the number of layers to explore the various neighbor information of nodes,
we construct multi-order adjacency matrices in advance. Fig. 1 illustrates examples of 1st-order, 2nd-order, and 3rd-order
relations in a graph. Different order neighbor relation graphs reflect different connections (nearest neighbors) of nodes. Then,
on each special order adjacency matrix, we construct a simple GCN (e.g., K = 2 layers). Via this strategy, we can directly
obtain the node representations based on various neighbor relations (or receptive fields) from multiple GCN learners and
alleviate the problem of oversmoothing that is caused by stacking multiple message-passing layers. Second, it is natural
to introduce ensemble learning to combine the results of GCN learners. The generalization error of an ensemble is related
to the average generalization error of the base learners and the diversity among the base learners. Generally, the higher
the average accuracy and the diversity of the base learners, the better the ensemble [24]. Therefore, to efficiently fuse the
results from multi-GCN learners, an ensemble module that is based on negative correlation learning [30] is designed. Com-
bined with the pseudo-labels of unlabeled nodes, the ensemble module can maximize the accuracy of GCN learners on
labeled nodes, while maximizing the diversity among them on unlabeled nodes. Finally, we conduct extensive experiments
to demonstrate the state-of-the-art performance of our approach. The main contributions of the paper can be summarized as
follows:

e We propose a novel end-to-end ensemble framework, i.e., mixed-order graph convolutional networks (MOGCN), for
graph-based semi-supervised learning. MOGCN combines the results of multiple GCN learners that are trained on adja-
cency matrices of various orders to boost the performance of semi-supervised node classification.

e MOGCN can directly obtain the node representations based on various neighbor relations and alleviate the problem of
oversmoothing that is caused by stacking multiple message-passing layers.

o In the ensemble module, the pseudo-labels of unlabeled nodes are fully utilized to augment the diversity among the GCN
learners.

The remainder of this paper is organized as follows. Section 2 discusses the related work on semi-supervised learning and
graph convolutional networks. We introduce our proposed method in Section 3 series of experiments for evaluating the per-
formance of the proposed method are conducted in Section 4. Finally, Section 5 presents the conclusions of this study and
discusses future work.

1st- order 2nd- order 3rd- order

Fig. 1. Examples of high-order relations in a graph. Left is the 1st-order graph, middle is the 2nd-order graph and right is the 3rd-order graph. Different
orders reflect different connections (nearest neighbors) of nodes. Self-loops are not shown in the figure for simplicity.
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2. Related work
2.1. Semi-supervised learning

Semi-supervised learning (SSL) is widely adopted in many scenarios, in which the labeled samples are insufficient, while
the unlabeled samples are extremely abundant. Various types of semi-supervised learning methods have been proposed,
which include the following four main aspects: the generative semi-supervised learning method [9,34], the semi-
supervised SVM method [6,29] the disagreement-based semi-supervised learning method [14,21,43] and the graph-based
semi-supervised learning method (GSSL) [48]. Among established semi-supervised learning models, GSSL has received a
large amount of attention, as it can map the dataset into a graph with the connection between the samples to realize satis-
factory generalization performance. The study of GSSL methods can be divided into two aspects: graph construction [19,20]
and graph-based label inference [11,35]. Interested readers can refer to survey papers [38] for additional details.

2.2. Graph convolutional networks

Graph convolutional networks (GCN) extend deep learning algorithms to graph-structured data by defining convolution
operators on a graph and have been proven powerful when dealing with various downstream tasks [41,46]. GCN can be
divided into two operations: spectral convolutions and spatial convolutions. Spectral convolutions are performed by trans-
forming node representations into the spectral domain using the graph Fourier transform. Bruna et al. [5] first introduced
convolution for graph data from the spectral domain. ChebNet [10] and GCN [23] were proposed to use a polynomial or a
first-order spectral convolution function to solve the efficiency problem. Following that, HesGCN [13] obtained a more effi-
cient convolution layer rule by optimizing the one-order spectral graph Hessian convolutions. Spatial convolutions are per-
formed by considering node neighborhoods, such as Neural FPs [12], DCNN [3], MoNet [33], MPNNs [15], HAN [44] and DGI
[40]. Several studies focused on improving the basic convolution operator, i.e., neighborhood aggregation schemes, such as
attention mechanism [39], disentangled GCN [32], and making them more scalable on large graphs [8,16]. However, all these
methods utilize the information of only a very limited neighborhood for each node. Such that it cannot effectively propagate
the feature or label to the entire graph, especially for nodes in the periphery or in a sparsely labeled setting. This problem has
been alleviated by directly increasing the number of labeled nodes, for example, [26] proposed Co-Training and Self-Training
methods for enlarging the training dataset. After that, [36] proposed multi-stage self-training processing, which applies the
deep clustering method on an embedding and relies on distance measures to align and extend the labeled dataset. However,
these two types of methods enlarge the labeled training dataset by assigning pseudo-labels to unlabeled nodes, which inevi-
tably introduces incorrect label information (label noise), especially when labeled nodes are scarce. In addition, similar to our
model, MixHop [2] also attempted to use higher-order adjacency matrices for node feature aggregation. However, MixHop
only simply splices the information from adjacency matrices of orders. The redundancy between them is not considered,
which will cause performance degradation when combining that information. Moreover, node representations with different
high-order connectivity among nodes cannot be obtained directly; thus, this approach is less flexible than approaches that
combine multi-GCNs.

