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a b s t r a c t 

The label propagation algorithm is a well-known semi-supervised clustering method, which uses pre- 

given partial labels as constraints to predict the labels of unlabeled data. However, the algorithm has 

the following limitations: (1) it does not fully consider the misalignment between the pre-given labels 

and clustering labels, and (2) it only uses label information as clustering constraints. Real applications 

not only contain partial label information but pairwise constraints on a dataset. To overcome these de- 

ficiencies, a new version of the label propagation algorithm is proposed, which makes use of pairwise 

relations of labels as constraints to construct an optimization model for spreading labels. Experimental 

analysis was used to compare the proposed algorithm with 8 other semi-supervised clustering algorithms 

on 11 benchmark datasets. The experimental results demonstrated that the proposed algorithm is more 

effective than other algorithms. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

a  

t  

o  

s  

o  

a  

b

 

o  

m  

i  

t  

k  

c  

c  

e  

f  

e  

i  

g  

c  

l

m  

i  

t

 

b  

g  

k  

p  

m  

T  

t  

[  

t  

p  

c  

a  

n  

o  

t  

r  

e  

u  

c  

w  

h

0

. Introduction 

Cluster analysis is an important technique in machine learning

nd artificial intelligence research [1–3] . The aim of clustering is

o partition a set of objects into different clusters such that the

bjects in the same clusters are highly similar but markedly dis-

imilar with objects in other clusters. In this regard, various types

f clustering algorithms have been proposed and developed, such

s partitional clustering [4] , hierarchical clustering [5] , and density-

ased clustering [6] . 

As the clustering process is unsupervised, the cluster structure

btained by a clustering algorithm may not meet user require-

ents, and may even be irrelevant [7] . Semi-supervised clustering

s an important technique to reduce the gap between the clus-

ering result and users’ expectations, and makes use of pre-given

nowledge about the cluster structure of a dataset to guide the

lustering process [8–10] . To date, a number of semi-supervised

lustering algorithms have been proposed and reported in the lit-

rature (a more detailed review can be found in Section 2 ). A

ew of these algorithms have been successfully applied to differ-

nt fields, such as image segmentation, natural language process-

ng, and social network analysis. Among them, the label propa-

ation (LP) method [9] , which is a widely used semi-supervised

lustering method, is an extension of graph clustering [11,12] . The
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ethod uses partial labels as constraints to ensure that the cluster-

ng result has high within-cluster connectivity and that the extent

o which these labels differ from pre-given labels is minimized. 

However, the performance of the LP algorithm is often affected

y several factors, such as the similarity matrix of objects, strate-

ies to solve the optimization problem, and the type of pre-given

nowledge. In an attempt to address these factors, several im-

roved LP algorithms have been proposed to enhance the perfor-

ance in different respects. For example, Wang and Zhang [13] ,

ang et al. [14] defined different similarity matrices to improve

he effectiveness of the LP algorithm. Belkin et al. [15] , Zhu et al.

16] , 17 ] added certain regularization terms to the objective func-

ion of the LP algorithm with the aim of solving the overfitting

roblem. Because the LP algorithm can only use positive labels as

onstraints, Zoidi et al. [18] proposed a new LP algorithm that can

ccept both positive and negative labels. Lu et al. [19] presented a

ew LP algorithm with pairwise constraints to solve the inability

f the LP algorithm to process pairwise constraints. Even though

heir algorithm can propagate the pairwise constraints in both the

ow and column directions, the performance of the algorithm is

asily affected by the sparseness of these constraints. In fact, the

navailability of pairwise information for particular data objects

ould cause propagation errors in the row or column direction,

hich could also affect other directions. Although they enhanced

he performance of the classical LP algorithm to a certain extent,

wo key issues remained: (1) The LP algorithm is used to process

abel information, but it does not fully consider the misalignment

etween pre-given labels and cluster labels; (2) In real applica-
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tions, different types of prior information are often obtained, such

as label information (positive and negative labels) and pairwise in-

formation (must-link and cannot-link constraints) [20] . A general

LP algorithm capable of working with different types of constraints

has not yet been reported. 

Our solution to these problems, presented in this paper, is to

propose a new label propagation algorithm with pairwise con-

straints. The proposed algorithm can use the eigenvalue decom-

position solution to obtain an optimal result for the label propaga-

tion. The proposed algorithm overcomes the label misalignment of

the classical LP algorithm and can process pairwise constraints. 

The remainder of this paper is organized as follows.

Section 2 presents a brief survey of semi-supervised cluster-

ing algorithms. Section 3 introduces the classical label propagation

algorithm and describes the improved LP algorithm with pairwise

constraints. The experimental results are presented in Section 4 .

The conclusions of this paper are provided in Section 5 . 

2. Related work 

Semi-supervised clustering, which has received considerable at-

tention over the past few years, can incorporate limited prior infor-

mation, such as a small amount of label information (positive and

negative labels) or pairwise constraints (must-link and cannot-link

constraints), into clustering algorithms to meet user requirements

and to increase the accuracy of data partition. 

Depending on the type of prior information, existing semi-

supervised clustering algorithms can generally be classified into

two categories [21] . The methods in the first category aim to guide

the clustering process with label information. Zhou et al. [9] pro-

posed the label propagation algorithm, which is a representa-

tive method of graph-based clustering to propagate label informa-

tion on the graph. Furthermore, several improved LP algorithms

[13,14,18] have been proposed to enhance different aspects of clus-

tering effectiveness. However, these improved algorithms cannot

consider the misalignment problem between pre-given labels and

cluster labels in the process of label propagation. In addition, a

number of researchers explored distance metric learning in semi-

supervised clustering methods with label information, such as the

adaptive kernel method with metric learning [22] , information the-

oretic metric learning [23] , and Bregman distance function learn-

ing [24] . Basu et al. [25] introduced two semi-supervised variants

of k -means clustering that use initial labeled data for seeding. Yu

et al. [26] proposed a progressive subspace ensemble learning ap-

proach which takes both the feature space and the sample space

into account to obtain a more accurate result in terms of semi-

supervised clustering. Liu et al. [27] proposed a k -means clustering

algorithm with label information. Liu and Wu [28] proposed a ma-

trix factorization method with the label information as additional

constraints. 

The methods in the second category focus on making use

of pairwise constraints to guide the clustering process. Wagstaff

et al. [29] devised a semi-supervised variant of k -means named

COP- k means, which presents a new objective function with penalty

terms for violating the pairwise constraints. Yang et al. [30] pro-

posed a constrained self-organizing map ensemble framework to

improve COP- k -means. Wei et al. [31] presented a novel semi-

supervised clustering ensemble framework based on pairwise con-

straints and metric learning. Li et al. [32] developed a nonnega-

tive matrix factorization algorithm with pairwise constraints. Kam-

var et al. [33] modified the entries of the similarity matrix accord-

ing to the pairwise constraints and employed spectral clustering to

obtain the final result. Similarly, Xu et al. [34] modified the sim-

ilarity matrix and applied random walk for clustering. Ji and Xu

[35] , Wang et al. [36] used the constraint matrix as a regularizer

to modify the similarity matrix. Kulis et al. [37] used the kernel
pproach to improve semi-supervised graph clustering. These al-

orithms are designed to ensure that the clustering result satisfies

he constraints as much as possible. However, their performance

s easily affected by the size of pairwise constraints, where the

airwise constraints are not propagated in the clustering process.

u et al. [19] presented a label propagation algorithm with pair-

ise constraints, which can propagate the pairwise constraints in

oth the row and column directions. However, the performance of

he algorithm is easily affected by the sparseness of pairwise con-

traints. 

To date, semi-supervised clustering methods have been used

n many types of practical applications. For example, in the

rea of image segmentation, Yu et al. [38] proposed a semi-

upervised clustering algorithm based on the semantic preserva-

ion of distance metric learning for image segmentation. Portela

t al. [39] applied semi-supervised clustering for the segmenta-

ion of Magnetic Resonance Imaging (MRI) results of the brain.

n the area of natural language processing, Huang et al. [40] pro-

osed a semi-supervised document clustering algorithm with lan-

uage modeling. In the area of social network analysis, Yang

t al. [41] proposed a unified semi-supervised framework to in-

egrate the network topology with prior information for com-

unity detection. Although these existing methods have already

ade commendable theoretical and practical contributions, they

till have some deficiencies that need to be addressed. This pa-

er presents our proposed extension of the LP algorithm to a new

emi-supervised clustering algorithm with pairwise constraints.

ompared to existing methods, the proposed algorithm not only

olves the misalignment between pre-given labels and cluster la-

els, but is also able to process different types of prior informa-

ion. 

. The label propagation algorithm 

.1. The classical label propagation algorithm 

Let X = { x 1 , . . . , x l , x l+1 , . . . , x n } be a datase t with n objects and

 = { 1 , . . . , k } be a set of class labels. The first l objects x 1 , . . . , x l 
n X are assumed to be labeled, where y i ∈ L for x i ( i ≤ l ), and

ther objects are unlabeled. W is an n × n similarity matrix, where

 ij is the similarity between objects x i and x j . X can be viewed

s a graph G = (X, W ) , where a node represents an object on the

ataset X and an edge weight represents the similarity between its

inked nodes. F is an n × k membership matrix, where k is the

umber of clusters and F ij ∈ [0, 1] is the membership of x i to the

 th cluster. 

The optimization problem of the LP algorithm [9] is described

s 

in 

F 
Q(F ) = μ S(F ) + (1 − μ)�(F ) . (1)

he objective function Q ( F ) includes two terms S ( F ) and �( F ) and

is a positive parameter to control the trade-off between terms. 

S ( F ) is the objective function of the spectral clustering and is

xpressed as follows 

(F ) = 

1 

2 

( 

n ∑ 

i, j=1 

W i j 

∣∣∣∣∣∣ 1 √ 

D ii 

F i −
1 √ 

D j j 

F j 

∣∣∣∣∣∣2 

) 

= F T LF . (2)

n the definition of S ( F ), W is computed by a Gaussian kernel func-

ion [42] 

 i j = exp 

(
−‖ x i − x j ‖ 

2 

2 σ 2 

)
, (3)

here σ is set according to the covariance of the given dataset,

 = [ D ii ] is an n × n diagonal matrix, where D ii = 

∑ n 
j=1 W i j , and
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Fig. 1. Misalignment between class labels and cluster labels. 
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 = I − D 

−1 / 2 W D 

−1 / 2 is the normalized Laplacian matrix, where I is

n n × n identity matrix. 