2.3. Negative correlation learning

Negative correlation learning (NCL) [30,42] is an ensemble learning algorithm that introduces a correlation penalty term
into the cost function of each ensemble member. Each ensemble member minimizes its mean square error and its error cor-
relation with the remainder of the ensemble. NCL has been shown to perform well on many applications, such as regression
[47] and classification [31] problems.

3. Mixed-order graph convolutional networks

In this section, we introduce notations and definitions that will be used in the remainder of this paper. Then, we present
the proposed mixed-order graph convolutional networks. Specifically, we first construct multiple GCN-based learners that
are trained on adjacency matrices of various orders. In addition, we develop a novel module for ensembling the results from
the base learners.

3.1. Notations

We consider a general undirected attribute graph ¢ = (V,E, X), where V = {11, 75, ..., vy} denotes the set of nodes, N is
the number of nodes, and E denotes the set of edges with e;;; =< v;, 7; >¢ E denotes an edge between v; and ;. The structure

of graph ¢ can be represented by an adjacency matrix A = {a;;} € R™N and a;; denotes the entry of matrix A at the i-th row
and the j-th column, a;; = 1 if e;,; € E, otherwise, a;; = 0. Additionally, we denote the node attribute matrix that is associated

with the graph as X € R¥*F, in which F is the dimension of the features, and x; € Rf corresponds to the i-th row of matrix X,
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which is the attribute vector of node »;. D = diag(dy,d,, - - -, dy) € R¥*N represents the degree matrix of A, d; = Zvjevau is the
degree of node v;.

For semi-supervised learning (SSL), let X; = {(x;,¥;)}-, denote the L labeled samples and X, = {x,}”LUH denote the U unla-
beled samples, N=L+ U and y; € {1,2,---,C} is the class label of the i-th labeled sample, in which C is the number of cat-
egories. In graph-based semi-supervised learning (GSSL), only a subset of nodes V, c V are labeled. In general, |V,| < |V|. The
objective of GSSL is to recover labels for all unlabeled nodes V, = V — V|, using the feature matrix X, the known labels for
nodes in Vi, and the graph structure A.

For convenience of discussion, the class labels of the nodes are represented in the form of a matrix. Let

Z={z} € {0,1}" be the label matrix,

7 — 17 i:1727"'7L7yf:C
710, otherwise

LetZ = {Zic} € RN*C be the predicting label matrix, Z; represents the corresponding degree of the i-th node to the c-th
category.

3.2. Overall framework

The architecture of our proposed MOGCN is illustrated in Fig. 2. It is composed of two main modules: a GCN-based learn-
ers module and an ensemble module:

e GCN-based learners module: MOGCN constructs multiple simple graph neural network (e.g., two-layer GCN) learners
with multi-order adjacency matrices. Via this strategy, we can directly obtain node representations based on various
neighbor relations from multiple GCN learners.

« Ensemble module: The proposed ensemble module is a fusion component that aggregates the results from the base
learners to obtain the final label in a way that maximizes the accuracies of the base learners on the labeled nodes and
their diversity on the unlabeled nodes.