�( F ) is a cost function that penalizes the divergence of the clus-

er labels from the pre-given labels and is defined as 

(F ) = || F − Y || 2 = (F − Y ) T (F − Y ) . (4)

n the definition of �( F ), Y ∈ R 

n ×k is an n × k membership matrix

hat is used to save the pre-given label information as follows 

 i j = 

{
1 , if the label of x i is y j , 
0 , otherwise. 

(5) 

The LP algorithm aims to minimize �( F ) to reduce the differ-

nce between the pre-given labels and the clustering result. The

ptimal solution of the optimization problem in the LP algorithm

an be obtained by the following formula 

 

∗ = β (I − αL ) −1 Y, (6)

here β = 

μ
1+ μ and α = 

1 
1+ μ . 

However, the LP algorithm has two key shortcomings: 

(1) Misalignment between the pre-given labels and cluster la-

bels may occur during the propagation process. Unlike su-

pervised learning, where the class labels represent specific

classes, the cluster labels only express grouping characteris-

tics of the data and are not directly comparable across dif-

ferent clustering results. For example, the example in Fig. 1

is useful to illustrate the misalignment problem. The exam-

ple contains four pre-given class labels, i.e., Class 1, Class 2,

Class 3, and Class 4, and four cluster labels, i.e., Cluster 1,

Cluster 2, Cluster 3, and Cluster 4. Y is a membership matrix

that represents the relations between objects and class la-

bels. F is a membership matrix that represents the relations

between objects and cluster labels. In this example, although

the partition of objects described by F is the same as that of

Y , the cluster labels do not correspond to the class labels. It

is obvious that the labels of different partitions should be

aligned. However, the LP algorithm does not consider the

alignment problem in �( F ), which may affect label propa-

gation. 

(2) In practical applications, the obtained prior information not

only includes label information but also pairwise constraints.

However, according to the definition of �( F ), it is known that

the LP algorithm can only process label information. 

These shortcomings motivated us to propose a new LP algo-

ithm, which is described in the next section. 

.2. New label propagation algorithm 

To overcome the above key shortcomings of the LP algorithm,

he divergence between the pairwise relations of the prior infor-

ation and clustering result is used as a penalty factor, instead of

he difference between partition matrices. Therefore, we first in-

roduce the pairwise relations of prior information (including label

nformation and pairwise constraints). 
Label information reflects the membership relation between ob-

ects and clusters, which includes both positive and negative labels.

he positive label information Y is defined by Eq. (5) . The nega-

ive labels reflect which class the object does not belong to. Here,

 

− ∈ R 

n ×k is used to represent the negative label information as

ollows 

 

−
i j 

= 

{
−1 , if the label of x i is not y j , 
0 , otherwise. 

(7) 

airwise constraints reflect the relation between objects, which in-

ludes must-link and cannot-link constraints. They can be formal-

zed as follows. Let M = { (x i , x j ) : y i = y j , 1 ≤ i, j ≤ n } be a set of

ust-link constraints, and C = { (x i , x j ) : y i � = y j , 1 ≤ i, j ≤ n } be a

et of cannot-link constraints, where y i and y j are the labels of ob-

ects x i and x j , respectively. We use an n × n matrix A to represent

he pairwise constraints as follows 

 i j = 

{ 

1 , if (x i , x j ) ∈ M, 

−1 , if (x i , x j ) ∈ C, 

0 , otherwise. 
(8) 

Based on the definitions of Y , Y −, and A , the pairwise relation

atrix P for different types of prior information can be defined as

ollows 

 = 

{ 

Y Y T , given positive labels, 
1 

k −1 

(
Y −Y −T 

)
, given negative labels, 

A, given pairwise constraints, 

(9) 

here YY T and 

1 
k −1 

(
Y −Y −T 

)
are the pairwise representations of Y

nd Y −, respectively, where k is the number of clusters on the

ataset. Because negative labels cannot lead to the conclusion that

wo objects are definitely in the same class, 1 
k −1 

is used in the pair-

ise representation to reflect the probability that two objects be-

ong to the same class. 

Based on the definition of P , the penalty function �( F ) of the LP

lgorithm is redefined as follows 

′ 
(F ) = || F F T − P || 2 , (10)

here FF T is the pairwise representation of F . �
′ 
(F ) is the diver-

ence between the pre-given and clustering pairwise representa-

ions. The new penalty function can solve the misalignment prob-

em of the pre-given labels and cluster labels. The example in

ig. 1 is again used to show the advantage of the penalty function
′ 
(F ) , which is shown in Fig. 2 . 

According to the figure, YY T is equal to FF T . Thus, the use of

airwise matrices can overcome the misalignment problem. 