3.3. GCN-based Learners module

The crucial part of MOGCN is to explore the knowledge from various relations of neighbors. To enlarge the learning field
of each node, in this section, we construct multiple adjacency matrices of various orders, which directly represent the rela-
tions between nodes. Inside those graphs, each node can directly connect with farther neighbors. Then, we construct mul-
tiple GCN-based learners on those adjacency matrices, which enables each node to learn the node representations from
various neighbor relations directly.
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Fig. 2. Architecture of the proposed MOGCN. The model takes the adjacency matrix multiple A and the node attribute matrix X as input. Then, we construct
adjacency matrices of m orders {A"),A? ... A™} (m = 3 in the figure for simplicity). After that, MOGCN constructs multiple simple GCN-based learners
with those matrices to obtain the initial result in each branch. Finally, the ensemble module is exploited to combine them and obtain the final label. In the
figure, the red and black solid points represent labeled nodes of two categories, the white hollow points represent unlabeled nodes in the graph, and the
darkness of a node’s color indicates the degree to which the node belongs to corresponding category.
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3.3.1. Multi-order adjacency matrices construction
The definition of the 2nd-order adjacency matrix in [37] is as follow. Denote a; as the j-th row of the 1st-order adjacency

matrix AV, and ag) as the entry of the 2nd-order adjacency matrix A® at the i-th row and the j-th column; the mathematical

definition of af? is:

a? —aja;Vije {12 N}

ij
According to this definition, we can readily calculate an mth-order adjacency matrix A™ via
AM™ — Am-Dp) 1)
By extending the original adjacency matrix to a sequence of adjacency matrices, we obtain a family of multi-order adja-
cency matrices {A“),Am, ... ,A('”)}. Thus, we utilize those adjacency matrices to directly represent the various relations
between nodes.

We store A™ as a sparse matrix with M nonzero entries. Under the realistic assumptions of m < M and M < N, it is effi-
cient to obtain multiple orders of the adjacency matrix.

3.3.2. Multi-order graph convolutional networks

Given the attribute matrix X and the family of multi-order adjacency matrices {Am,A(Z), ... ,A(m)}, MOGCN constructs
multiple branches of GCN-based learners {f;,f5, ..., fn}. respectively. The k-th learner f, (1 < k < m) in MOGCN that is
trained on A%is a simple two-layer GCN learner:

fi = softmax (Agk) RelU ([\g")XWBkUW(]k)) ; 2)

where A% = D¥3A®D® 3, and A® = A¥ + I, and the associated degree matrix is D% = D* + L. W} and W" are the train-
able weight matrices in the k-th learner f;, and ReLU(-) = max(O0, -).

The outputs of f, is a initial predicting label matrix Z® = {2}’2} € RN*¢, where 2,?’2 represents the correspondence degree

of the i-th node to the c-th category in the associated learner f,.

In this GCN-based learners module, we can directly obtain the node representations based on various neighbor relations
from multiple GCN learners and alleviate the problem of oversmoothing that is caused by stacking multiple message-passing
layers.

3.4. Ensemble module

Through the above module, we obtain the initial results {Z“), 7. .. ,Z“")} from the multiple GCN-based learners, where

Z® (1 < k < m) denotes the representation that is obtained by propagating information from nodes that are k-hops away. As
the depth k increases, information that is far away from the node will be included in Z®). Therefore, the initial results contain
information from local and distant neighborhoods. Since in graph-based semi-supervised learning, there are few labeled
nodes, but many unlabeled nodes. These unlabeled nodes can obtain initial pseudo-labels through GCN based modules.
Inspired by negative correlation learning (NCL) [30], we propose a novel ensemble module for combining them. In this mod-
ule, we maximize the accuracies of base learners on labeled nodes and their diversity on unlabeled nodes, via this strategy,
we adaptively adjust and combine the information from local and distant neighborhoods to generate suitable labels for unla-
beled nodes.

Formally, the proposed ensemble module in MOGCN combines m graph convolutional networks learners {f,f>, ..., f,} to
form an ensemble:

Fensl®) = S filx). 3)
k=1

The objective of the ensemble module is to maximize the fit of the base learners on labeled nodes while maximizing the
diversity of the learners on unlabeled nodes. Therefore, the proposed novel ensemble model needs to minimize the following
global loss function:

L= (1—n)Lemp + Nlyiv, (4)

where the first term L, on the right-hand side of Eq. (4) is the empirical loss of the labeled dataset V,; the second term L,
is the diversity loss of the base learners on unlabeled dataset Vy and 0 < 17 < 1 is a hyper-parameter that controls the cor-
relation between the empirical loss and the diversity loss.