Furthermore, the optimization problem of the label propagation

lgorithm is modified as follows 

in 
F 

Q(F ) = 

1 

2 
μ

( 

n ∑ 

i, j=1 

W i j 

∣∣∣∣∣∣ 1 √ 

D ii 

F i −
1 √ 

D j j 

F j 

∣∣∣∣∣∣2 

) 

+ 

1 

2 
(1 − μ) || F F T − P || 2

= μ tr(F T LF ) + 

1 
(1 − μ) tr 

(
(F F T − P ) T (F F T − P ) 

)
. (11) 
2 
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Fig. 2. Procedure of transforming label matrices into pairwise matrices. 
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Table 1 

Experimental datasets. 

Dataset #Instances #Features #Classes 

Iris 150 4 3 

Wine 178 13 3 

Heart 270 13 2 

ORL 400 1024 40 

Breast 569 31 2 

Messidor 1151 20 2 

Bank 1372 4 2 

Isolet 1560 617 26 

Digits 5620 64 10 

Statlog 6435 36 6 

MNIST 10000 784 10 
In the new objective function, �
′ 
(F ) can be converted into the fol-

lowing equation 

r 
(
(F F T − P ) T (F F T − P ) 

)
= 2 tr(I − F T P F ) . (12)

Then, 

Q(F ) = μ tr(F T LF ) + (1 − μ) tr(I − F T P F ) 

= tr 
(
F T (μ L + (1 − μ)(I − P )) F 

)
. (13)

Because L 
′ = μL + (1 − μ)(I − P ) can be seen as a new Laplacian

matrix, the optimization problem of the new LP algorithm can be

converted into a spectral clustering problem. Thus, the eigenvalue

decomposition method is used to obtain the optimal solution of

Q ( F ). The proposed algorithm, named NLPPC, is formally summa-

rized in Algorithm 1 . Its computational complexity is O (n 2 + n 2 k ) ,

Algorithm 1 New label propagation with pairwise constraints

(NLPPC). 

Input : X , k, P, μ. 

Output : F ∗. 

1: Compute the similarity matrix W of X by Eq.(3); 

2: Compute the Laplacian matrix L = I − D 

−1 / 2 W D 

−1 / 2 ; 

3: Compute the new Laplacian matrix L 
′ = μL + (1 − μ)(I − P ) ; 

4: Compute F = eigs (L 
′ 
, k ) to obtain the top k eigenvectors of L ′ ; 

5: Get F ∗ by applying Ward’s linkage algorithm to F ; 

6: return F ∗; 

which is as much as that of the original spectral clustering algo-

rithm, where n is the number of objects on a dataset, where O ( n 2 )

is the time cost of constructing the similarity matrix W and O ( n 2 k )

is the time cost of obtaining the top k eigenvectors of L ′ . In addi-

tion, O (3 n 2 ) space is needed in which to save the similarity matrix

W , prior information P , and the pairwise matrix of clustering FF T . 
. Experimental analysis 

.1. Experimental setup 

The experiment was designed to test the proposed algorithm

n 11 benchmark datasets, which can be downloaded from http:

/archive.ics.uci.edu/ml . Details of these datasets appear in Table 1 .

Two widely used validity indices were employed: the Nor-

alized Mutual Information ( NMI ) [43] and Adjusted Rand In-

ex ( ARI ) [44] to evaluate the performance of the proposed algo-

ithm. These indices attempt to measure the similarity between

he ground-truth partition and the clustering result on a dataset.

iven a dataset X with N objects and two partitions of these ob-

ects, namely C = { c 1 , c 2 , · · · , c k } (the clustering result) and P =
 p 1 , p 2 , · · · , p k } (the true partition). Let n i j = | c i ∩ p j | be the num-

er of common nodes of groups c i and p j , b i = 

∑ N 
j=1 n i j and d j =

 N 
i =1 n i j . The normalized mutual information (NMI) [43] is defined

s 

MI = 

2 

∑ 

i 

∑ 

j n i j log 
n i j N 

b i d j 

−∑ 

i b i log b i 
N 

− ∑ 

j d j log 
d j 
N 

. 

he adjusted rand index [44] is defined as 

RI = 

∑ 

i j 

(
n i j 

2 

)
− [ 

∑ 

i 

(
b i 
2 

)∑ 

j 

(
d j 
2 

)
] / 

(
N 
2 

)
1 
2 

[ 
∑ 

i 

(
b i 
2 

)
+ 

∑ 

j 

(
d j 
2 

)
] − [ 

∑ 

i 

(
b i 
2 

)∑ 

j 

(
d j 
2 

)
] / 

(
N 
2 

) . 

http://archive.ics.uci.edu/ml
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Table 2 

NMI values for semi-supervised clustering methods with positive labels. 

Datasets percent LP LNP CNMF PLCC NLPPC SC 

15% 0.8580 0.7784 0.6250 0.6826 0.8797 

Iris 25% 0.8610 0.8440 0.6795 0.7455 0.8790 0.7777 

35% 0.8924 0.8629 0.7411 0.8267 0.9222 

15% 0.8349 0.7446 0.7084 0.8156 0.9045 

Wine 25% 0.8626 0.8450 0.7798 0.8705 0.9327 0.8609 

35% 0.9258 0.8715 0.8159 0.8958 0.9423 

15% 0.3492 0.1429 0.2343 0.3211 0.3661 

Heart 25% 0.4196 0.2236 0.3242 0.3740 0.4351 0.2765 

35% 0.4808 0.3735 0.4385 0.4767 0.5172 

15% 0.8242 0.7653 0.2045 0.7253 0.8230 

ORL 25% 0.8783 0.8441 0.2045 0.7228 0.8840 0.8909 

35% 0.9248 0.8939 0.5795 0.7458 0.9401 

15% 0.7227 0.6808 0.5108 0.5912 0.7579 

Breast 25% 0.7597 0.7296 0.5697 0.6945 0.7813 0.6305 

35% 0.8294 0.8053 0.5883 0.7330 0.8146 

15% 1.0000 0.9156 0.6545 0.7092 1.0000 

Messidor 25% 1.0000 0.9482 0.8581 1.0000 1.0000 0.3405 

35% 1.0000 0.9850 0.9389 1.0000 1.0000 

15% 0.9600 0.6419 0.1161 0.0908 0.9784 

Bank 25% 0.9523 0.7647 0.1434 0.1350 0.9871 0.2131 

35% 0.9706 0.8908 0.2527 0.2597 0.9888 

15% 0.8428 0.7874 0.1096 0.7788 0.8539 

Isolet 25% 0.8778 0.8351 0.1588 0.8091 0.8800 0.8073 

35% 0.9050 0.8564 0.2013 0.8162 0.9167 

15% 0.9643 0.9521 0.0552 0.7359 0.9665 

Digits 25% 0.9704 0.9617 0.1533 0.7891 0.9716 0.8914 

35% 0.9756 0.9634 0.2949 0.7774 0.9767 

15% 0.7718 0.7461 0.5823 0.5879 0.7677 

Statlog 25% 0.8075 0.7933 0.5778 0.6311 0.8052 0.6658 

35% 0.8259 0.8204 0.6109 0.6956 0.8312 

15% 0.8922 0.8501 0.1007 0.5586 0.9015 

MNIST 25% 0.9117 0.8776 0.2029 0.6214 0.9163 0.6655 

35% 0.9306 0.9045 0.2996 0.6446 0.9321 

ALL Datasets Average 0.8479 0.7848 0.4338 0.6625 0.8622 0.6382 

Table 3 

ARI values for semi-supervised clustering methods with positive labels. 

Datasets percent LP LNP CNMF PLCC NLPPC SC 

15% 0.8652 0.7925 0.5616 0.6464 0.9222 

Iris 25% 0.8816 0.8670 0.6033 0.7021 0.9037 0.7445 

35% 0.9040 0.8847 0.6890 0.8346 0.9799 

15% 0.8504 0.7327 0.6963 0.8307 0.9167 

Wine 25% 0.8817 0.8554 0.7766 0.8907 0.9651 0.8708 

35% 0.9408 0.8877 0.8401 0.9232 0.9295 

15% 0.4276 0.1569 0.2893 0.4070 0.4424 

Heart 25% 0.5170 0.2776 0.4036 0.4663 0.5918 0.3576 

35% 0.5868 0.4676 0.5418 0.5819 0.6384 

15% 0.5356 0.3417 0.0048 0.3357 0.5828 

ORL 25% 0.6613 0.5358 0.0048 0.3309 0.6448 0.7016 

35% 0.7921 0.7085 0.1619 0.3782 0.8799 

15% 0.8214 0.7781 0.5606 0.6969 0.8501 

Breast 25% 0.8457 0.8228 0.6394 0.7941 0.9034 0.7114 

35% 0.9034 0.8800 0.6765 0.8243 0.9033 

15% 1.0000 0.9456 0.6909 0.7242 1.0000 

Messidor 25% 1.0000 0.9716 0.8677 1.0000 1.0000 0.3554 

35% 1.0000 0.9931 0.9608 1.0000 1.0000 

15% 0.9779 0.6872 0.1579 0.1243 0.9942 

Bank 25% 0.8336 0.8240 0.1904 0.1840 0.9942 0.1321 

35% 0.9855 0.9356 0.3299 0.3352 0.9942 

15% 0.7019 0.6000 0.0049 0.5586 0.6028 

Isolet 25% 0.7702 0.6963 0.0191 0.6211 0.8096 0.5590 

35% 0.8256 0.7346 0.0423 0.6242 0.8257 

15% 0.9695 0.9569 0.0208 0.6453 0.9714 

Digits 25% 0.9753 0.9668 0.0488 0.7206 0.9779 0.8321 

35% 0.9795 0.9681 0.1048 0.7050 0.9819 

15% 0.7970 0.7759 0.5135 0.5046 0.7892 

Statlog 25% 0.8325 0.8256 0.4950 0.5626 0.8426 0.6505 

35% 0.8518 0.8515 0.5489 0.6498 0.8659 

15% 0.8999 0.8556 0.0543 0.4462 0.9177 

MNIST 25% 0.9192 0.8866 0.0804 0.5459 0.9271 0.5166 

35% 0.9424 0.9151 0.1191 0.5672 0.9457 

ALL Datasets Average 0.8430 0.7691 0.3848 0.6110 0.8662 0.5847 
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Table 4 

NMI values for semi-supervised clustering methods with pairwise con- 

straints. 