The first term Ly, in Eq. (4) is the cross-entropy error over all labeled nodes:
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Lomp = 72 ZZ(—ZLCIHZE_’?). (5)

The second term Ly, is a diversity loss function. It minimizes each network’s mean square error with errors for the
remainder of the ensemble calculated by unlabeled nodes:

L+U m L+U
de - exp{ Z( Z ”fk XI fens Xl ”22ka XI fens Xl)”z)} = exp ( Z Z “fk Xl fens Xl |2) (6)

k=1 i=L+1 k' #k k 1i=L+1

Through the above ensemble module, we combine the outputs of all m GCN learners, which enables us to jointly train all
GCN learners and the ensemble network via backpropagation. Thus, MOGCN can aggregate the information of each node that
is learned from multiple branches via an end-to-end way.

Finally, the prediction function is:

yi = argmaxz;, (7)
ce{1,2,-,C}
where, y; is the final prediction result of the i-th unlabeled node, and Z; is the entry of the prediction matrix Z that was
obtained via Eq. (3) after all training steps.
Overall, the framework of the MOGCN algorithm is described in Algorithm 1.

Algorithm1: MOGCN (Mixed-Order Graph Convolutional Networks)

Input: Attribute matrix X, 1st-order adjacency matrix A(), label matrix
Z, number of orders m, parameter 7, and maximum number of
iterations max_iter.

Output: Final prediction result of the unlabeled nodes with Eq. (7).

1 Construct high-order adjacency matrix sets {A(2)7 A® A("‘>} via Eq.

(1)

2 for k = 1 to m do
3 ‘ Initialize parameters {Wék),ng)} of GCN learner fy;
4 end

5 for iter = 1 to max_iter do

6 for k = 1 to m do

7 ‘ Update the k-th GCN learner fi, via Eq. (2);

8 end

9 Calculate the ensemble learner f.,s via Eq. (3);
10 Calculate the empirical loss Lepy of the labeled nodes via Eq. (5);
11 Calculate the diversity loss Lg;, of the base learners via Eq. (6);
12 Train the MOGCN with the global loss L in Eq. (4);

13 end

4. Experiments

In this section, we evaluate the proposed model against state-of-the-art semi-supervised node classification models.
Then, we conduct auxiliary experiments to valuate the performances of the components of MOGCN.

4.1. Datasets

We adopt three citation networks (Cora, Citeseer, and Pubmed.)' Every network dataset has a node attribute matrix X and a
graph structure matrix A. The datasets are summarized in Table 1, where the nodes represent the publications and the edges

T https://lings.soe.ucsc.edu/data.
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Table 1
Statistics of the citation network datasets.
Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

represent the citation links, the features of each node are bag-of-words representations of the corresponding publications, and
the classes are the number of clusters.

4.2. Comparison with state-of-the-art algorithms

4.2.1. Baseline methods

To evaluate the performance of the proposed MOGCN, we compare it with the following methods: (1) LP [45]: label prop-
agation is a traditional graph-based semi-supervised learning method; (2) GCN [23]: classic graph convolutional neural net-
works; (3) Co-Training: a method that trains GCN with a random walk model to extend the labeled dataset; (4) Self-Training:
GCN with simple self-training to extend the labeled dataset; (5) Union: a method that expands the label set with the most
confident predictions that are found in the random walk and self-training; (6) Intersection: a method that adds the most
confident predictions that are found in both the random walk and the self-training to the labeled set. Note that methods
(3)-(6) are proposed in [26]. (7) MultiStage [36] and its a variant (8) M3S: methods that are based on aligning mechanism
on the embedding space and then extend the labeled dataset; (9) MixHop [2]: a method that uses higher-order adjacency
matrices for node feature aggregation with a simply splicing operator.

4.2.2. Parameter settings

In the proposed MOGCN, we set the maximum iteration number max_iter to 500. Similar to [23], the GCN learner in our
method with a 16-neuron hidden layer. We train our model by using the full batch in each training epoch and implement our
algorithm in TensorFlow [1], and we optimize it with the Adam [22] algorithm. Moreover, we set the learning rate as 0.001,
and the dropout rate as 0.5 x 10~*. Following [26,36], we conduct experiments on the following label rates: 0.5%, 1%, 2%, 3%,
and 4% on Citeseer and Cora datasets, and 0.03%, 0.05%, and 0.1% on the Pubmed dataset. We report the mean classification
accuracy (ACC) on the 1000 test nodes of our method after 20 runs over the dataset splits that are specified above. The hyper-
parameter # in Eq. (4) is selected in the search range {0,0.05,0.1,...,1} and the number of mixed-orders m is selected
among {2,3,...,6}.