Datasets percent COP CVQE PCLP NLPPC 

15% 0.7337 0.7289 0.7629 0.8225 

Iris 25% 0.7554 0.6983 0.7723 0.8196 

35% 0.7855 0.7187 0.7771 0.8742 

15% 0.8282 0.8144 0.8971 0.8949 

Wine 25% 0.8532 0.8030 0.8894 0.9452 

35% 0.8868 0.7803 0.8806 0.9505 

15% 0.3286 0.2676 0.2432 0.3409 

Heart 25% 0.3791 0.2003 0.2478 0.4451 

35% 0.4239 0.1731 0.2659 0.4864 

15% 0.7388 0.3174 0.7766 0.6856 

ORL 25% 0.7335 0.3634 0.7796 0.7778 

35% 0.7314 0.3724 0.7814 0.8526 

15% 0.6742 0.6223 0.6793 0.7455 

Breast 25% 0.7377 0.6207 0.6918 0.7900 

35% 0.7654 0.6243 0.7105 0.8313 

15% 0.3401 0.2016 1.0000 1.0000 

Messidor 25% 0.7139 0.2515 1.0000 1.0000 

35% 1.0000 0.3009 1.0000 1.0000 

15% 0.0286 0.0219 0.8942 0.9553 

Bank 25% 0.1342 0.0182 0.9317 0.9635 

35% 0.3065 0.0164 0.9390 0.9743 

15% 0.7538 0.5253 0.7986 0.8061 

Isolet 25% 0.7671 0.4920 0.8001 0.8149 

35% 0.7734 0.5091 0.8017 0.8260 

15% 0.7328 0.7393 0.9201 0.9451 

Digits 25% 0.7652 0.7529 0.9391 0.9486 

35% 0.7769 0.7435 0.9420 0.9578 

15% 0.6164 0.6072 0.6496 0.6815 

Statlog 25% 0.6236 0.5946 0.6616 0.6966 

35% 0.6354 0.5797 0.6425 0.7213 

15% 0.5101 0.5162 0.6934 0.6338 

MNIST 25% 0.5201 0.5126 0.7085 0.7142 

35% 0.5158 0.4982 0.7113 0.7204 

ALL Datasets Average 0.6324 0.4844 0.7633 0.8067 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

ARI values for semi-supervised clustering methods with pairwise con- 

straints. 

Datasets percent COP CVQE PCLP NLPPC 

15% 0.7205 0.7069 0.7339 0.8137 

Iris 25% 0.7427 0.5987 0.7391 0.7922 

35% 0.7865 0.6752 0.7524 0.8779 

15% 0.8505 0.8259 0.9210 0.9118 

Wine 25% 0.8830 0.8117 0.9156 0.9586 

35% 0.9123 0.7801 0.9078 0.9635 

15% 0.4155 0.3428 0.3078 0.4216 

Heart 25% 0.4718 0.2476 0.3146 0.5379 

35% 0.5201 0.2168 0.3386 0.5804 

15% 0.3639 0.0477 0.4483 0.2622 

ORL 25% 0.3586 0.0632 0.4567 0.4414 

35% 0.3034 0.0655 0.4569 0.6060 

15% 0.7820 0.7178 0.7689 0.8271 

Breast 25% 0.8329 0.7192 0.7849 0.8551 

35% 0.8564 0.7310 0.8026 0.8989 

15% 0.3602 0.2014 1.0000 1.0000 

Messidor 25% 0.7193 0.2495 1.0000 1.0000 

35% 1.0000 0.3017 1.0000 1.0000 

15% 0.0379 0.0290 0.9431 0.9780 

Bank 25% 0.1771 0.0250 0.9633 0.9817 

35% 0.3887 0.0210 0.9670 0.9881 

15% 0.5275 0.1973 0.6019 0.5543 

Isolet 25% 0.5302 0.1604 0.6070 0.5768 

35% 0.5476 0.1797 0.6089 0.5960 

15% 0.6177 0.6444 0.8999 0.9477 

Digits 25% 0.6741 0.6755 0.9425 0.9518 

35% 0.6924 0.6567 0.9456 0.9613 

15% 0.5494 0.5242 0.5582 0.6804 

Statlog 25% 0.5755 0.5104 0.5781 0.6783 

35% 0.5974 0.4851 0.5657 0.7254 

15% 0.3883 0.4026 0.5672 0.4814 

MNIST 25% 0.4064 0.4069 0.5918 0.5942 

35% 0.3948 0.3836 0.5949 0.6046 

ALL Datasets Average 0.5765 0.4123 0.7147 0.7590 
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If a clustering result is close to the true partition, then its NMI and

ARI values are high. 

Experiments were divided into three parts according to the

types of prior information: (1) using positive labels as prior in-

formation, (2) using pairwise constraints as prior information and

(3) using both positive and negative labels as prior information.

The first part compared the proposed algorithm with four semi-

supervised clustering algorithms with positive labels, including

LP [9] , which is the classical label propagation algorithm, LNP [13] ,

which is an improved label propagation algorithm with modified

affinity matrix, CNMF [28] , which is an NMF-based constrained

clustering method and PLCC [27] , which is a k -means-based par-

tition level constrained clustering method. The second part com-

pared the proposed algorithm with three semi-supervised cluster-

ing algorithms with pairwise constraints, including COP [29] and

CVQE [45] , both of which are methods for k -means-based pairwise

constraints clustering, and PCLP [19] , which is an LP algorithm with

pairwise constraints. The third part compared the proposed algo-

rithm with the positive and negative label propagation algorithm

(PNLP) [18] . 

To compare these different algorithms, their related parameters

were specified as follows. 

• The number of clusters k was set equal to the true number of

classes on each dataset. 
• For each of the compared algorithms, a parameter similar to μ

was set to reflect the importance of prior information. In the

comparisons, each compared algorithm was tested by increas-

ing the value of μ in the interval [0,1] in increments of 0.1, and

its best clustering result with the highest NMI and ARI values

on a particular dataset was selected. 
• Certain algorithms in the comparison, such as LP, LNP, PLCC,

PCLP, PNLP and the proposed algorithm, require a Gaussian ker-

nel parameter σ to be specified to construct the similarity ma-

trix. In the comparisons, each of these algorithms was tested

with different σ values in the set { s /2, s /10, s /20, s /30, s /40,

s /50}, where s is equal to the covariance of a dataset, and its

best clustering result with the highest NMI and ARI values on

the dataset was selected. 
• The effectiveness of a semi-supervised clustering result de-

pends on the amount of prior information. Therefore, in each

part of the experiment, the amount of prior information data

was set to 15, 25, and 35 percent of the number of objects

included in a dataset. All the algorithms that were compared

were implemented with three sizes of prior information by us-

ing six-, four-, and two-fold cross validation, respectively. 
• The effectiveness of a semi-supervised clustering result de-

pends on the quality of prior information. Therefore, in each

part of the experiment, given the amount of prior information,

all the compared algorithms were run with 10 different sets of

prior information to compute the average clustering results for

NMI and ARI on each dataset. 

.2. Experimental results 

In the first part, the spectral clustering (SC) algorithm was

ested without prior information, and involved the LP, LNP, CNMF,

nd proposed algorithms with positive labels. Tables 2 and 3 list

he clustering performance of the different algorithms on all the

atasets with positive labels as prior information. These compar-

sons indicate that the proposed algorithm is superior to the SC

lgorithm. This suggests that prior information is able to enhance

he clustering effectiveness. Furthermore, the results show that



L. Bai, J. Wang and J. Liang et al. / Pattern Recognition 106 (2020) 107411 7 

Table 6 

NMI and ARI values for semi-supervised clustering methods with both 

positive and negative labels. 

Datasets percent NMI ARI 

PNLP NLPPC PNLP NLPPC 

15% 0.8049 0.8354 0.7862 0.8283 

Iris 25% 0.8494 0.8503 0.8603 0.8527 

35% 0.8553 0.8986 0.8705 0.9103 

15% 0.8354 0.8877 0.8661 0.9085 

Wine 25% 0.8274 0.9178 0.8532 0.9373 

35% 0.8526 0.9467 0.8822 0.9619 

15% 0.3739 0.4224 0.4463 0.4986 

Heart 25% 0.4586 0.5069 0.5501 0.5955 

35% 0.4696 0.6135 0.5653 0.7123 

15% 0.7414 0.8048 0.4001 0.4835 

ORL 25% 0.8263 0.8302 0.5456 0.5572 

35% 0.8852 0.8732 0.7014 0.6523 

15% 0.6955 0.7582 0.7809 0.8361 

Breast 25% 0.7393 0.8243 0.8170 0.8859 

35% 0.7419 0.8633 0.8157 0.9217 

15% 0.9940 1.0000 0.9972 1.0000 

Messidor 25% 1.0000 1.0000 1.0000 1.0000 

35% 1.0000 1.0000 1.0000 1.0000 

15% 0.9787 0.9870 0.9910 0.9948 

Bank 25% 0.9825 0.9910 0.9927 0.9965 

35% 0.9837 0.9917 0.9933 0.9968 

15% 0.8321 0.8189 0.6867 0.6172 

Isolet 25% 0.8783 0.8516 0.7784 0.7226 

35% 0.9052 0.8891 0.8350 0.7844 

15% 0.9353 0.9600 0.9450 0.9647 

Digits 25% 0.9601 0.9661 0.9670 0.9709 

35% 0.9712 0.9754 0.9770 0.9797 

15% 0.7523 0.7426 0.7844 0.7554 

Statlog 25% 0.7694 0.7714 0.8008 0.7848 

35% 0.7747 0.8007 0.8076 0.8109 

15% 0.6094 0.8293 0.6149 0.7954 

MNIST 25% 0.6869 0.8595 0.7004 0.8364 

35% 0.7406 0.8948 0.7580 0.8937 

ALL Datasets Average 0.8094 0.8534 0.7991 0.8317 
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he proposed algorithm is clearly more accurate than LNP, CNMF,

nd PLCC on these tested datasets. On certain datasets, the pro-

osed algorithm with specific amounts of prior information per-

ormed slightly less accurately than LP. However, the performance

f the proposed algorithm is superior on most datasets compared

o LP. Therefore, the experimental results indicate that the pro-

osed method can enhance the clustering effectiveness by solving

he label misalignment problem in the process of label propagation

ompared to other algorithms. 