4.2.3. Results

The semi-supervised node classification results of the baseline methods and MOGCN under optimal hyperparameters (#
and m) are reported in Tables 2-4. We obtain the following observations: (i) On the Cora and Pubmed datasets, GCN is out-
performed by label propagation (LP) when there are realtively few labeled training nodes. Since GCN is restricted by an over-
smoothing issue that limits its ability to propagate the label information to distant nodes. (ii) Our model outperforms
methods that expand the labeled training set with unlabeled nodes, such as Co-Training, Self-Training, Union, Intersection,
M3S, and MultiStage. Since the pseudo-labels of unlabeled nodes will inevitably add the label noise to the labeled training
dataset, especially when labeled nodes are scarce or in the initial training iterations. In contrast, our model ensures the accu-
racy of the originally labeled nodes and utilizes the pseudo-labels to increase the diversity of the learners, which renders our
method effective. (iii) Compared with the MixHop model, which also utilizes high-order matrices, our proposed model is
more effective. Because our model can directly learn representations of a node from the various receptive fields, and the

Table 2

Experimental results of SSL on the Cora dataset.
Label Rate 0.5% 1% 2% 3% 4%
LP 56.4 62.3 65.4 67.5 69.0
GCN 50.9 62.3 72.2 76.5 78.4
Co-Training 56.6 66.4 73.5 75.9 78.9
Self-Training 53.7 66.1 73.8 77.2 79.4
Union 58.5 69.6 75.9 78.5 80.4
Intersection 49.7 65.0 72.9 771 79.4
MultiStage 61.1 63.7 74.4 76.1 77.2
M3S 61.5 67.5 75.6 77.8 78.0
MixHop 51.2 62.9 73.3 77.3 79.8
MOGCN 62.8 71.5 76.1 79.8 824
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Table 3
Experimental results of SSL on the Citeseer dataset.
Label Rate 0.5% 1% 2% 3% 4%
LP 34.8 40.2 43.6 453 46.4
GCN 43.6 55.3 64.9 67.5 68.7
Co-Training 47.3 55.7 62.1 62.5 64.5
Self-Training 43.3 58.1 68.2 69.8 70.4
Union 46.3 59.1 66.7 66.7 67.6
Intersection 42.9 59.1 68.6 70.1 70.8
MultiStage 53.0 57.8 63.8 68.0 69.0
M3S 56.1 62.1 66.4 70.3 70.5
MixHop 44.2 56.7 66.1 68.8 70.2
MOGCN 58.9 62.8 68.6 71.6 724
Table 4
Experimental results of SSL on the Pubmed dataset.

Label Rate 0.03% 0.05% 0.1%

LP 61.4 66.4 65.4

GCN 60.5 57.5 65.9

Co-Training 62.2 68.3 72.7

Self-Training 51.9 58.7 66.8

Union 58.4 64.0 70.7

Intersection 52.0 59.3 69.4

MultiStage 574 64.3 70.2

M3S 59.2 64.4 70.6

MixHop 61.6 59.1 67.2

MOGCN 63.2 68.5 76.7

novel ensemble module can reduce the redundancy among learners. The above observations demonstrate that the effective-
ness of our proposed method.

4.3. Ablation study

In this section, we examine the performance of each component of MOGCN, namely, the GCN-based learners module and
the ensemble module, via an ablation study. Here, we consider two variants of our model:

e (1) SingleOrder: SingleOrder represents the GCN that is trained on the single order adjacency matrix; and we report the
best result under the single order (among {1,2,3,...,6}) adjacency matrix.

e (2) w/o EN: w/0EN represents the method that combines the results of the GCN-based learners via a simple voting strat-
egy without using the proposed ensemble module, and we report the experimental results of the optimal combination.

We compare the two variants with our proposed model MOGCN, which consists of both important components. The com-
parison result is presented in Fig. 3. According to this result, The w/oEN method is slightly outperforms SingleOrder in clas-

85
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80

75

=8=MOGCN

60 == wi0 EN

| == SingleOrder o EN

== SingleOrder

55 60"

05 1 2 3 4 05 B 2 3 4 0.03 005 0.1

Label Rate % Label Rate % Label Rate %
(a) Cora dataset. (b) Citeseer dataset. (c) Pubmed dataset.

Fig. 3. Illustration of the performances of variants of MOGCN at various label rates.
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sification. This is because there is redundant information among the GCN learners that are learned on the adjacency matrices
of various orders in w/oEN, which affects the performance improvement. Hence, simply combining the results of multiple
GCN learners is not a satisfactory strategy. In contrast, the proposed MOGCN model can realize substantially increased clas-
sification performance because it not only directly considers multiple high-order connections among nodes by constructing
multiple simple GCNs, but also augments the diversity among the learners.