The second part of the experiments involved testing the COP,

VQE, PCLP, and proposed algorithm with pairwise constraints. The

xperiment was carried out by setting the number of must-link

onstraints equal to that of the cannot-link constraints on each
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Fig. 3. Effect of parameter μ on
ataset. Tables 4 and 5 present the clustering performance of the

ifferent algorithms on all the datasets with pairwise constraints.

hese results show that the proposed algorithm is clearly superior

o COP and CVQE on these tested datasets. On 3 of the 11 datasets,

he proposed algorithm performed slightly less accurate than PCLP

ith specific amounts of prior information. However, compared to

CLP, the proposed algorithm is more accurate on most datasets. 

The third part of the experiments entailed testing PNLP and

he proposed algorithm with both positive and negative labels.

he experiment was conducted by setting the number of posi-

ive labels equal to the number of negative labels on each dataset.

able 6 lists the clustering performance of the compared algo-

ithms. The performance of the proposed algorithm is obviously

uperior to that of PNLP on seven of the datasets. On the other

atasets, the performance of the proposed algorithm closely ap-

roximates that of PNLP. 

The tables also present the average clustering results of each al-

orithm on all datasets. The results of the comparison show that

ur algorithm outperforms the other algorithms with respect to

he average clustering results with different types of prior infor-

ation on all datasets. The experimental analysis indicates that the

lustering accuracy of the proposed algorithm is higher than that

f the other algorithms on most of the tested datasets. This re-

ult is mainly attributed to the ability of the proposed algorithm

o solve the misalignment problem between pre-given class labels

nd cluster labels and obtain a good optimization solution by the

igenvalue decomposition method. It is equally noteworthy that

he effectiveness of the proposed algorithm with certain amounts

f prior information is slightly less than that of LP, PCLP, and NLPCC

n particular datasets. However, compared to LP, PCLP, and PNLP,

he advantage of the proposed algorithm is that it can effectively

ccommodate different types of prior information. 

Next, the effect of the parameter μ on the performance of the

roposed algorithm on each of datasets was analyzed, as shown in

igs. 3 , and 5 . The analysis considered the following three scenar-

os, i.e., the proposed algorithm with positive labels, with pairwise

onstraints, and with both positive and negative labels. The over-

ll number of constraints was assigned a constant value of 25% N ,

here N is the number of objects in a dataset. The proposed algo-

ithm was tested by increasing the value of μ in steps of 0.1 in the

nterval [0,1]. The results in these figures show that the parameter

has a different effect on each of these datasets. This indicates

hat it is difficult to select an appropriate μ for the proposed al-

orithm on each dataset. The effect was further analyzed by plot-

ing the mean values of the evaluation indices for the proposed

lgorithm on all the tested datasets for each μ in Figs. 4 and 6 .

he plotted curves show that, for small increases in μ, the average

erformance of the proposed algorithm is relatively stable. 
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 the NMI values of NLPPC. 
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Fig. 4. Effect of parameter μ on the average NMI values of NLPPC. 
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(c) positive labels and negative labels

Fig. 5. Effect of parameter μ on the ARI values of NLPPC. 
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Fig. 6. Effect of parameter μ on the average ARI values of NLPPC. 
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Fig. 7. Effect of the number of dimensions on the NMI value of NLPPC. 
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Fig. 8. Effect of the number of dimensions on the ARI value of NLPPC. 
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Finally, the effect of the number of dimensions on the perfor-

ance of the proposed algorithm was analyzed. Three datasets

ontaining high-dimensional images, including ORL, Isolet , and

NIST , were selected to assess the performance of the proposed

lgorithm with different dimensions. First, each dataset was ran-

omly disordered in the dimension direction. Then, the NMI val-

es of the proposed algorithm were compared with the different

ypes of prior information on each dataset with different dimen-

ions, as shown in Figs. 7 and 8 . The performance of the proposed

lgorithm tended to be stable as the number of dimensions in-

reased for each dataset. The experimental results suggest that the

roposed algorithm can effectively accommodate high-dimensional

atasets. 

. Conclusions 

In this paper, we propose a new label propagation algorithm

ith pairwise constraints, named NLPPC. In the proposed algo-

ithm, the divergence between the pairwise relations of the prior

nformation and clustering result is used as a penalty factor, in-

tead of the difference between partition matrices. An eigenvalue

ecomposition method is used to optimize its solution. The pro-

osed algorithm not only solves the misalignment problem of the

P algorithm, it is also able to process pairwise constraints. Fi-

ally, extensive experiments were conducted to demonstrate the

ffectiveness of the proposed algorithm compared to other semi-

upervised clustering algorithms. The experimental results indi-

ated that the effectiveness of the proposed algorithm with certain

mounts of prior information is slightly less than that of LP, PCLP,

nd PNLP on particular datasets. However, the clustering perfor-

ance of the proposed algorithm is superior to that of the other

lgorithms on most of the tested datasets. 

This study mainly focused on label propagation with pairwise

onstraints. In future, we aim to investigate the effect of noisy

rior information on semi-supervised clustering. Furthermore, we

lan to develop a semi-supervised clustering framework with high

obustness which will make use of the ensemble learning tech-

ique to reduce the effect of noisy prior information. 
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