Then, to explore the ensemble module in more detail, we examine the empirical loss and the diversity loss of w/oEN and
MOGCN on the Cora dataset in Fig. 4a and 4b, respectively. We report the experimental results under a 1% of label rate, with
3 GCN learners, and # = 0.2. For w/oEN, we calculate only the value of the diversity loss, and the diversity loss term does not
participate in optimization. According to this result, both methods realize similar accuracy on labeled nodes, while MOGCN
realizes a lower diversity loss than w/oEN. The lower the diversity loss is, the larger the differences among learners, which
shows that the proposed method can indeed maximize the accuracy of the base learners on the labeled nodes while max-
imizing the diversity among them on the unlabeled nodes.

We also conduct an experiment to explore the impact of the rate of unlabeled nodes in the ensemble module. Here, we fix
the rate of labeled nodes and set the rates of the remaining unlabeled nodes to range from 0% to 100%. As shown in Fig. 5, the
use of many unlabeled nodes tends to prodece higher accuracy than the use of few unlabeled nodes for a fixed number of
labeled nodes. This result demonstrates that the pseudo-labels of unlabeled nodes are helpful for realizing higher
performance.

4.4. Parameter sensitivity

Parameter m controls the number of adjacency matrices of different orders in MOGCN. In this part, the 2nd-order, 3rd-
order, 4th-order, 5th-order, and 6th-order MOGCN are compared. The results are presented in Table 5, according to which,
the 3rd-order and 4th-order MOGCN models provide comparably satisfactory performance. However, as the order continues
to increase, the range of neighborhoods also increases, and the classification performance of the algorithm starts to decrease.
This phenomenon is consistent with our intuition, because the higher the order is, the farther the node’s direct neighbors will
be, thereby increasing the risk of mixing node features from other categories. Consequently, to realize satisfactory classifi-
cation performance and computational efficiency, we suggest that the number of orders m of our proposed method be set to
3or4.
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Fig. 4. Illustration of the empirical loss and the diversity loss of the methods with and without the ensemble module on the Cora dataset.
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Fig. 5. Illustration of the performance of MOGCN at various unlabeled rates in the ensemble module.
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Table 5
Experimental results of the order-number.
Method Cora Citeseer Pubmed
0.5% 1% 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.05% 0.1%
2nd-order 61.9 70.8 75.7 79.2 82.0 57.2 62.0 67.8 70.4 72.1 62.9 67.5 76.1
3rd-order 62.8 71.3 76.1 79.8 824 58.3 62.8 68.4 71.6 724 63.1 68.1 76.7
4th-order 61.2 715 75.8 79.1 82.2 58.9 62.2 68.6 71.3 721 63.2 68.5 75.9
5th-order 61.1 70.7 75.3 78.2 82.0 56.2 60.5 67.4 70.5 714 63.0 67.4 75.4
6th-order 60.2 68.9 74.8 774 81.2 55.9 58.3 66.7 69.5 71.2 62.4 67.2 74.2

Parameter # controls the correlation between the empirical loss and the diversity loss. When setting # = 0, our model is
equivalent to training each GCN learner independently, and when the value of # increases, increasing emphasis is placed on
minimizing the diversity loss; thus, the differences among the base learners will increase. However, employing a larger value
for n will overemphasize the effect of diversity and lead to poor performance. We empirically find that setting # to a smaller
value, i.e., # € [0.1,0.3] usually leads to satisfactory results.

5. Conclusions and future work

In this paper, we propose mixed-order graph convolutional networks (MOGCN), which is a novel end-to-end ensemble
framework that has two advantages: (1) The proposed framework constructs multiple simple GCN learners with adjacency
matrices of various orders and ensembles the results, which can directly capture various high-order connectivities among
nodes and alleviate the problem of oversmoothing. (2) In the ensemble module, the pseudo-labels of unlabeled nodes are
exploited to help augment the diversity of the base learners; via this strategy, unlabeled nodes are fully utilized. Our model
achieves state-of-the-art results and enables us to balance the accuracy of the labeled nodes and the diversity of the base
learners that are obtained by the unlabeled nodes. Moreover, our method is general. Thus, we can combine more sophisti-
cated models, such as the recently proposed GAT [39] or disentangled GCN [32], with our ensemble module.
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